
Kernel Organization

• The normal way to enter the kernel is through system
calls. Most of the code in the kernel is executed by
processes that have made a system call.

• Some services are performed by special kernel
processes. These processes have their own process
struct, but only execute in kernel mode.

• Older BSD-systems only had two kernel processes
(swapper and pagedaemon) but freeBSD has many more.

Idle runs when there is nothing else to do.

swapper schedules the loading of processes into main
memory.

pagedaemon executes the replacement algorithm for the
virtual memory.

pagezero maintains a supply of zeroed pages.

Syncer ensures that dirty file data is written after 30
seconds.

The first user mode process is init. It is the first normal
process that is started and is the origin of all other user mode
processes.

1

System Entry

The kernel can be entered in three different ways:

• Hardware interrupt

• Hardware trap - exception

• Software generated trap - system call

All calls to the kernel use the interrupt system and are
separated by use of different interrupt vectors.

There are three major kinds of handlers in the kernel:

1. Syscall(), for system calls.

2. Trap(), for exceptions and software-initiated traps other
than system calls.

3. Device-driver interrupt handlers for hardware interrupts.

2



Run-time organization

• The kernel can be logically divided into top half and
bottom half.

• Top half is called from system calls or traps.

• Bottom half is called via hardware interrupts.

• Activities in the bottom half are asynchronous with
respect to the top half and can not depend on having a
specific process running.

• The top half and bottom half of the kernel communicate
through work queues.

• Data structures that are referenced from both top half and
bottom half becomes critical regions that must be
protected.

• In FreeBSD 5.2 the work queues are protected by a
mutex.

3

System Calls

The system-call handler must do the following work:

• Verify that the parameters to the system call are located at
a valid user address and copy them from the user’s
address space into the kernel.

• Call a kernel routine that implements the system call.

If a system call fails, the system call routine will set the C
errno variable. At return from a system call errno is copied
into a register. This register is copied into the caller’s errno by
the library routine that performs the system call.

A special error is that a system call is interrupted by a signal.
In this case errno is set to EINTR.

4



Returning from a System Call

At return from a system call, several checks are made.

• Check if a signal have arrived. If a signal have arrived
signal processing is performed.

• Check if any process has a higher priority than the
running one. If this is the case, the context-switch routine
is called to cause the higher priority process to run.

• If profiling have been requested, the time spent in the
system call is calculated.

5

Software Interrupts

• Interrupt routines should be as short as possible to avoid
blocking the interrupts for too long time.

• A way to reduce the execution time in the interrupt handler
is to do the less time-critical processing at a lower priority.

• The mechanism for doing lower-priority processing is
called a software interrupt.

• In FreeBSD 5.2 each software interrupt has a process
context associated with it.

• The interrupt routine will create a queue of work to be
done at software-interrupt level.

• The software interrupt processes are given a scheduling
priority lower than the hardware interrupts, but higher than
any user level process.

• An important use for software interrupts are the delivery of
network packets to the destination process.

6



Clock Interrupts

• Clock interrupts are generated by a timer, typically every
10 milliseconds.

• Each interrupt is referred to as a tick.

• The clock interrupt usually is the highest priority interrupt
in the system.

• At every clock interrupt the hardclock() routine is called.

• So the time spent in hardclock() is minimized, less
time-critical processing is handled by a lower priority
software-interrupt process called softclock().

7

Clock Interrupts Cont.

The work done by hardclock() is as follows:

• Increment the current time of day.

• If the currently running process has a virtual or profiling
interval timer, increment the timer and deliver the signal if
the timer has expired.

• If the system does not have a separate clock for process
profiling, the hardclock() routine does the operations
normally done by profclock().

• If the system does not have a separate clock for statistics
gathering , the hardclock() routine does the operations
normally done by statclock().

• If softclock() needs to be run, make the softclock process
runnable.

8



Statistics and Process Scheduling

• Resource utilization statistics may be used to determine
future scheduling priorities and can also be used to
measure the execution time for different routines in a
program (profiling).

• Using the hardclock() to collect statistics can give
incorrect data, because processes can become
synchronized with the system clock.

• On the PC, a statistics clock is run at a different frequency
than the hardclock.

