
The Time-Triggered Architecture

HERMANN KOPETZ, FELLOW, IEEEAND GÜNTHER BAUER

Invited Paper

The time-triggered architecture (TTA) provides a computing in-
frastructure for the design and implementation of dependable dis-
tributed embedded systems. A large real-time application is decom-
posed into nearly autonomous clusters and nodes, and a fault-tol-
erant global time base of known precision is generated at every
node. In the TTA, this global time is used to precisely specify the
interfaces among the nodes, to simplify the communication and
agreement protocols, to perform prompt error detection, and to
guarantee the timeliness of real-time applications. The TTA sup-
ports a two-phased design methodology, architecture design, and
component design. During the architecture design phase, the in-
teractions among the distributed components and the interfaces
of the components are fully specified in the value domain and in
the temporal domain. In the succeeding component implementation
phase, the components are built, taking these interface specifica-
tions as constraints. This two-phased design methodology is a pre-
requisite for the composability of applications implemented in the
TTA and for the reuse of prevalidated components within the TTA.
This paper presents the architecture model of the TTA, explains the
design rationale, discusses the time-triggered communication pro-
tocols TTP/C and TTP/A, and illustrates how transparent fault tol-
erance can be implemented in the TTA.

Keywords—Distributed systems, embedded systems, real-time
systems, safety-critical systems, time-triggered architecture (TTA),
TTP/C.

I. INTRODUCTION

Computer architectures establish a blueprint and a frame-
work for the design of a class of computing systems that
share a common set of characteristics. The time-triggered
architecture (TTA) generates such a framework for the
domain of large distributed embedded real-time systems in
high-dependability environments. It sets up the computing

Manuscript received December 20, 2001; revised August 31, 2002. This
work was supported in part by the European Information Society Technolo-
gies projects NEXT TTA, Fault Injection for Time-Triggered Architectures,
Systems Engineering for Time-Triggered Architectures, and Dependable
Systems of Systems; in part by the Time-Triggered Sensor Bus project of
the government of Austria; and in part by the Defense Advanced Research
Projects Agency projects Model-Based Integration of Embedded Software
and Networked Embedded Software Technology.

The authors are with the Vienna University of Technology, A-1040 Vi-
enna, Austria (e-mail:hk@vmars.tuwien.ac.at; gue@vmars.tuwien.ac.at).

Digital Object Identifier 10.1109/JPROC.2002.805821

infrastructure for the implementation of applications and
provides mechanisms and guidelines to partition a large
application into nearly autonomous subsystems along
small and well-defined interfaces in order to control the
complexity of the evolving artifact [1]. Architecture design
is thus interface design. By defining an architectural style
that is observed at all component interfaces, the architecture
avoids property mismatches at the interfaces and eliminates
the need for unproductive “glue” code.

Characteristic for the TTA is the treatment of (physical)
real time as a first-order quantity. The TTA decomposes a
large embedded application into clusters and nodes and pro-
vides a fault-tolerant global time base of known precision at
every node. The TTA takes advantage of the availability of
this global time to precisely specify the interfaces among the
nodes, to simplify the communication and agreement proto-
cols, to perform prompt error detection, and to guarantee the
timeliness of real-time applications.

Research work in the field of distributed dependable
real-time computer architectures for safety-critical appli-
cations started more than 30 years ago with the design of
the STAR computer [2] and the Software Implemented
Fault Tolerance [3] and Fault Tolerant Multiprocessor [4]
projects. These projects were carefully evaluated and gave
rise to new designs about ten years later: Fault-Tolerant
Parallel Processors [5], Multicomputer Architecture for
Fault Tolerance [6], and the architectural concepts of the
Airbus flight control system [7]. In 1992 the first paper on
SAFEbus [8], the architecture that was later deployed in the
Boeing 777 aircraft for flight control, became available. In
excellent publications by Lala [9], Avizienis [10], Rechtin
[11] and Laprie [12], the fundamental concepts and archi-
tectural principles for the design of dependable systems
are clarified at about that time. For example, Lala states
that field experience with approximate voting was not at all
satisfying. At about the same time, a heated debate started
concerning the cost efficiency of design diversity for the
tolerance of design faults [13]–[15]. The important ARINC
178B standard [16], published in 1992, that deals with
software development for safety-critical avionics systems
contains no clear statement about the use of software design

0018-9219/03$17.00 © 2003 IEEE

112 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

diversity. This issue has not been resolved until today. In
Europe, DELTA 4 [17], a research project funded by the
European Strategic Programme for Research in Information
Technology (ESPIRIT), investigated fundamental issues in
the design of distributed dependable architectures at the
beginning of the 1990s and uncovered a number of funda-
mental concepts concerning state recovery in distributed
systems. Although the research community at that time was
in agreement that a conscientious architectural design phase
that establishes the architectural style is of utmost impor-
tance for the development of large dependable distributed
real-time systems, industrial praxis took a different view.
The General Accounting Office’s report [18] about the
experiences with the air-traffic control project, presumably
the largest distributed real-time system project of its time,
paints a vivid picture of the practice of system development
in that period.

Amid all these research activities, the work on the TTA
started in 1979 at the Technical University of Berlin with the
Maintainable Architecture for Real-Time Systems (MARS)
project. A first report on the MARS project [19] appeared
in 1982 and was later published at the IEEE’s 15th Inter-
national Symposium on Fault-Tolerant Computing in 1985
[20]. After 1982, different versions of the MARS architecture
have been implemented at the Vienna University of Tech-
nology [21], [22], and it became clear that a hardware-sup-
ported fault-tolerant clock synchronization is a fundamental
building block of a TTA. At about that time, the important
concept of temporal accuracy of real-time information was
introduced by Kopetz and Kim [23], [24]. The TTP/C pro-
tocol, which includes a clock synchronization service and
a membership service, was first published in 1993 [25]. A
prototype version of the TTA, including a new clock syn-
chronization chip [26] was built in the context of the Eu-
ropean Predictably Dependable Computing Systems project.
This new prototype implementation has been subject to ex-
tensive fault injection experiments [27], [28]. From these ex-
periments, it became evident that an independent guardian
must be implemented in order to avoid “babbling idiot” fail-
ures in a distributed safety-critical system based on shared
communication channels. In 1995, a research cooperation
with DaimlerChrysler resulted in an industrial “proof of con-
cept” by demonstrating a time-triggered protocol–equipped
“brake-by-wire” car by 1997 [29]. In 1998, the first TTP/C
communication controller chip, developed with the support
of the European ESPRIT project TTA, was finished. Also
in 1998, a high-tech spinoff company of the Vienna Uni-
versity of Technology was founded with the mission to fur-
ther develop and market the time-triggered (TT) technology
[30]. In 1999, Alcatel investigated the TTA and decided to
use it in safety-critical train control applications. In 2000,
Honeywell selected the TTA for flight control, and Audi de-
cided to use the TTA in future “drive-by-wire” applications.
In the last few years, the TT technology received increasing
attention for the design of safety-critical real-time applica-
tions. A number of new time-triggered protocols, in addi-
tion to SAFEbus and TTP, have recently been published:
TTCAN [31], FlexRay [32], and Spider [33]. An excellent

recent survey by Rushby [34], [35] contains a comparison of
some of these communication architectures.

This paper on the TTA is organized as follows. Section II
deals with the architectural model of the TTA, presents the
model of a sparse time base, elaborates on the important con-
cept of temporal accuracy of real-time information, and dis-
cusses the fundamental differences between the event-trig-
gered and TT view of reality. Section III presents the prin-
ciples that guided the design of the TTA: the provision of a
consistent distributed computing base, the unification of in-
terfaces and the temporal firewall concept, composability in
the domains of value and time, scalability, and openness to
the integration of legacy systems and the information infra-
structure, and the transparent implementation of fault toler-
ance in order to control the application software complexity
in fault-tolerant real-time systems. Section IV deals with the
communication infrastructure of the TTA: the TTP/C pro-
tocol, the TTP/A protocol, and the implementation of event
channels on top of the basic TT communication service. Sec-
tion V is devoted to the issue of transparent implementation
of fault tolerance. Finally, Section III presents the two-phase
design methodology of the TTA and discusses the architec-
ture from the point of view of validation. The paper finishes
with a conclusion in Section VII.

