

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Laboratory Class 1

2011

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY

GÖTEBORG 2011

1

1. Introduction

The aim of this laboratory class is to show how dependability modelling can be used to
compare different design solutions for a fault-tolerant system. We will compare two candidate
architectures for a brake-by-wire system.

Brake-by-wire systems are expected to replace hydraulic brake systems in future road
vehicles. In a brake-by-wire system, the driver’s brake intention is transmitted electronically
from the brake pedal to electro-hydraulic or electro-mechanical brake actuators positioned at
each wheel. Potential advantages of brake-by-wire systems compared to traditional hydraulic
systems include lower cost, lower weight and simpler integration with stability control and
active safety systems.

Figure 1 shows an overview of the brake-by-wire system. The brake pedal is connected to a
central unit (CU). When the driver presses the brake pedal, the central unit sends messages
containing brake commands to each of the four wheel units (WU). To ensure the safety of the
system, the central unit and the wheel units must be fault-tolerant. Both the central unit and
the wheel units are therefore implemented using redundant computer modules (see Figure 3
and 4). Two serial busses (SB1 and SB2) are provided to ensure fault-tolerance for the data
communication.

To optimize brake performance, the system executes a closed loop anti-lock braking control
algorithm for each wheel. The inputs to the anti-lock control program consist of the current
wheel speed and brake force commands generated by a stability control program, which is
executed in the central unit. The wheel speed is measured by a wheel speed sensor included in
each wheel unit. The input to the stability control program consists of data from several
sensors. These sensors measures the position of the brake-pedal (the driver’s brake intention),
the angle of the steering wheel (the driver’s intended direction), the yaw rate (the rotation rate
of the vehicle around its y-axis), the roll rate, and the vehicle’s lateral and longitudinal
acceleration. In this laboratory class, we will focus our attention on where to execute the anti-
lock-braking algorithms. We will not consider the reliability of the sensors used by stability
control program.

SB1
SB2

WU

WU

Figure 1. Brake-by-wire system

CU

WU

WU

Brake pedal

2

We will investigate two possible implementations of the system. In the first approach, the
anti-lock control algorithms are executed locally in the wheel units. The complexity of the
wheel units is in this design approximately the same as that of the central unit. However, the
failure rate of the wheel units is higher than for the central unit, as they are more exposed to
vibrations, moisture and temperature cycling. We call this design approach the distributed
architecture.

The second approach is to execute the control algorithm for each wheel in the central unit,
and let the wheel units consist of simple interfaces to the actuators and sensors. In this case,
the control loops for anti-lock braking are closed over the communication network. The
advantage with this approach is that the wheel units contain less hardware since they
essentially consist of a communication interface, which sends data from the wheel speed
sensor and receives commands to the brake actuator. Thus, the failure rate of the wheel units
is lower compared to the other design. On the other hand, the failure rate of the central unit is
higher, since it requires more processing power and more memory. We call this design
approach the centralized architecture, since all control law calculations are performed by the
central unit.

2. System description

The brake-by-wire system consists of one central unit (CU), four wheel units (WU 1 to 4) and
two system buses (SB1 and SB2), as shown Figure 1. The system has two modes of operation:
full functionality and degraded functionality. To provide full functionality, the central unit, all
four wheel units, and at least one system bus must be working. In degraded mode, the system
has lost the ability to issue brake commands to one wheel. This means that the central unit,
three wheel units, and at least one system bus must be working in order for the system to
provide degraded functionality. To simplify the analysis, we consider it to be a catastrophic
failure if the system is unable to send brake commands to two or more wheels.

2.1 Wheel units (WU)

The wheel units consist of the following subunits: two fail-silent computer modules (CMs),
two sensors (S), one actuator (A) and four bus interfaces (BI), see Figure 2. We assume that
the coverage is 100% for all errors affecting the wheel unit. The failure rates for the sensors,
the actuator, and the computer modules are given below in Table 1 for the distributed
architecture and in Table 2 for the centralized architecture. The computer modules used in the
distributed architecture have higher complexity than those used in the centralized architecture.

