EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12

DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems Outline
DAT270 Dependable Computer Systems

« Hardware reliability prediction (from lecture 10)
Welcome to Lecture 13 * More on design diversity in software

Hardware reliability prediction
More on software diversity

Outline Hardware failure rates
(from lecture 10)
* Risk analysis » Ways of improving reliability of hardware
= Risk classification = Decrease temperature
* Acceptability of risk - ALARP = Decrease electrical stress (derating)

= Assignment of Safety Integrity Levels
* |SO 26262

e Hazard analysis
= Hazard and operability studies (HAZOP)

= Reduce number of components or increase integration
= Increase quality of components
= Improve physical environment
— Reduce exposure to moisture
e Safety case -
L .. — Reduce exposure to vibrations
e Hardware reliability prediction

Dept. of Computer Science and Engineering
Chalmers University of Technology

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Examples of Failure Rate Prediction
for Hardware

e MIL-HDBK-217, Military handbook, US Department of
Defense, Parts Stress Model (Revision F Notice 2,
released February 1995)

e Telcordia SR-332, Issue 2 (released Sept 2006)

Academic year 2011/12

Failure Rate Prediction
Mil-Hdbk-217F

hp = (CyIl; + C,IIIGI, failures / 10° hours

is the part failure rate

C, isrelated to die complexity

Il; isrelated to ambient temperature

C, isrelated to the package type

Ilz is determined by the operating environment
g is determined by the part quality

II, represents the learning factor and is determined by the experience of the
manufacturer.

Telcordia SR-332
(Bellcore)

Ass = Mg HIIgITy failures / 106 hours

Aes isthe steady state failure rate

A is the generic steady state failure rate (table look up based
G
on field data)

HQ is determined by the part quality
HS is determined by the electrical stress

HT is related to operating temperature

Dept. of Computer Science and Engineering
Chalmers University of Technology

Standards for hardware reliability
prediction

MIL-HDBK-217 Part Stress & Part Count
MIL-HDBK-217 F Notice 2.

217Plus - Based on Handbook of 217PlusTM
Reliability Prediction Models, 26 May 2006 by Reliability Information
Analysis Center (RIAC).

Telcordia Issue 2 - Reliability Prediction Procedure for Electronic
Equipment, SR-332, Issue 2, September 2006

IEC 62380 (RDF 2003)

Updated version of RDF 2000 UTEC 80810 method — French Telecom
reliability prediction Standard. It includes most of the same
components as MIL-HDBK-217.

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Standards for hardware reliability

prediction Design Diversity

* FIDES Guide 2009 Design diversity is used to tolerate development

The FIDES methodology is applicable to all domains using electronics: .
aeronautical, naval, military, production and distribution of electricity, faults in hardware and software

automobile, railway, space, industry, telecommunications, data

processing, home automation, household appliances.) . .
Two techniques for tolerating software design faults:

= N-version programming
= Recovery blocks

* BRT - British Telecom - British Telecom Module for reliability
prediction based on British Telecom document HRD-4 or HRD-5.

* GJB299 - Chinese reliability standard.

* Siemens SN29500.1 - Siemens reliability standard.

N-version programming N-version programming
* Uses majority voting on results produced by N Program _J Progrem
program versions
. . Program Program Voting Program
» Program versions are developed by different Inputs version 2 " element Output
teams of programmers T
Program | Program
« Assumes that programs fail independently e version 3
* Resembles hardware voting redundancy ’
Program
version 4

Dept. of Computer Science and Engineering
Chalmers University of Technology 3

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Ensuring independence in N-version
programming
« Use different design teams for each version
» Use diverse specifications
» Prevent cooperation among design teams

* Use diverse programming languages, compilers,
CASE tools, etc.

Academic year 2011/12

Evaluation of N-version programming

Objective

= To investigate if independently developed programs fail independently

Overview

Knight,

= Missile interceptor program

= 27 versions produced by students at University of Virginia and University
of California, Irvine.