II. A RCHITECTUREMODEL

The computational model that guides the design of the
TTA is the TT model of computation [36].

A. Model of Time

The model of time of the TTA is based on Newtonian
physics. Real time progresses along a dense timeline, con-
sisting of an infinite set of instants, from the past to the future.
A duration (or interval) is a section of the timeline, delimited
by two instants. A happening that occurs at an instant (i.e., a
cut of the timeline) is called an event. An observation of the
state of the world is thus an event. The time stamp of an event
is established by assigning the state of the node-local global
time to the event immediately after the event occurrence. A
fault-tolerant internal clock synchronization algorithm estab-
lishes the global time in the TTA. Owing to the impossibility
of synchronizing clocks perfectly and the denseness property
of real time, there is always the possibility of the following
sequence of events: clock in nodeticks, event occurs,
clock in node ticks. In such a situation, the single event
is time-stamped by the two clocksand with a difference
of one tick. In a distributed system, the finite precision of the
global time base and the digitalization of time make it—in
general—impossible to consistently order events on the basis
of their global time stamps. The TTA solves this problem
by the introduction of a sparse time base [37, p. 55]. In the
sparse-time model, the continuum of time is partitioned into
an infinite sequence of alternating durations of activity and
silence, as shown in Fig. 1. The duration of the activity in-
terval, i.e., a granule of the global time, must be larger than
the precision of the clock synchronization.

KOPETZ AND BAUER: THE TIME-TRIGGERED ARCHITECTURE 113

Fig. 1 Sparse time base.

From the point of view of temporal ordering, all events
that occur within an interval of activity are considered to
happen at the same time. Events that happen in the distributed
system at different nodes at the same global clock tick are
thus considered simultaneous. Events that happen during dif-
ferent durations of activity and that are separated by the re-
quired interval of silence can be consistently temporally or-
dered on the basis of their global time stamps. The archi-
tecture must make sure that significant events, such as the
sending of a message, occur only during an interval of ac-
tivity. The time stamps of events that are outside the control
of the distributed computer system (and therefore happen on
a dense timeline) must be assigned to an agreed duration of
activity by an agreement protocol.

In the TTA, there exists a uniform external representation
of time that is modeled according to the global positioning
system (GPS) time representation. The time stamp of an in-
stant is represented in an eight-byte integer, i.e., two words
of a 32-bit architecture. The three lower bytes contain the bi-
nary fractions of the second, giving a granularity of about 60
ns. This is the accuracy that can be achieved with a precise
GPS receiver. The five upper bytes count the full seconds.
The external TTA epoch assigns the value 2to the start of
the GPS epoch, i.e., 00:00:00 Coordinated Universal Time
on January 6, 1980. This offset has been chosen in order that
also instants before January 6, 1980 can be represented by
positive integers in the TTA. Thus, events that occurred be-
tween 8710 years before January 1980 and 26 131 years after
January 1980 can be time-stamped with an accuracy of 60 ns.
There are different internal time representations in the TTA
that match the time format to the capabilities of the hardware
(8-, 16-, or 32-bit architectures) and the requirements of the
application. Since not all time stamps are based on a global
time with a precision of 60 ns, an attribute field is introduced
in the external representation indicating the precision of a
time stamp [38].

B. Time and State

In abstract system theory, the notion of state is introduced
in order to separate the past from the future [39, p. 45]: “The
state enables the determination of a future output solely on
the basis of the future input and the state the system is in. In
other words, the state enables a “decoupling” of the past from
the present and future. The state embodies all past history of
a system. Knowing the state “supplants” knowledge of the
past. Apparently, for this role to be meaningful, the notion of
past and future must be relevant for the system considered.”

Taking this view, it follows that the notions of state and
time are inseparable. If an event that updates the state cannot
be said to coincide with a well-defined tick of a global clock
on a sparse time base, then the notion of a systemwide state

becomes diffuse. It is not known whether the state of the
system at a given clock tick includes this event or not. The
sparse time base of the TTA, explained previously, makes it
possible to define a systemwide notion of time, which is a
prerequisite for an indisputable borderline between the past
and the future, and thus the definition of a systemwide dis-
tributed state. The “interval of silence” on the sparse time
base forms a systemwide consistent dividing line between the
past and the future and the interval when the state of the dis-
tributed system is defined. Such a consistent view of time and
state is very important if fault tolerance is implemented by
replication, where faults are masked by voting on replicated
copies of the state residing in different fault containment re-
gions. If there is no global sparse time base available, one
often recourses to a model of an abstract time that is based on
the order of messages sent and received across the interfaces
of a node. If the relationship between the physical time and
the abstract time remains unspecified, then this model is im-
precise whenever this relationship is relevant. For example, it
may be difficult in such a model to determine the precise state
of a system at an instant of physical time at which voting on
replicated copies of the distributed state must be performed.

C. Real-Time Entities and Real-Time Images

In the TT model, a distributed real-time computer system
is modeled by a set of nodes that are interconnected by a
real-time communication system as shown in Fig. 2. All
nodes have access to the global time. A node consists of a
communication controller (CC) and a host computer. The
common boundary between the CC and the host computer
within a node is called the communication network interface
(CNI) (the thick black line in Fig. 2), the most important
interface of the TTA.

The dynamics of a real-time application are modeled by
a set of relevant state variables, the real-time entities (RT
entities) that change their state as time progresses. Examples
of RT entities are the flow of a liquid in a pipe, the setpoint
of a control loop, or the intended position of a control valve.
An RT entity has static attributes that do not change during
the lifetime of the RT entity, and has dynamic attributes that
change with time. Examples of static attributes are the name,
the type, the value domain, and the maximum rate of change.
The value set at a particular instant is the most important
dynamic attribute. Another example of a dynamic attribute
is the rate of change at a chosen instant.

The information about the state of an RT entity at a partic-
ular instant is captured by the notion of an observation. An
observation is an atomic data structure

Observation Name, Value,obs

consisting of the name of the RT entity, the instant when the
observation was made (obs), and the observed value of the
RT entity. A continuous RT entity can be observed at any
instant while a discrete RT entity can only be observed when
the state of this RT is not changing.

A real-time image (RT image) is a temporally accurate pic-
ture of an RT entity at instant, if the duration between the

114 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 2 Distributed real-time system with five nodes.

time of observation and the instantis smaller than the ac-
curacy interval acc, which is an application-specific param-
eter associated with the given RT entity. An RT image is thus
valid at a given instant if it is an accurate representation of the
corresponding RT entity, both in the value and the time do-
mains [23]. While an observation records a fact that remains
valid forever (a statement about an RT entity that has been
observed at an instant), the validity of an RT image is time
dependent and is invalidated by the progression of real time.

At the CNIs within a node, the pictures of the RT enti-
ties are periodically updated by the real-time communication
system to establish temporally accurate RT images of the RT
entities. The computational tasks within the host of a node
take these temporally accurate RT images as inputs to calcu-
late the required outputs within ana priori–known worst case
execution time. The outputs of the host are stored in the CNI
and transported by the TT communication system to the CNIs
of other nodes ata priori–determined instants. The interface
nodes transform the received data to/from the representation
required by the controlled object or the human operator and
activate control actions in the physical world.