CM

BI SB1
SB2

Figure 2. Wheel unit

S

CM

S

A

3

The failure rate of the computer modules in the distributed architecture is therefore higher
than the failure rate of the computer modules in the centralized architecture. The failure rates
of the sensors and the actuator do not vary between the two architectures, since they use the
same sensors and the same actuator.

2.2 Central unit (CU)

We will consider two different fault-tolerant configurations for the central unit: a Duplex
configuration for the distributed architecture and a Triplex/Duplex configuration for the
centralized architecture.

Duplex: This configuration consists of two fail-silent computer modules that operate in active
redundancy, see Figure 3. If an error is detected in a computer module it stops producing
results. The central unit then maintains its operation by using the results from the remaining
non-faulty module. Undetected errors in the CMs may lead to violations of the fail-silent
property. We consider such fail-silent violations to constitute a failure of the central unit. The
coverage factor for the fail-silent property is 99%.

Triplex/Duplex: This configuration consists of three fail-silent computer modules operating
in active redundancy, see Figure 4. The computer modules send redundant messages to the
wheel units, which perform a majority vote on the messages to mask errors. We assume that
the coverage for errors occurring in the computer modules is 100% as long as three computer
modules are operational. The computer modules execute a so called redundancy management
protocol, which ensures that any computer module which produces a result that deviates from
the results produced by the other two computer modules is shut down. After the first failure of
a computer module, the system is reconfigured to a duplex system. The error detection
coverage is 99% in the duplex mode. The Triplex/Duplex system can thus tolerate the loss of
up to two computer modules.

Each computer module contains a CPU, memory, I/O circuits and other hardware
components. We assume that the failure rate of the bus interface (BI) is negligible compared
to the failure rate of the other hardware components. For both architectures, the occurrence of
a non-covered fault in a computer module leads to a failure of the central unit, and hence to a
system failure.

Figure 3. Duplex configuration Figure 4. Triplex/Duplex configuration

CM

BI SB1
SB2

CM CM

SB1
SB2

CMCM

4

3. Analysis

Use the SHARPE program to analyse and compare the two architectures. SHARPE provides a
command language for building models and performing calculations. This command language
will be explained at one of the exercises. You can also read about it in the SHARPE Manual
and the SHARPE User Guide, which are available on the course homepage.

3.1 Problem A

Compare the reliability of the distributed and the centralized architectures after two years.
Compare also their MTTF. Use failure rates and coverage factors from Table 1 and Table 2.
Discuss within the group the pros and cons of the two designs. Which architecture is the best
one? Where are the reliability bottlenecks?

Compare the architectures for two levels of functionality:

1. Reliability with respect to full functionality (four wheels operational).
2. Reliability with respect to degraded functionality (three wheels operational).

Solve the problem in the following order:

1. Analyze the reliability of the wheel unit subsystem.
a. Create a reliability block diagram for one wheel unit in SHARPE. Calculate

and compare the reliability of the wheel units for the two architectures. (The
same model can be used in both cases, but the failure rates are different for the
computer modules.)

b. Create a fault tree to calculate the reliability and the MTTF for the wheel unit
subsystem, i.e. all four wheel units, with respect to both full and degraded
functionality. Compare the reliability and the MTTF of the wheel unit
subsystem for the two architectures.

2. Create Markov models of the central unit for the two architectures. Calculate and
compare the reliability and the MTTF of the central unit.
(continued

3. Use a fault tree to calculate the reliability and the MTTF for the entire system, and
compare the two architectures with respect to both full and degraded functionality.

Hints:

Create two SHARPE files, one for each architecture, and gradually develop the models in
these files following the procedure described above. Use the gnuplot program to plot the
reliability curves. Plotting the curves is easier if the models are in separate files.