• The FreeBSD statclock() runs at 128 ticks per second.

Statclock() does the following:

• Add a tick to the executing process. If a process has
accumulated four ticks, recalculate its priority and possibly
arrange for a context switch.

• Collect statistics on what the system was doing at the time
of the tick.

9

Timeouts

• The Softclock() routine processes timeout requests.

• The data structure that describes waiting events is called
the callout queue (fig. 3.2).

• At timeout, a specified subroutine is called.

• Insertion into the callout queue is done with the following
subroutine:

timeout(ftn, arg, to ticks)
timeout t *ftn; /* call ftn at timeout */
void *arg;
int to ticks; /* number of ticks till timeout */

Softclock() and the callout queue can be used for the
following purposes:

• Recalculating the process priorities (Done once per
second)

• Retransmission of network packets.

• Watchdog timer for peripherals that require monitoring.

• Process real-time timer (Section 3.6).

10



Organization of the callout queue

• Older BSD systems used one queue sorted in time order.

• Insertion in this queue was O(n) and removal was O(1).

• FreeBSD 5.2 uses a method that gives O(1) in the normal
case for both insertion and removal.

• The queue consists of a table with 200 list heads.

• A pointer labeled now points to the list head that
represents current time.

• At insertion into the queue, the absolute time for timeout is
stored in the callout struct.

• The next list head in the table represents the time now+1
and so on up to now+199.

• Time is measured in ticks and current time is represented
by the global variable tick, which is updated by the
hardclock().

11

Organization of the callout queue cont.

• The now pointer is incremented by hardclock() at every
tick. If the list pointed to by now is nonempty, the
softclock() process is scheduled to run.

• Softclock() compares the point of time stored in the callout
struct with current time. If these points of time matches
the subroutine stored in the callout struct is called.

• When an event n ticks in the future is inserted, it is placed
in the list with index (now+n) mod 200.

12



Timing Services for Processes

The kernel provides the following timing services to
processes via system calls:

Gettimeofday: Returns the time of day given in the number
of microseconds from epoch (January 1, 1970). On most
processors including the PC, the time value is derived
from a battery-backup time-of-day register.

Settimeofday: Sets the time-of-day time. May result in time
running backwards.

Adjusttime: Adjusts the time-of-day time without time
running backwards.

Setitimer/getitimer: Set or read an interval timer. Three
timers exist giving real, virtual or profile time. The real
timer measures real time, virtual measures the process’s
execution time in user mode and profile measures
execution time in both user and kernel mode. When a
timer expires, a signal is sent to the process.

13

Identification of users

• Users are identified by a 32-bit number called user
identifier (UID).

• A user may also belong to one or more groups.

• A group is identified by a 32-bit group identifier (GID).

• Each file has three sets of permission bits for each owner
group and other.

• There is also the setuid bit.

• UID and GID are inherited from the parent process.

• At login UID and GID are set by the login program.

14



Handling of UID in FreeBSD

• In FreeBSD UID is stored in three places, called real UID,
effective UID and saved UID.

• Real UID is the original UID of the process.

• Effective UID is used for checking permissions and is set
to real UID for normal programs and to the UID of the
owner of the program file for setuid programs.

• At exec, saved UID are set to the same value as effective
UID.

• The system call seteuid() assigns effective UID from
either real UID or saved UID (see table 3.2). Can be used
by setuid programs to regain normal privileges when the
extra privileges are not needed any more.

15

Sessions and Process groups

• Every process belongs to a process group.

• Certain signals (for example SIGINT) are sent to all
processes in the same process group.

• A session is a collection of process groups.

• Every session has a controlling process (normally a login
shell) and is associated with a terminal, known as its
controlling terminal.

• At any point of time, the controlling terminal is connected
to exactly one process group.

• When the controlling process exits, access to the terminal
is taken away from any remaining processes within the
session.

16



Resource Utilization

The resources used by a process are returned by the system
call getrusage().

Examples of such system resources are:

• The amount of user and system time used by the process.

• The memory utilization of the process.

• The paging and disc I/O activity of the process.

• The number of voluntary and involuntary context switches
taken by the process.

• The amount of interprocess communication used by the
process.

17