D. State Information vs. Event Information

The information that is exchanged across an interface is
either state information or event information, as explained in
the following paragraphs. Any property of an RT entity (i.e.,
a relevant state variable) that is observed by a node of the dis-
tributed real-time system at a particular instant, e.g, the tem-
perature of a vessel, is called a state attribute and the corre-
sponding information state information. A state observation
records the state of a state variable at a particular instant, the
point of observation. A state observation can be expressed by
the atomic triple

Name of variable, value, time of observation

For example, the following is a state observation: “The posi-
tion of control valve was at 75 at 10:42A.M.” State infor-
mation is idempotent and requires an at-least-once semantics
when transmitted to a client. At the sender, state information
is not consumed on sending, and at the receiver, state infor-
mation requires an update in place and a nonconsuming read.
State information is transmitted in state messages.

A sudden change of state of an RT entity that occurs at
an instant is an event. Information that describes an event
is called event information. Event information contains the
difference between the state before the event and the state

Fig. 3 Node of the TTA.

after the event. An event observation can be expressed by the
atomic triple

Name of variable, value difference, time of event

For example, the following is an event observation: “The
position of control valve changed by 5 at 10:42A.M.”
Event observations require exactly once semantics when
transmitted to a consumer. At the sender, event information
is consumed on sending and at the receiver, event infor-
mation must be queued and consumed on reading. Event
information is transmitted in event messages.

Periodic state observations or sporadic event observations
are two alternative approaches for the observation of a
dynamic environment in order to reconstruct the states and
events of the environment at the observer [40]. Periodic state
observations produce a sequence of equidistant “snapshots”
of the environment that can be used by the observer to recon-
struct those events that occur within a minimum temporal
distance that is longer than the duration of the sampling
period. Starting from an initial state, a complete sequence of
(sporadic) event observations can be used by the observer to
reconstruct the complete sequence of states of the RT entity
that occurred in the environment. However, if there is no
minimum duration between events assumed, the observer
and the communication system must be infinitely fast.

E. Structure of the TTA

The basic building block of the TTA is a node. A node
comprises in a self-contained unit (possibly on a single sil-
icon die) a processor with memory, an input–output sub-
system, a TT communication controller, an operating system,
and the relevant application software as depicted in Fig. 3.

Two replicated communication channels connect the
nodes, thus forming a cluster. The cluster communication
system (the gray-shaded area in Fig. 4) comprises the
physical interconnection network and the communication
controllers of all nodes of the cluster. In the TTA, the
communication system is autonomous and executes period-
ically an a priori–specified time-division multiple access
(TDMA) schedule. It reads a state message from the CNI
at the sending node at thea priori–known fetch instant and
delivers it to the CNIs of all other nodes of the cluster at
the a priori–known delivery instant, replacing the previous

KOPETZ AND BAUER: THE TIME-TRIGGERED ARCHITECTURE 115

Fig. 4 Structure of a TTA cluster.

Fig. 5 Topology of TTA-bus.

version of the state message. The times of the periodic
fetch and delivery actions are contained in the message
scheduling table [the message descriptor list (MEDL)] of
each communication controller.

Clusters can be connected by gateway nodes (Node D in
Fig. 10). A gateway node is a member of two clusters and
therefore contains two CNIs, as explained in Section III-D.
A gateway node restricts the view of one cluster as seen by
the other cluster in order to reduce complexity.

F. Interconnection Topology

The TTA distinguishes between two different physical in-
terconnection topologies within a cluster, TTA-bus (Fig. 5)
and TTA-star (Fig. 6).

In TTA-bus, the physical interconnection consists of
replicated passive buses. At every physical node site there
are three subsystems: the node and two guardians. The
guardians are independent units that monitor the known
temporal behavior of the associated node. If a node intends
to send a message outside itsa priori–determined time slot,
the guardian will cut off the physical transmission path
and thus eliminate this failure mode. Ideally, the guardians
must be completely independent units with their own clock,
power supply, and distributed clock synchronization algo-
rithms. Furthermore, the guardians should be at a physical
distance from the node they protect in order that the system
becomes resilient to spatial-proximity faults. If all these
requirements are implemented in TTA-bus, a complete
TTA-bus node (including the guardians) must be composed
of three independent chip packages (to be resilient to
physical proximity faults), three independent clocks and
three independent power supplies. This is quite expensive
for mass-market applications. To reduce the implementation
costs, the guardians are implemented on the same die as the
node in the prototype implementation [41]. This is sufficient
for fail-safe operation, since the TTA contains algorithms
for the detection of the violation of the fault hypothesis
(fail-silent nodes in TTA-bus) and can bring the application
into the safe state in case the fault-hypothesis is violated.
However, for fail-operational applications, the TTA-star

Fig. 6 Topology of TTA-star.

interconnection that tolerates arbitrary (i.e., byzantine) node
faults is recommended [42], [43].

In the TTA-star configuration, the guardians are integrated
into two replicated central star couplers as depicted in Fig. 6.
This has the following advantages.

1) The guardians are fully independent and located at a
physical distance from the nodes they protect.

2) In a cluster comprising nodes, only (instead of
3 in TTA-bus when tolerating the same class of node
failures) packages are needed.

3) The algorithms in the guardians can be extended to
provide additional monitoring services, such as con-
dition-based maintenance.

4) If the guardians reshape the physical signals, the archi-
tecture becomes resilient to arbitrary [e.g., slightly-off-
specification (SOS)] node faults.

5) Point-to-point links have better electromagnetic inter-
ference characteristics than a bus and can easily be im-
plemented on fiber optics.

III. D ESIGN PRINCIPLES

The following sections will discuss the principles that
guided the design of the TTA.

A. Consistent Distributed Computing Base

The main purpose of the TTA is to provide a consistent dis-
tributed computing base to all correct nodes in order that reli-
able distributed applications can be built with manageable ef-
fort. If a node cannot be certain that every other correct node
works on exactly the same data, then the design of distributed
algorithms becomes very cumbersome [44] because the in-
tricate agreement problem has to be solved at the application
level. The TTA exploits the short error-detection latency of a
time-triggered protocol to perform immediate error detection
at the protocol level and continuously executes a distributed
agreement (membership) algorithm to determine if any node
has been affected by a failure. By checking the membership
of the nodes that are participating in a distributed applica-
tion, an application at a particular node can make sure that
all other nodes are correctly participating in the joint action.

The simple “brake-by-wire” system in a car (see Fig. 7)
demonstrates the importance of a consistent membership
view in a distributed real-time application. In this applica-
tion, the four nodes that control the brakes at the four wheels
of a car are connected by a fault-tolerant communication
system. The R-Front and the L-Rear node accept the brake
pedal pressure from one fail-silent brake pedal sensor, the

116 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 7 Simple “brake-by-wire” application.

L-Front and R-Rear node accept the brake pedal pressure
from the other fail-silent brake pedal sensor. Every wheel
node informs all other nodes about its view of the brake
pedal sensors, performs a distributed algorithm to allocate
the brake force to each wheel, and controls the brake at
its local wheel. The brake is assumed to be designed in
a way that the brake autonomously visits a defined state
(e.g., wheel free running—no brake force applied) in case
the wheel node crashes or the electrical or mechanical
mechanism in the local brake fails. As soon as the other
three wheels learn about the failure at one wheel, they
redistribute the brake force between them in a way that the
car is stopped safely with three braking wheels. The time
interval between the instant of brake failure and the instant
of redistribution of the brake force, i.e., the error-detection
interval, is a safety-critical parameter of this application.
During this error-detection interval, the braking system
is in an inconsistent state. We conjecture that there is a
potential for a fatal accident if this inconsistent state is
not detected and corrected within at most a few sampling
intervals. Consider the scenario where the R-Rear node has
an outgoing link failure. In this scenario, the other three
nodes will assume the R-Rear node has failed (since they
do not receive any message from the R-Rear node), while
the R-Rear node will think it is operating correctly, since it
receives all messages from the other nodes. This scenario
illustrates the need for a distributed membership protocol
to detect and eliminate safety-relevant inconsistencies in a
distributed real-time system.