= All students was given the same specification
= 200 test cases to validate each program

= 1 million test cases to test independence (simulation of production
environment)

= Published 1985

J.C., N.G. Leveson, and L.D. St. Jean, "A Large Experiment in N-version Programming”, Digest of

Papers, Int. Symposium on Fault-tolerant Computing (FTCS-15), Ann Arbor, Michigan, June, 1985, pp.
135-139.

Experimental set-up (1)

» 27 versions produced by senior-level students
= 9 versions from University of Virginia
= 18 versions from University of California, Irvine
= Written in Pascal

e Program for anti-missile system

= Determines if radar reflections represents a incoming
hostile missile.

= Well-known problem — previously used in software
engineering experiments.

Dept. of Computer Science and Engineering
Chalmers University of Technology

Experimental set-up (1)

¢ Input to students

Requirements specification

Instructed not to cooperate or discuss the problem amongst themselves
No restrictions on the use of references

12 input data sets for debugging

« Acceptance test for programs

200 randomly generated tests
Different set of tests for each program
Resembles testing in real systems

Only programs that passed the acceptance test was used in the
experimental data

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Table 1 — Version Failure Data

Academic year 2011/12

Evaluation of N-version programming
Occurrence of Multiple Program Failures

Failed Programs # Test Cases
2 551

343

243

73

32

12

2

0w ~N o 0w

Conclusion: The programs in this experiment do not fail independently*!
(1256 multiple failures, 21257 single failures)
*The hypothesis of independence is rejected at the 99% confidence level.

Version Failures Reliability Version Failures Reliability
1 2 0.999998 15 0 1.000000
2 0 1.000000 16 62 0.999938
3 2297 0.997703 17 269 0.999731
4 0 1.000000 18 115 0.999885
5 0 1.000000 19 264 0.999736
6 1149 0.998851 20 936 0.999064
7 7 0.999929 21 92 0.999908
8 323 0.999677 22 9656 0.990344
9 53 0.999947 23 80 0.999920

10 0 1.000000 24 260 0.999740
11 554 0.999446 25 97 0.999903
12 427 0.999573 26 883 0.999117
13 4 0.999996 27 0 1.000000
14 1368 0.998632
Table 3 — Correlated Failures Between UVA And UCI
UVA Versions

1 2 3 4 S 6 7 8 9

10 0 0 0 0 0 0 0 0 0

1 0 0 58 0 0 2 1 58 0

12 0 0 1 0 0 0o 7N 1 0

3, 0 o o0 o0 O O O O O

14 0 0o 28 0o 0 3 7t 26 0

15 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 1 0 0 0

17 2 0 95 0 4] 0 1 29 0

UCl 18 0 0 2 0] 4] 1 0 0 0

Versions 19 0 0 1 0 0 0 0 1 0

20 0 0 325 o] (4] 3 2 323 0

21 0 0 0 (o] (4] 0 0 0] 0

22 (4] 0o 52 4] o 15 0 36 2

23 (¢} 0o 72 0 0 0 0o 7 0

24 (0] (V] 0 0] 4] 0 0 0 0

25 (4] 0 94 (0] (0] (o] 1 94 0

26 0 0 115 0 0 5 0 110 0

27 0O 0 O O 0 O 0 0 O

Dept. of Computer Science and Engineering
Chalmers University of Technology

Discussion (1)

Is it realistic to use students in a software engineering
experiment?

* Programming experiences of students outside their degree
programs
= 12 students had less than two years of programming experience

= 10 students had between two and five years of programming
experience

= 5 students had more than five years of programming experience

e Students had diverse backgrounds

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Discussion (2)

Is one million test cases enough?
= Test cases represent “unusal” events.

= “If the program is executed once per second and unusal
events occur every ten minutes, then one million test
cases correspond to 20 years of operational use”

Academic year 2011/12

Conclusions of NVP study (1)

The assumption of independence of failures among
versions does not hold

The above does not render NVP useless! - It merely
shows that the impact of correlated failures must be taken
into consideration when estimating the reliability of
systems that use NVP.

The result is only valid for the application used

Similar results may, or may not, be observed for other
applications.