To print the reliability after 2 years use expr 1-value(17520; system) in SHARPE. To plot
the reliability use the SHARPE command eval (system) 0 35040 730. This command lists the
failure probability of system over 4 years (4x8760= 35040 hours) in one month (= 730 hours)
steps. (We approximate a year to be 365x24 = 8760 hours disregarding the leap years.) To
convert the failure probability into reliability use the utility program complement, as shown
in Appendix A. Then use gnuplot to plot the data file produced by complement.

Note that SHARPE does not allow underscore characters (‘_’) in the names of constants and
that there must be a carriage return after the final ‘end’ command given to SHARPE.

5

3.2 Problem B

Compare the operation time for the two configurations for a reliability of 0.92. Consider only
the degraded mode. How much higher can the failure rate of the CMs be in the centralized
architecture in order to achieve the same operation time as for the distributed architecture?

Only the failure rate of the CMs in the central unit for the centralized architecture should be
varied. (Do not change the failure rate of the wheel-nodes.)

3.3 Modelling parameters

Table 1 and 2 show the failure rates and coverage factors to be used for the distributed
architecture and the centralized architecture, respectively.

Table1: Failure rates and coverage factors for the Distributed Architecture

Subsystem Part Failure rate () Coverage
System bus Serial bus 5•10-7 [f/h] 1
Wheel unit Computer module 15•10-6 [f/h] 1
 Sensor 2•10-6 [f/h] 1
 Actuator 1•10-6 [f/h] 1
Central unit Computer module 8•10-6 [f/h] 0.99

Table 2: Failure rates and coverage factors for the Centralized Architecture

Subsystem Part Failure rate () Coverage
System bus Serial bus 5•10-7 [f/h] 1
Wheel unit Computer module 10•10-6 [f/h] 1
 Sensor 2•10-6 [f/h] 1
 Actuator 1•10-6 [f/h] 1
Central unit Computer modules 10•10-6 [f/h] First CM failure:1

Second CM failure:
0.99

6

4. Laboratory report

The results shall be documented in a short technical report. Pretend that you and your lab
partner work together with a group of engineers to develop a new brake-by-wire system, and
that your supervisor has given you the task to compare the dependability of a centralized and
a distributed system architecture. The report shall present your findings to your supervisor
and colleagues, who are skilled hardware and software designers but not necessarily
dependability experts.

The report shall have the following outline:

1. Introduction
Purpose of report, background, and problem statement. (minimum number of
words: 250)

2. Overview of candidate architectures
Description of the two competing architectures and their operation modes, i.e. full
and degraded functionality. (minimum number of words: 400)

3. Description of models
Textual description of models, figures of fault-trees and Markov models. Describe
the models for the two architectures separately. (minimum number of words: 300)

4. Results
Text and tables describing the results. (minimum number of words: 200)

5. Discussion
Your analysis and interpretation of the results. Which architecture is the best one?
What are the pros and cons of the two designs? What are the limitations of the
analysis? (minimum number of words: 500)

6. Conclusion
Your recommendations based on the evaluation results and a general assessment
of the two designs. (minimum number of words: 150)

7. References
For example, the sharpe manual and the course book. (You are encouraged to
include other relevant references.)

Make sure that your report fulfils the following requirements:

 The report shall be self-contained and follow the outline given above. Ensure that the
word count requirements are fulfilled.

 All text shall be written by you (the members of the lab group) – copying text from
other authors is not allowed, not even if they give you permission to do so. There is
one exception to this rule: you are allowed - and encouraged - to copy the figures
from the lab-pm. Note that copying text, figures and other works of art without
permission is illegal!

 The models shall be described graphically using fault trees, reliability block diagrams
and state diagrams.

 The report must include diagrams that show reliability plots of subsystem as well as
the entire system for the two architectures, for both full functionality and degraded
mode. Other results should be reported in tables or with graphs.

 The results section shall report the results without any interpretation or discussion
(these belong in the discussion section).

7

 You must elaborate and reflect on the results in the discussion section. (It is not
sufficient to conclude that one architecture is better than the other without any
discussion.)

 Enumerate all figures and tables and use the figure and table numbers as references in
the text. Write for example “Table 2 shows …”.