If the fault hypothesis of the TTA is violated and the dis-
tributed agreement protocol cannot achieve a consistent view,
the TTA activates its clique avoidance algorithm to inform
the application of the grave situation. In such a situation, it is
up to the application to decide how to proceed: to perform a
rapid restart thus reestablishing consistency as soon as pos-
sible (e.g., if a massive transient is assumed to have been the
cause of the problem), or to continue with inconsistent data
(which is not recommended).

B. Unification of Interfaces—Temporal Firewalls

A suitable architecture must be based on a small number
of orthogonal concepts that are reused in many different sit-
uations in order to reduce the mental load required for un-

Fig. 8 Data flow and control flow at a TTA interface.

derstanding large systems. In a large distributed system, the
characteristics of these interfaces between the identified sub-
systems determine to a large extent the comprehensibility of
the architecture. In the TTA, the CNI (cf. Fig. 3) between a
host computer and the communication network is the most
important interface. The CNI appears in every node of the
architecture and separates the local processing within a node
from the global interactions among the nodes. The CNI con-
sists of two unidirectional data-flow interfaces, one from the
host computer to the communication system and the other
one in the opposite direction.

We call a unidirectional data-flow interface elementary if
there is only a unidirectional control flow [45] across this
interface. An interface that supports periodic state messages
with error detection at the receiver is an example of such an
elementary interface. We call a unidirectional data-flow in-
terface composite if even a unidirectional data flow requires
a bidirectional control flow. An event message interface with
error detection is an example for a composite interface. Com-
posite interfaces are inherently more complex than elemen-
tary interfaces, since the correct operation of the sender de-
pends on the control signals from all receivers. This can be
a problem in multicast communication where many control
messages are generated for every unidirectional data transfer,
and each one of the receivers can affect the operation of the
sender. Multicast communication is common in distributed
embedded systems.

The basic TTA CNI as depicted in Fig. 8 is an el-
ementary interface. The TT transport protocol carries
autonomously—driven by its TT schedule—state messages
from the sender’s CNI to the receiver’s CNI. The sender
can deposit the information into its local CNI memory
according to the information push paradigm, while the
receiver will pull the information out of its local CNI
memory. From the point of view of temporal predictability,
information push into a local memory at the sender and
information pull from a local memory at the receiver are
optimal, since no unpredictable task delays that extend the
worst-case execution occur during reception of messages.
A receiver that is working on a time-critical task is never
interrupted by a control signal from the communication
system. Since no control signals cross the CNI in the TTA
(the communication system derives control signals for the
fetch and delivery instants from the progress of global
time and its local schedule exclusively—cf. Section II-E),
propagation of control errors is prohibited by design. We

KOPETZ AND BAUER: THE TIME-TRIGGERED ARCHITECTURE 117

call an interface that prevents propagation of control errors
by design a temporal firewall [46]. The integrity of the data
in the temporal firewall is assured by the nonblocking write
concurrency control protocol [47].

From the point of view of complexity management and
composability, it is useful to distinguish between three dif-
ferent types of interfaces of a node: the real-time service (RS)
interface, the diagnostic and maintenance (DM) interface,
and the configuration planning (CP) interface [48]. These
interface types serve different functions and have different
characteristics. For the temporal composability, the most im-
portant interface is the RS interface.

The RS Interface:The RS interface provides the timely
RSs to the node environment during the operation of the
system. In real-time systems it is a time-critical interface that
must meet the temporal specification of the application in all
specified load and fault scenarios. The composability of an
architecture depends on the proper support of the specified
RS interface properties (in the value and in the temporal do-
main) during operation. From the user’s point of view, the
internals of the node are not visible at the CNI, since they
are hidden behind the RS interface.

The DM Interface: The DM interface opens a communi-
cation channel to the internals of a node. It is used for setting
node parameters and for retrieving information about the in-
ternals of the node, e.g., for the purpose of internal fault diag-
nosis. The maintenance engineer that accesses the node in-
ternals by the DM interface must have detailed knowledge
about the internal objects and behavior of the node. The DM
interface does not affect temporal composability. Usually, the
DM interface is not time-critical.

The CP Interface:The CP interface is used to connect a
node to other nodes of a system. It is used during the inte-
gration phase to generate the “glue” between the nearly au-
tonomous nodes. The use of the CP interface does not require
detailed knowledge about the internal operation of a node.
The CP interface is not time critical.

The CNI of the TTA can be directly used as the RS in-
terface. On input, the precise interface specifications (in the
temporal and value domain) are the temporal preconditions
for the correct operation of the host software. On output,
the precise interface specifications are the temporal post-
conditions that must be satisfied by the host, provided the
preconditions have been satisfied by the host environment.
Since the bandwidth is allocated statically to the host, no
starvation of any host can occur due to high-priority mes-
sage transmission from other hosts. As will be explained in
Section IV-C, an event-triggered communication service is
implemented on top of the basic TT service in the TTA to
realize the DM and CP interfaces. Since the event-triggered
communication is based on but not executed in parallel to the
TT communication, it is possible to maintain and to use all
predictability properties of the basic TT communication ser-
vice in event-triggered communication.

C. Composability

In a distributed real-time system, the nodes interact by the
communication system to provide the emerging RSs. These

emerging services depend on the timely provision of the
real-time information at the RS interfaces of the nodes. For
an architecture to be composable in the temporal domain, it
must adhere to the following four principles with respect to
the RS interfaces:

1) independent development of nodes;
2) stability of prior services;
3) constructive integration of the nodes to generate the

emerging services;
4) replica determinism.

Independent Development of Nodes:A composable ar-
chitecture must meticulously distinguish between architec-
ture design and node design. Principle 1) of a composable ar-
chitecture is concerned with design at the architecture level.
Nodes can be designed independently of each other only if
the architecture supports the precise specification of all node
services at the level of architecture design. In a real-time
system, the RS interface specification of a node must com-
prise the precise CNI specification in the value domain and
in the temporal domain and a proper abstract model of the
node service, as viewed by the host of the node. Only then
the node designer will be in the position to know exactly
what can be expected from the environment at which time
and what must be when delivered to the environment by the
node. This knowledge is a prerequisite for the independent
development of the node software.

Stability of Prior Services:Principle 2) of a composable
architecture is concerned with the design at the node level.
A node is a nearly autonomous subsystem that comprises the
hardware, the operating system, and the application software.
The node must provide the intended services across the well-
specified node interfaces. The design of the node can take
advantage of any established software engineering method-
ology, such as object-based design methods. The stability-of-
prior-service principle ensures that the validated service of a
node—both in the value domain and in the time domain—is
not refuted by the integration of the node into a system. For
example, the integration of a self-contained node, e.g., an en-
gine controller (cf. Fig. 14), into the integrated vehicle con-
trol system may require additional computational resources
(both in processing time and in memory space) of the node to
service this new communication interface. Consider the case
where the new communication interface contains a queue
of messages that must be serviced by the host computer:
memory space for the queue must be allocated by the node-
local operating system, and processing time of the host pro-
cessor for the management of the queue must be made avail-
able. In a rare-event situation, it may happen that these addi-
tional resource requirements that are needed for the timely in-
terface service are in conflict with the resource requirements
of the time-critical application software that implements the
prior services of the node. In such a situation, failures in the
node’s prior services may occur sporadically during and after
the integration. This is one reason why the TTA requires in-
formation-pull interfaces at the receiver.