Conclusions of NVP study (2)

More than half of the software fault was present in two or
more programs

Possible explanations for the high percentage of correlated
faults:

= Programmers make similar mistakes

= Certain parts of the problem is difficult and lead to mistakes by
many programmers

= Flaws causing uncorrelated failures are easy to catch by normal
debugging

Dept. of Computer Science and Engineering
Chalmers University of Technology

Conclusions of NVP study (3)

Need for further research
= More experiments needed to draw general conclusions

= Possible explanations for the high percentage of
correlated faults need to be investigated.
= Relying on random chance to obtain diversity may not

be an effective approach. Deliberate diversity may work
better.

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Recovery Blocks Recovery blocks

» Uses one primary software module and one or progem —— -

several secondary (back-up) software modules

. Program

* Assumes that program failures can be detected by Program _.Sl\jggzia;y - Nto1 | [Acceptance | ™"

acceptance tests . il tests
» Executes only the primary module under error-free Program Secondary| | .

. Inputs —_— Module 2 Error detection
conditions
[]
* Resembles dynamic hardware redundancy .
Program Secondary
mputs | Module N
Construction of acceptance tests Software Assertions

» An acceptance test is a software implemented = Executes consistency checks on application data or

check designed to detect errors in the results operating system data

produced by a primary or a secondary module = Implemented in software

= Automatic generation

» Acceptance tests often relies on application — E.g., run-time type checking generated by complier

specific information = Manual generation

. L — E.g., application programmer inserts checks on a valid

* An acceptance test is similar to a software temperature range, acceleration, etc.

assertion (a.k.a. executable assertion).

Dept. of Computer Science and Engineering
Chalmers University of Technology v

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Examples of how acceptance tests/
software assertions can be
constructed

Satisfaction of requirements

= Inversion of mathematical functions; e.g. squaring the
result of a square-root operation to see if it equals the
original operand.

= Checking sort functions; result should have elements in
descending order

Reasonable checks
= Checking physical constraints; e.g. speed, pressure, etc
= Checking sequence of application states

Academic year 2011/12

Evaluation of Recovery Blocks

» Goal: to evaluate recovery blocks for a medium-scale
naval command and control system (concurrent real-time
system)

» The system provides a simulated radar display overlaid
with tracking information. Allows the operator to attack
hostile submarines.

* 8000 lines of source code in CORAL, 14 concurrent
activities

¢ Programmed by professional programmers
« Recovery supported by a special recovery cache

Conduct of Experiment

The command and control system was run against
an environment simulator by the operator

Several typical scenarios were simulated
Operator logged all abnormal behaviors of the
system

Monitoring routines within the system recorded
recovery and failure events

Dept. of Computer Science and Engineering
Chalmers University of Technology

Evaluation of recovery blocks

Naval command and control system (8000 statements in the Coral language)

117 abnormal events

Correct recovery 78 %
Incorrect recovery, program failure 3%
Incorrect recovery, no program failure 15 %
Unnecessary recovery 3%

Anderson, T., et al., "Software Fault Tolerance: An Evaluation,” IEEE Trans. on Software Engineering, vol.
SE-11, no. 12, Dec 1985, pp. 1502-1510.

EDA122/DIT061 Fault-Tolerant Computer Systems

Academic year 2011/12
DAT270 Dependable Computer Systems

Comparison of N-version
Overhead for the Case Study P
programming and Recovery blocks
» 60% supplementary development cost N-version programming
= Applied at the program level
* 33% extra code memory = Runs N programs at the same time
o 359 extra data memory = Resembles static hardware redundancy

Assumes that independence among program versions is achieved by
random differences in programming style among programmers
Recovery blocks

= Applied at the module (subprogram) level

= Runs only the primary module under error-free conditions

= Resembles dynamic hardware redundancy

Independence is achieved by deliberately designing the primary and
secondary modules to be as different as possible

40% extra execution time

Overview of Lecture 14

e Byzantine failures
Preparations:
= Byzantine Agreement, Section 3.1
= Lecture slides

e Error detection and time redundancy
Preparations:
= Section 6.3 and 6.4 in the course book
= Lecture slides

Dept. of Computer Science and Engineering
Chalmers University of Technology

