
Devices

At the lowest level, the I/O system communicates with the
hardware (fig.6.1).

Older Unix systems used a simple static interface.

More complicated hardware in newer systems has made it
desirable to build help systems to offload the device drivers.

FreeBSD have two new subsystems to support the
following services:

• Disk memory partitions and RAID - Handled by the
GEOM layer

• General help routines as for example setting up of DMA
channels (fig 7.2)

→ The CAM layer gives general support for several
hardware types

→ The ATA layer supports ATA disk memories.

1

The PC I/O Architecture

• The I/O architecture for a typical Intel based PC is
shown in fig. 7.1

• The PC has several busses connected with bridges
• Northbridge is closest to the processor and connects to

main memory, graphics bus and to the southbridge
• The Southbridge connects to the following busses:

→ PCI - Peripheral Component Interconnect. The
PCI-X and PCI Express are newer busses, intended
to replace the PCI standard.

→ ATA - Advanced Technology Attachment bus. An old
standard for cheap disk drives. Is about to be
replaced with serial ATA. SCSI is primarily used by
servers.

→ Firewire (IEEE 1394) - Primarily used by cameras.
→ CardBus (PCMCIA) - Used to connect extra

equipment to laptop computers.
→ PIC - Programmable Interrupt Controller. Maps the

the device interrupt to IRQ values in older computers.
Usually replaced with APIC or LAPIC.

→ ACPI - Advanced Configuration and Power Interface.
A standard for PC power management. Replaces the
older APM (Advanced Power Management).

→ Super I/O - Chip with interface lo legacy PS2
keyboard and mouse ports as well as support for the
AC97 sound standard.

2



Device Naming

• Unix use special files in the /dev directory to provide
access to hardware devices.

• Internally the system uses major and minor device
numbers to name the devices.

• In older systems, the special files in the /dev directory
were created by the system administrator.

• FreeBSD 5.2 use DEVFS (DEvice File System). As
devices are discovered either at boot time or while the
system is running, their names appear in the /dev
filesystem.

• When a device disappears, its entry in /dev disappears.

3

Device File System

• The static assignment of device numbers and special
files had some problems:

→ The /dev directory contained a large number of
special files that did not represent hardware that
existed in the system.

→ When new hardware was added to the system, the
system administrator had to create special files for
the device with the correct device numbers.

• A problem with DEVFS is that the device files are given
standard access permissions that do not always suit a
specific system.

→ To solve this problem, DEVFS has a configuration file
where the system administrator can specify the
access permissions for specific device files.

→ In Linux there is a newer and more flexible system,
UDEV, with the same goals as DEVFS.

4



The GEOM Layer

Located between DEVFS and the device drivers.

The GEOM layer provides a modular transformation
framework for disk-I/O requests.

Transformations in GEOM include the following:

• Simple address calculations needed for disk partitioning

• Aggregation of disks to provide RAID

• Encryption of data

• I/O optimizations such as disk sorting

5

The GEOM Layer - Terminology

GEOM is an architecture rather than an implementation

Object oriented design

Transformation A particular way to modify I/O requests

Class Implements a specific transformation. An example
is MBR (Master Boot Record). An instance of a class is
called a geom. Typically there is a geom of class MBR
for each disk memory (It splits the disk in 4 partitions).

Fig. 7.3 shows a sample GEOM configuration:

• At the bottom is a geom that communicates with the
CAM layer and produces the disk da0.

• Above da0 is stacked a MBR geom that interprets the
MBR label found in the first sector of the disk to provide
two partitions da0s1 and da0s2.

• These partitions have DEVFS consumers that export
them as /dev/da0s1 and /dev/da0s2

6



GEOM - Implementation

• The FreeBSD GEOM implementation uses two threads
to manage a stack of geoms.

• The g down thread process requests moving from the
top of the stack down to the driver.

• The g up thread process results returning from the
driver.

• This single-threaded implementation imposes the
following restrictions on a geom:

→ It may not block
→ It may not do time consuming calculations

• The commands that may pass through the GEOM stack
are read, write and delete.

7

ATA

• Because CAM was designed for SCSI disks and have a
structure that do not suit ATA disks, the ATA disks are
handled by its own subsystem.

• An ATA controller have two channels each of which
support a master unit and a slave unit.

• The common parts of the ATA layer handles the parts of
the disk memory interface that are not specific to a
particular hardware unit (fig. 7.8).

• The filesystem code passes a read/write request down
to the GEOM layer by calling the adstrategy routine.

adstrategy calls bioq disksort which puts the request on
the disc queue of the specified ATA disk. Then ata start
is called.

ata start manages the channel queues. If needed, the
data transports will alternate between master and slave.
If the channel is free, a hardware specific driver routine
(ad start) is called to move the operation from the bio
queue to the correct channel queue. Then
ata begin transaction is called to start the data
transport.

ata begin transaction Sets up a DMA channel if needed
and starts the data transport by writing to the units
control register.