Constructive Integration:Principle 3) of a composable
architecture is concerned with the design of the communi-

118 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

cation system. Normally, the integration of the nodes into
the system follows a step-by-step procedure. The construc-
tive integration principle requires that ifnodes are already
integrated, the integration of the node must not disturb
the correct operation of the already integrated nodes. The
constructive-integration principle ensures that the integration
activity is linear and not circular.

This constructive integration principle has severe implica-
tions for the management of the network resources. If net-
work resources are managed dynamically, it must be ascer-
tained that even at the critical instant, i.e., when all nodes
request the network resources at the same instant, the time-
liness of all communication requests can be satisfied. Other-
wise, sporadic failures will occur with a failure rate that is
increasing with the number of integrated nodes.

For example, if a RS requires that the network delay must
always remain below a critical upper limit (because other-
wise a local time-out within the node may signal a commu-
nication failure) then the dynamic extension of the network
delay by adding new nodes may be a cause of concern. In
a dynamic network the message delay at the critical instant
(when all nodes request service at the same time) increases
with the number of nodes. The system of Fig. 9 will work cor-
rectly with up to four nodes. The addition of the fifth node
may lead to sporadic failures.

Replica Determinism:If fault tolerance is implemented
by the replication of nodes, then the architecture and the
nodes must support replica determinism. A set of replicated
nodes is replica determinate [49] if all the members of this
set have the same externally visible state, and produce the
same output messages at points in time that are at most an in-
terval of time units apart (as seen by an omniscient outside
observer). In a fault-tolerant system, the time intervalde-
termines the time it takes to replace a missing message or an
erroneous message from a node by a correct message from re-
dundant replicas. The implementation of replica determinism
is simplified if all nodes have access to a globally synchro-
nized sparse time base. Replica determinism also decreases
the testing and debugging effort significantly by eliminating
Heisenbugs [50] by design.

D. Scalability

The TTA is intended for the design of very large dis-
tributed real-time applications. A large system can only
be constructed if the mental effort required to understand
a particular system function is independent of the system
size. Despite the fact that a large system will support many
more functions than a small system, the complexity of each
individual function must not increase with the growth of
the system. Horizontal layering (abstraction) and vertical
layering (partitioning) are the means to combat the com-
plexity of large systems. In the TTA, the CNIs encapsulate a
function and make only those properties of the environment
visible to this encapsulated function that are relevant for
the correct operation of the function. This is a powerful
application of these principles of partitioning and abstrac-
tion. Subsystems consisting of many nodes are connected
by gateway nodes that provide a constrained view of each

Fig. 9 Maximum network delay at critical instant as a function
of the number of nodes.

subsystem—only those data elements that are needed for
the emerging functions resulting from the cooperation of the
subsystems are made available at the CNIs of the gateway
node. There is no other central element in the TTA besides
the global notion of time. If nodeD of Cluster 1 of Fig. 10
faces its computational limits, it can be expanded into a
gateway node. The interface to Cluster 1 of the gateway
node D remains unchanged—in value and time—while
the internal processing of nodeD is now redistributed to
the nodesX, Y, and Z of cluster 2. Seen from Cluster 2,
the gateway nodeD provides only a limited view to the
functions of Cluster 1 in order to restrict the complexity
growth.

Gateway nodes can also be used to integrate legacy sys-
tems. Assume that Cluster 1 of Fig. 10 is a legacy system and
Cluster 2 is a new system that is developed according to a new
architectural style, different from that of Cluster 1. Gateway
nodeD can act as an interface system [51], and reconcile
the property mismatches between the architectural styles of
Cluster 1 and Cluster 2.

Maintenance and diagnostics require a focused view in-
side a subsystem to interrogate the correct operation of its
low-level mechanisms. If all these internals were exposed at
the subsystem boundaries, the complexity of a large system
would explode. To solve this problem, the TTA supports fa-
cilities to build focused event-message channels into the in-
ternals of a selected subsystems by using the DM interface,
similar to the boundary scan techniques used in the design of
complex very large scale integration (VLSI) chips. A mainte-
nance engineer who has detailed knowledge about the inter-
nals of a particular subsystem can thus look into the selected
subsystem without exposing the encapsulated subsystem-in-
ternal information at the subsystem boundaries.

E. Transparent Implementation of Fault Tolerance

The TTA is intended for safety-critical real-time applica-
tions such as the control of an aircraft or “brake-by-wire”
systems in automobiles. Active redundancy by replication
and voting are the most appropriate fault-tolerance tech-
niques for meeting these requirements. The realization of
active replication demands a number of mechanisms, such

KOPETZ AND BAUER: THE TIME-TRIGGERED ARCHITECTURE 119

Fig. 10 Expansion of nodeD of cluster 1 into a new cluster 2.

as replica coordination, voting, membership fusion, internal
state alignment, and reintegration of nodes after a transient
failure. If these generic fault-tolerance mechanisms are
intertwined with the application software of a node, then
the resulting increase of the software complexity can be the
cause of additional design faults.

In the TTA, the fault-tolerance mechanisms are imple-
mented in a dedicated fault-tolerance layer (Fig. 11) possibly
with its own middleware processor, such that the fault-tol-
erant CNI (FTU CNI) is identical in structure and timing to
the basic nonfault-tolerant CNI. A properly structured ap-
plication software can thus operate in a fault-tolerant system
or a nonfault-tolerant system without any modifications.
The fault-tolerance mechanisms remain transparent to the
application in the TTA.

F. Openness

Large distributed real-time systems do not operate in iso-
lation. They must be integrated into the global information
infrastructure. The standardization of interfaces of the TTA
by the Object Management Group (OMG) in order that TTA
internal data can be accessed from any Common Object Re-
quest Broker Architecture (CORBA)–compliant client is in
progress [38]. This interface standard proposal makes the
three TTA interfaces, the RS interface, the DM interface and
the CP interface available at a CORBA object request broker.
The RS interface provides the real-time data with known
delay and bounded jitter in order to support distributed con-
trol applications. The DM and CP interfaces are event-trig-
gered interfaces that open event channels into the internals
of a node for the purpose of maintenance and dynamic re-
configuration. Provided that the CORBA security clearance
is passed, it is thus possible to investigate remotely (by the
Internet) the internals of every TTA node while the system is
delivering its RS.

IV. COMMUNICATION

The instants at which information is delivered at or fetched
from the CNIs of a node are determineda priori and are
common knowledge to all nodes of a TTA.A priori common
knowledge means that these instants are defined before the
computation under consideration is started and that the in-
stants are known to all nodes of a cluster beforehand. These
instants are the deadlines for the application tasks within a
host. Knowing these deadlines, it is in the responsibility of

Fig. 11 Expansion of a nonfault-tolerant node into a fault-tolerant
node.

the host to produce the required results before the deadline
has passed. Any node-local scheduling strategy that will sat-
isfy these known deadlines is “fit for purpose.” It is the re-
sponsibility of the TT communication service to transport
the information from the sending CNI to the receiving CNI
within the interval delimited by thesea priori–known fetch
and delivery instants. The TTA contains two communica-
tion protocols that provide this communication service: the
fault-tolerant TTP/C protocol and the low-cost fieldbus pro-
tocol TTP/A.

A. The TTP/C Protocol

The TTP/C protocol [25], [52] is a fault-tolerant time-trig-
gered protocol that provides the following services.

1) Autonomous fault-tolerant message transport with
known delay and bounded jitter between the CNIs
of the nodes of a cluster by employing a TDMA
medium access strategy on replicated communication
channels.

2) Fault-tolerant clock synchronization that establishes
the global time base without relying on a central time
server.

3) Membership service to inform every node consistently
about the “health-state” of every other node of the
cluster. This service can be used as an acknowledg-
ment service in multicast communication. The mem-
bership service is also used to efficiently implement
the fault-tolerant clock synchronization service.

4) Clique avoidance to detect and eliminate the formation
of cliques in case the fault hypothesis is violated.