 The report shall contain references, e.g., to the SHARPE Manual and the course book.
You are encouraged to include other relevant references.

 It is not allowed to use the lab-pm as a reference.

 The reference list shall be formatted as the reference list in this document. For an
example of how to write references, see Kopetz and Bauer [1]. (This paper is part of
the course literature and is published by the Institute of Electrical and Electronics
Engineers, Inc, known as IEEE, and therefore follows the IEEE format for scientific
journal papers. Other publishers use slightly different formats.)

5. References

[1] H. Kopetz and G Bauer, “The Time-Triggered Architecture,” Proceedings IEEE, vol. 91,
no.1, pp.112-126, Jan 2003.

8

Appendix A - Formatting the output from SHARPE

Command Description
eval_filter Input from standard input, output to standard output. Used for formatting

the output from SHARPE, when output is the result of the eval command.
complement Input from standard input, output to standard output. Assumes that input

consists of tuples, e.g., (x,y), plots x and 1-y.

Example:

Use the following command to format the output from SHARPE so that gnuplot can be used
to plot the reliability, R(t).

sharpe file.sharpe | eval_filter | complement > file.dat

9

Appendix B - Summary of gnuplot
The gnuplot program for Windows is called wgnuplot.exe.

The following text will be printed when the program starts:

G N U P L O T

Version 4.1 patchlevel 0

last modified Sat Jul 3 00:04:32 CEST 2004

System: MS-Windows 32 bit

Copyright (C) 1986 - 1993, 1998, 2004

Thomas Williams, Colin Kelley and many others

Type `help` to access the on-line reference manual.

The gnuplot FAQ is available from

http://www.gnuplot.info/faq/

Send comments and requests for help to

 <gnuplot-beta@lists.sourceforge.net>

Send bugs, suggestions and mods to

 <gnuplot-beta@lists.sourceforge.net>

Terminal type set to 'windows'

gnuplot>

Commands can be given to gnuplot at the “gnuplot>” prompt:

plot is the base command for the program. The command plots data from <data file>, plot
data in the file is given as a tuple of coordinates (X Y) on each row. The coordinates must be
separated with a "space". The name of the data file must be enclosed by quotation marks.
Curly braces, {...}, are used to specify optional parts of the command.

plot {ranges} <data file> with lines {, <data file> with lines...}

ranges ::= [xmin:xmax] [ymin:ymax]

 | [xmin:xmax]

 | [] [ymin:ymax]

 | [xmin:xmax]

Ex.

plot ”file.dat” with lines

plot [0:35040] ”file1.dat” with lines, ”file2.dat” with lines

10

The command replot without any parameters replots the most recent plot command. This is
useful when you want to plot something to a file that you just plotted on the screen. If
parameters are passed to replot they will be put at the end of the most recent plot command
before it is replotted.

E.g.

plot [0: 35040] ”file1.dat” with lines

replot ”file2.dat” with lines

the same as

plot [0: 35040] ”file1.dat” with lines, ”file2.dat” with lines

The command set controls a lot of settings. With the command show one can find out the
current value of a setting. The command show all shows all settings.

set grid - Plot with grid.

set xtics - Number categories between tick-marks (e.g. years: set xtics 8760)

set nogrid - Plot without grid (default).

set output - The plot is sent to standard output (default).

set output <plot file> - The plot is sent to the file <plot file>.
 The name of the file must be surrounded by
 quotation marks (").

set terminal x11 - The plot is generated for a x11 terminal (default).

set terminal postscript - The plot is generated in postscript.
 Used when printing to laser printers.

set xrange [xmin:xmax] - The interval at the x-axis that is plotted
 (e.g. 0-4 years: set xrange [0 : 35040])

set yrange [ymin:ymax] - The interval at the y-axis that is plotted.

The command quit exits gnuplot.

Use the following commands to send the plot on the screen to a postscript file.

set output "file1.ps"

set terminal postscript

replot

The postscript file can be printed using the gsview program.