8



ATA - cont.

The channel queues are managed by the data structure
ata request.

Then a data transport is completed the interrupt routine,
ata interrupt, is called.

ata interrupt updates the request with the command
completion status, releases the channel and returns the
request to the ATA layer by calling ata finish.

ata finish puts the completed I/O request on the ATA work
queue to be run by the g up thread and returns from the
interrupt.

ata completed is called by the g up thread. It checks
error codes returned by the hardware and calls the
driver specific callback routine (ad done for disk
memories). If needed it then calls ata start to start the
next data transport.

ad done updates the bio structure and wakes the
filesystem by calling biodone().

9

Autoconfiguration

• The early Unix systems used static device configuration
by manually editing the kernel sources to call the
correct driver.

• Autoconfiguration is a procedure carried out by the
system to recognize and enable the hardware devices
present in the system.

• Originally FreeBSD used the autoconfiguration code
from 4.2BSD.

• The current FreeBSD uses a new autoconfiguration
system called newbus.

• A design goal for newbus was to provide a stable ABI
(Application Binary Interface) for the drivers.

• Unfortunately the other interfaces to the drivers do not
provide a stable ABI.

10



Autoconfiguration - cont.

• The autoconfiguration works by systematically probing
the possible I/O busses on the machine.

• For each bus it is decided which devices are present on
the bus.

• Because the busses may contain bridges to other
busses, the procedure must be recursively repeated.

• The autoconfiguration must take care of some
problems.

→ Some devices must exist for the system to work, but
other devices may be connected while the system is
running.

→ Devices may be present in different numbers and on
different addresses.

→ Devices on newer busses are usually self-identifying
which means that the device have a status register
that can be read to determine its identity but some
older non-self-identifying busses are still in use.

• To address these problems, FreeBSD support both
static configuration at kernel compile time and dynamic
configuration at boot time or later.

• Both FreeBSD and Linux also support loadable device
drivers, so called kernel modules.

11

Autoconfiguration - cont.

• Address information for non-self-identifying busses are
given in the file /boot/devices.hint.

• This file and other configuration information is used by
/usr/sbin/config to build the static configuration.

• Autoconfiguration is done early during boot by calling
the architecture-dependent routine config().

• The config() routine configures root0, which is the top
node in the configuration tree. Directly below root0 in
I386 systems is nexus that represents the northbridge.

• Then the architecture independent routine
root bus configure() is called which calls
device probe and attach(dev) for every device that is a
child of root0.

• This routine makes recursive calls until all devices are
configured.

• The device drivers that support autoconfiguration have
to register a set of subroutines that are later called by
device probe and attach().

12



Autoconfiguration - cont.

Different routines are used depending on if the bus is
self-identifying or not:

1. device identify is used for older busses like ISA-bus,
that only can identify devices using hints. Tests each
possible location at which a device might be present.

2. device probe is used for newer busses. Requires that
the bus specifies registers or addresses that can be
read to identify connected devices.

Sometimes a device can be handled by several different
drivers. In this case the best driver should be selected.

13

Autoconfiguration - Device Drivers

The device driver need to register the following subroutines
for the autoconfiguration:

device probe tests if the device is present. Returns a
return value that indicates how good the driver matches
the found device.

device attach is called for the driver who’s device probe
returned the best match for the device. Initializes the
hardware and allocates an entry in devfs. Also allocates
needed hardware resources.

device identify is used instead of device probe for
busses who’s devices only can be found using hints.

device detach is called if a device (for example a
USB-memory) is removed from the system.

device shutdown is called when the system is shut down.

device suspend is called by power-management routines
before the machine enters a power-save state.

device resume is called at return a suspend state.

14



Autoconfiguration - Data Structures

The autoconfiguration uses the data structures devclass,
device and driver (fig. 7.10).

devclass represents a bus. It has a pointer (driver ) to a
list of device drivers. This list is initialized by advanced
magic early in the boot process before
autoconfiguration has started. The content in the list is
determined at kernel compile time.

driver represents a device driver. The driver’s probe and
attach routines are called via this data structure during
autoconfiguration.

device represents a hardware device. After
autoconfiguration it points to the driver that is selected
for the device.

The result of the autoconfiguration process is a tree of
device structures (fig. 7.12 and fig. 7.13).

15

Resource Management

• The device drivers must also take care of allocating
hardware resources as interrupt-request lines (irq), I/O
ports and memory addresses for local memory.

• Newbus specifies a framework for management of such
resources.

• The drivers have to register the subroutines specified in
table 7.2.

• Low level drivers do not have the global knowledge of
resource utilization needed to allocate for example irq
lines.

• To solve this problem they may register a generic
bypass routine (bus alloc resource) that calls the
corresponding routine registered by their parent.

• This is repeated until a level is reached that has enough
information to do the allocation.

• In most cases an allocation is possible only at the
highest level (nexus).

• To keep track of free and busy resources general
resource handlers are used (rman xxx).

16