In TTP/C, the communication is organized into rounds,
where every node must send a message in every round. A par-
ticular message may carry up to 240 bytes of data. The data is
protected by a 24–bit CRC checksum. The message schedule
is stored in the MEDL within the communication controller
of each node. To achieve high data efficiency, the sender
name and the message name is derived from the send instant.
The clock synchronization of TTP/C exploits the common
knowledge of the send schedule: every node measures the
difference between thea priori–known expected and the ac-
tually observed arrival time of a correct message to learn

120 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

about the difference between the sender’s clock and the re-
ceiver’s clock. This information is used by a fault-tolerant
average algorithm to calculate periodically a correction term
for the local clock in order to keep the clock in synchrony
with all other clocks of the cluster. The membership ser-
vice employs a distributed agreement algorithm to determine
whether the outgoing link of the sender or the incoming link
of the receiver has failed. Nodes that have suffered a trans-
mission fault are excluded from the membership until they
restart with a correct protocol state. Before each send opera-
tion of a node, the clique avoidance algorithm checks if the
node is a member of the majority clique. The detailed speci-
fication of the TTP/C protocol can be found in [52].

B. The TTP/A Protocol

The TTP/A protocol is the TT fieldbus protocol of the TTA
[53], [53], [38]. It is used to connect low-cost smart trans-
ducers to a node of the TTA, which acts as the master of a
transducer cluster. In TTP/A, the CNI memory element of
Fig. 8 has been expanded at the transducer side to hold a
simple interface file system (IFS). Each interface file con-
tains 256 records of four bytes each. The IFS forms the uni-
form name space for the exchange of data between a sensor
and its environment (Fig. 12).

The IFS holds the real-time data, calibration data, diag-
nostic data, and configuration data. The information between
the IFS of the smart transducer and the CNI of the TTA node
is exchanged by the TT TTP/A protocol, which distinguishes
between two types of rounds, the master-slave (MS) round
and the multipartner (MP) round. The MS rounds are used
to read and write records from the IFS of a particular trans-
ducer to implement the DM and CP interface. The MP rounds
are periodic and transport data from selected IFS records of
several transducers across the TTP/A cluster to implement
the RS. MP rounds and MS rounds are interleaved, such that
the time-critical RS and the event-based DM and CP service
can coexist. It is thus possible to diagnose a smart transducer
or to reconfigure or install a new smart transducer on-line,
without disturbing the time-critical RS of the other nodes.
The TTP/A protocol also supports a “plug-and-play” mode
where new sensors are detected, configured, and integrated
into a running system on-line and dynamically. The detailed
specification of the TTP/A protocol can be found in [38].

C. Event Message Channels

In the TTA, event message channels are constructed on
top of the basic TT communication service by assigning an
a priori–specified number of bytes of selected TT messages
to the event-triggered message transport service. These pe-
riodically transmitted bytes form a dedicated communica-
tion channel for the transmission of the dynamically gen-
erated event information. To implement the event semantics
(cf. Section II-D) at the sender and receiver, two message
queues must be provided in the CNIs: the sender queue at
the sender’s CNI and the receiver queue at the receiver’s
CNI. The sender pushes a newly produced event message
into the sender queue, while the receiver must check the re-

Fig. 12 Interface file system in a smart transducer.

ceiver queue to pull and consume the event message. An al-
ternative design could produce an interrupt whenever a new
event message arrives at the receiver, but such a design would
violate the TTA principle of providing an information pull
interface at the receiver and interfere with the principle of
stability of prior services. Since in a cluster withnodes
every transmitted event message generates an event message
at every receiver (i.e., a total of event messages in the
distributed system), two additional services are provided to
avoid a queue overflow at the receiver: a filter service and a
garbage collection service. The filter service selects the in-
coming event messages according to filtering criteria estab-
lished by the receiver and accepts only those event messages
that pass the filter. The garbage collection service eliminates
decayed event messages from the receiver queue based on
the age of the message. A maximum queue storage dura-
tion must be statically assigned to each event message for
this purpose. After this duration has elapsed, the message is
eliminated from the receiver queue. The event message chan-
nels are used in the TTA to implement the nontime-critical
DM and CP services. It is possible to implement widely used
event-based protocols, such as Transmission Control Pro-
tocol/Internet Protocol or Controller Area Network, on the
TTA event channels.

Event message channels should not be used for time-crit-
ical or safety-critical functions. In case of a rare-event
peak-load scenario, the event message service may be
delayed or stopped in order to maintain the safety-critical
TT service. It follows that the host tasks servicing the event
channels can be scheduled according to the “best-effort”
paradigm. Care must be taken that any software interaction
between the event service and the safety-critical TT service
inside the application software of the host is fully understood
and no negative consequences on the replica determinism of
the TT service can occur.

D. Performance Limits

As in any distributed computing system, the performance
of the TTA depends primarily on the available communi-
cation bandwidth and computational power. In this Section
we intend to investigate the temporal performance limits of
the TTA. Because of physical effects of time distribution
and limits in the implementation of the guardians [41], a
minimum interframe gap of about 5s must be maintained
between frames to guarantee the correct operation of the

KOPETZ AND BAUER: THE TIME-TRIGGERED ARCHITECTURE 121

guardians. If a bandwidth utilization of about 80% is in-
tended, then the message-send phase must be in the order of
about 20 s, implying that about 40 000 messages can be
sent per second within such a cluster. With these parameters,
a sampling period of about 250s can be supported in a
cluster comprising ten nodes. The precision of the clock
synchronization in current prototype systems is below
one microsecond. If the interframe gap and bandwidth
limits are stretched, it might be possible to implement in
such a system a 100s TDMA round (corresponding to
a 10-kHz control loop frequency), but not much smaller
if the system is physically distributed (to tolerate spatial
proximity faults). The amount of data that can be transported
in the 20 s window depends on the bandwidth: In a 5-Mb/s
system it is about 12 bytes; in a 1-Gb/s system it is about
2400 bytes. A prototype implementation of TTP/C using
Gigabit Ethernet is currently under development. This
prototype implementation uses commercial off-the-shelf
(COTS) hardware and therefore is not expected to achieve
the limiting performance. The objective of this project is
rather to determine the performance that can be achieved
without special hardware and to pinpoint the performance
bottlenecks to face when using COTS components.

In a universal asynchronous receiver and transmitter
TTP/A configuration with ten smart transducers, each one
sending one byte of information, a typical round length (MP
round plus MS round) is on the order of 250 bit-cells. If a
low-cost single-wire connection with a transmission speed
of 20 kb/s is used, the round duration will be 12.5 ms. If
a more expensive physical layer that supports 1 Mb/s is
selected, then the round duration will be 250s, supporting
a control loop with a frequency of 4 kHz. The jitter in these
applications is about one-third of the bitcell, i.e., in the
previous example less than one microsecond. Since the TTA
communication system provides full phase control, the jitter
will not increase if the control loops are cascaded.

V. FAULT TOLERANCE

As indicated in Section III-E, the TTA supports transparent
implementation of fault tolerance.

A. Fault Hypothesis

Any fault-tolerant design activity starts with the specifica-
tion of the fault hypothesis. The fault hypothesis states the
types and number of faults that the system should tolerate. In
the TTA, it is assumed that a chip is a single fault-contain-
ment region, since all functions of a chip share a common
power supply, ground, oscillator, the same mask, the same
manufacturing process, and are in close physical proximity.
Given the feature size of today’s VLSI circuits, it can happen
that a single external event, e.g., anparticle, will affect a
number of logic functions simultaneously. It is thus difficult
to argue that two functions on the same chip will fail inde-
pendently.

In a properly configured TTA star a cluster will tolerate an
arbitrary failure mode of a single TTA node (chip). A faulty
unit will be consistently detected by the membership pro-

tocol and isolated within two TDMA rounds. The TTA masks
an asymmetric (byzantine) fault of any node by architectural
means [42] and realizes an efficient temporal and spatial par-
titioning of the nodes at the cluster level.

B. Fault-Tolerant Units

For internal physical faults—an important fault class in
any system—the preferred fault-tolerance strategy is active
replication of independent nodes. The effective partitioning
of the nodes and the masking of byzantine faults by the TTA
provides the prerequisites to logically group a set of nodes
or software subsystems that compute the same function into
a fault-tolerant unit (FTU). The FTU will tolerate the failure
of any of its independent constituent parts without a degrada-
tion of service. Note that the physical positions of the nodes
composing an FTU should be far apart in order to tolerate
physical proximity faults. The classic form of an FTU con-
sists of three nodes (triple modular redundancy, referred to as
TMR) that operate in replica determinism and present their
results to a voter (physically located at every consumer of the
result) that makes a majority decision.

A necessary prerequisite for the implementation of active
redundancy in the described form is the replica-deterministic
behavior of the host software [54], [49]. The TTA provides
replica determinism at the CNI of a node, but it is up to the
host software to ensure replica determinism within the com-
plete node. The three replicas of the host software run syn-
chronously on the three different host computers and pro-
duce their output simultaneously (within the precision of the
clock synchronization) at their FTU CNI (cf. Fig. 11) before
the a priori–known fetch instant [55]. The FTU layer dis-
tributes the messages to the other nodes of the cluster. Im-
mediately before thea priori–determined delivery instant of
a message at the FTU CNI of receiving nodes, the FTU layer
at the respective nodes vote on the incoming messages from
the nodes of the FTU and present the majority result to their
hosts at the delivery instant. Periodically, every host must
output its internal state for the same voting procedure by the
other nodes of the FTU. An integrating node must wait until
it receives a voted internal state before it can participate in
an application.

The TTA also supports implementation of self-checking
pairs of nodes. Since a self-checking node will only produce
a result if it is correct in the temporal domain and in the value
domain, a self-checking FTU can operate with two nodes
(there is no need for voting) in order to tolerate a single node
failure.

The host application must be designed such that the dura-
tion between the fetch instants and the delivery instants at the
CNI is long enough to perform the fault-tolerance functions.
If the timing at the host computer meets this requirement,
the insertion of an FTU layer will be transparent to the host,
since the fetch instant and the delivery instant may remain
unchanged.

C. Never-Give-Up (NGU) Strategy

The fault-tolerant service described in Section V-B can
be maintained only if the environment complies with the

122 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

fault hypothesis. If the environment violates the fault hypoth-
esis—in a properly designed application, this must be a rare
event—then the TTA activates an NGU strategy. The NGU
strategy is initiated by the TTP/C protocol in combination
with the application as soon as it becomes evident that there
are not enough resources available any more to provide the
minimum required service. The NGU strategy is highly ap-
plication specific. For example, if the cause of the outage is
a massive transient fault, then in some applications the NGU
strategy may consist of freezing the actuators in their current
state until a successful restart of the whole cluster has been
completed.

D. Redundant Transducers

If the transducers need to be replicated to achieve fault
tolerance, then at least two independent TTP/A fieldbuses
must be installed (Fig. 13). Each one of those fieldbuses is
controlled by one active TTP/A master in a TTP/C gateway
node of the FTU. The other TTP/A master is passive and
listens to the fieldbus traffic to capture the sensor data.

An agreement protocol is executed in the controllers of the
TTA nodes to reconcile the values received from the repli-
cated sensors. Then, a single agreed value from each redun-
dant sensor set is presented to the host software at the CNIs.
On output, the replicated results are transported on separate
fieldbuses to a fault-tolerant actuator.

VI. TTA D ESIGN METHODOLOGY

Composability and the associated reuse of nodes and soft-
ware can only be realized if the architecture supports a two-
level design methodology. In the TTA, such a methodology
is supported: the TTA distinguishes between the architecture
design and the node design.

A. Architecture Design

In the architecture design phase, an application is decom-
posed into clusters and nodes. This decomposition will be
guided by engineering insight and the structure inherent in
the application, in accordance with the proven architecture
principle of “form follows function.” For example, in an au-
tomotive environment, a “drive-by-wire” system may be de-
composed into functional units as depicted in Fig. 14.

If a system is developed “on the green lawn,” then a
top-down decomposition will be pursued. After the decom-
position has been completed, the CNIs of the nodes must
be specified in the temporal and in the value domain. The
data elements that are to be exchanged across the CNIs are
identified and the precise fetch instants and delivery instants
of the data at the CNI must be determined. Given these data,
the schedules of the TTP/C communication system can be
calculated and verified. At the end of the architecture design
phase, the precise interface specifications of the nodes are
available. These interface specifications are the inputs and
constraints for the node design.

Given a set of available nodes with their temporal specifi-
cation (nodes that are available for reuse), a bottom-up de-
sign approach must be followed. Given the constraints of

Fig. 13 Replicated fieldbuses.

Fig. 14 Decomposition of a “drive-by-wire” application.

the nodes at hand (how much time they need to calculate
an output from an input), a TTP/C schedule must be found
that meets the application requirements and satisfies the node
constraints.

B. Node Design

During the node design phase, the application software for
the host computers is developed. The delivery and fetch in-
stants established during the architecture design phase are the
preconditions and postconditions for the temporal validation
of the application software. The host operating system can
employ any reasonable scheduling strategy, as long as the
given deadlines are satisfied and the replica determinism of
the host system is maintained.

Node testing proceeds bottom-up. A new node must be
tested with respect to the given CNI specifications in all an-
ticipated load and fault conditions. The composability prop-
erties of the TTA (stability of prior service, cf. Section III-C,
achieved by the strict adherence to information pull inter-
faces) ensure that a property that has been validated at the
node level will also hold at the system level. At the system
level, testing will focus on validating the emerging services
that are result of the integration.

C. Validation

Today, the integration and validation phases are probably
the most expensive phases in the implementation of a large
distributed real-time system. The TTA has been designed to
reduce this integration and validation effort by providing the
following mechanisms.

1) The architecture provides a consistent distributed
computing base to the application and informs the
application in case a loss of consistency is caused

KOPETZ AND BAUER: THE TIME-TRIGGERED ARCHITECTURE 123

by a violation of the fault hypothesis. The basic
algorithms that provide this consistent distributed
computing base (clock synchronization and member-
ship) have been analyzed by formal methods and are
implemented once and for all in silicon [56]–[61].
The application does not need to be concerned with
the implementation and validation of the complex
distributed agreement protocols that are needed to
establish consistency in a distributed system.

2) The architecture is replica deterministic, which means
that any observed deficiency can be reproduced in
order to diagnose the cause of the observed problem.

3) The interaction pattern between the nodes and the con-
tents of the exchanged messages can be observed by an
independent observer without the probe effect [62]. It
is thus possible to determine whether a node complies
with its preconditions and postconditions without in-
terfering with the operation of the observed node.

4) The internal state of a node can be observed and con-
trolled by the DM interface.

5) In the TTA, it is straightforward to provide a real-time
simulation test bench that reproduces the environment
to any node in real time. Deterministic automatic re-
gression testing can thus be implemented.

D. Design Tools

The TTA design methodology is supported by a compre-
hensive set of integrated design tools of TTTech AG [30].
The design engineer starts the architecture design by decom-
posing a cluster into nodes and by specifying the interaction
patterns among the nodes: the data items that must be ex-
changed and the temporal constraints that must be observed.
The design tool TTPplan calculates the message schedules
and determines the precise fetch instant and delivery instant,
i.e., the MEDL, for the CNI in each node. After the inter-
action pattern has been verified to meet the requirements of
the application, the node design can commence. The node
design takes the CNI specification developed at the architec-
ture design phase as constraint and develops the task struc-
ture within a node. There is tool support for the automatic
generation of the FTU layer, if fault tolerance is desired. In
addition to the design tools there exist also download tools
to download the developed software into the TTA nodes and
monitoring tools to monitor the operation of a cluster.

VII. CONCLUSION

The TTA is the result of more than twenty years of
research in the field of dependable distributed real-time
systems. During this period, many ideas have been devel-
oped, implemented, evaluated, and finally discarded. What
survived is a small set of orthogonal concepts that center
around the availability of a dependable global time base. The
guiding principle during the development of the TTA has
always been to take maximum advantage of the availability
of this global time, which is part of the world, even if we do
not use it. The TTA spans the whole spectrum of dependable
distributed real-time systems, from the low-cost deeply

embedded sensor nodes to high-performance nodes that
communicate at gigabits per second speeds, persistently
assuming that a global time of appropriate precision is
available in every node of the TTA.

Many of today’s hardware architectures provide a single
CPU to handle the middleware and the application software.
The introduction of the FTU CNI of the TTA (see Fig. 11)
suggests that a dedicated middleware CPU would enhance
the temporal predictability of a node significantly by elim-
inating unnecessary temporal interactions between the mid-
dleware software and the host software. The middleware pro-
cessor can perform the housekeeping and generic fault-toler-
ance functions, while the host processor would be dedicated
solely to execute the application software in the host. Such a
hardware architecture would make a significant contribution
to solving the software reuse problem in distributed real-time
systems, since an application could be ported to a new envi-
ronment without any change in the application software in-
terface, neither in the time, nor in the value domain.

At present, the TTA occupies a niche position, since in the
experimental as well as in the theoretical realm of mainline
computing, time is considered a nuisance that makes life dif-
ficult and should be dismissed at the earliest moment [63],
[64]. However, as more and more application designers start
to realize that real time is an integrated part of the real world
that cannot be abstracted away, the prospects for the TTA
look encouraging.

ACKNOWLEDGMENT

The authors would like to thank all Ph.D. students,
master students, sponsors, and industrial partners that have
contributed to the development of the TTA over a period of
two decades.

REFERENCES

[1] A. Simon,Sciences of the Artificial. Cambridge, MA: MIT Press,
1981.

[2] A. Avizienis, G. Gilley, F. Mathur, D. Rennels, J. Rohr, and D. Rubin,
“The STAR (self-testing-and-repairing) computer: An investigation
of the theory and practice of fault-tolerant computer design,”IEEE
Trans. Comput., vol. C-20, pp. 1312–1321, Nov. 1971.

[3] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt,
P. M. Melliar-Smith, R. E. Shostak, and C. B. Weinstock, “SIFT:
Design and analysis of a fault-tolerant computer for aircraft control,”
Proc. IEEE, vol. 66, pp. 1240–1255, Oct. 1978.

[4] A. Hopkins, T. Smith, and J. Lala, “FTMP—A highly reliable
fault-tolerant multiprocessor for aircraft,”Proc. IEEE, vol. 66, pp.
1221–1239, Oct. 1978.

[5] J. Lala and L. Alger, “Hardware and software fault tolerance: A uni-
fied architectural approach,” inProc. 18th Int. Symp. Fault Tolerant
Comput., 1988, pp. 240–245.

[6] R. Kieckhafer, C. Walter, A. Finn, and P. Thambidurai, “The MAFT
architecture for distributed fault tolerance,”IEEE Trans. Comput.,
vol. 37, pp. 398–405, Apr. 1988.

[7] P. Traverse, “AIRBUS and ATR system architecture and specifica-
tion,” in Software Diversity in Computerized Control Systems, U.
Voges, Ed. Berlin, Germany: Springer-Verlag, 1988.

[8] K. Hoyme and K. Driscoll, “SAFEbus,”IEEE Aerosp. Electron. Syst.
Mag., vol. 8, pp. 34–39, Mar. 1993.

[9] J. Lala and R. Harper, “Architectural principles for safety-critical
real-time applications,”Proc. IEEE, vol. 82, pp. 25–40, Jan. 1994.

[10] A. Avizienis, “Toward systematic design of fault-tolerant systems,”
IEEE Computer, vol. 30, pp. 51–58, Apr. 1997.

124 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

[11] E. Rechtin,Systems Architecting, Creating and Building Complex
Systems. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[12] J. C. Laprie, Dependability: Basic Concepts and Termi-
nology. Berlin, Germany: Springer-Verlag, 1992.

[13] A. Avizienis, “The N-version approach to fault-tolerance
software,”IEEE Trans. Software Eng., vol. SE-11, pp. 1491–1501,
Dec. 1985.

[14] J. Knight and N. Leveson, “An empirical study of failure probabil-
ities in multi-version software,” inProc. 16th Int. Symp. Fault-Tol-
erant Comput., 1986, pp. 165–170.

[15] U. Voges, Ed.,Software Diversity in Computerized Control Sys-
tems. Berlin, Germany: Springer-Verlag, 1988.

[16] Software Considerations in Airborne Systems and Equipment Certi-
fication, Standard RTCA/DO-178B , 1992.

[17] D. Powell, “Distributed fault tolerance—Lessons learnt from
delta-4,”IEEE Micro, vol. 14, pp. 36–47, Jan. 1994.

[18] “Air Traffic Control—Complete and Enforced Architecture Neded
for FAA Systems Modernization,” U.S. General Accounting Office,
GAO/AIMD-97-30, 1997.

[19] H. Kopetz et al.. (1982) The Architecture of MARS. Tech-
nical Univ. Berlin, Berlin, Germany. [Online] Available:
http://www.vmars.tuwien.ac.at

[20] H. Kopetz and W. Merker, “The architecture of MARS,” inProc.
15th Int. Symp. Fault-Tolerant Comput., 1985, pp. 274–279.

[21] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger, “Distributed fault-tolerant real-time systems: The
MARS approach,”IEEE Micro, vol. 9, pp. 25–40, Jan. 1988.

[22] J. Reisinger, A. Steininger, and G. Leber, “The PDCS implementa-
tion of MARS hardware and software,” inPredictably Dependable
Computing Systems, H. Kopetz, B. Randell, J. L. Laprie, and B. Lit-
tlewood, Eds. Berlin, Germany: Springer-Verlag, 1995.

[23] H. Kopetz and K. H. Kim, “Temporal uncertainties in interactions
among real-time objects,” inProc. 9th Symp. Reliable Distributed
Syst., 1990, pp. 165–174.

[24] K. Kim and H. Kopetz, “A real-time object model RTO.k and an
experimental investigation of its potential,” inProc. COMPSAC ’94,
1994, pp. 392–402.

[25] H. Kopetz and G. Grünsteidl, “TTP—A time-triggered protocol for
fault-tolerant real-time systems,” inProc. 23rd Int. Symp. Fault-Tol-
erant Comput., 1993, pp. 524–533.

[26] H. Kopetz and W. Ochsenreiter, “Clock synchronization in dis-
tributed real-time systems,”IEEE Trans. Comput., vol. C-36, pp.
933–940, Aug. 1987.

[27] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J.
Reisinger, “Comparison and integration of three diverse physical
fault injection techniques,” inProc. PDCS 2: Open Conf., 1994,
pp. 615–642.

[28] R. Hexel, “Validation of fault-tolerance mechanisms in a time-trig-
gered communication protocol using fault injection,” Ph.D. disser-
atation, Vienna Univ. Technol., Institut für Technische Informatik,
Vienna, Austria, 1999.

[29] T. Thurner and G. Heiner, “Time-triggered architecture for safety-
related distributed r eal-time systems in transportation systems,”
in Proc. 28th Int. Symp. Fault-Tolerant Comput., 1998, pp. 402–407.

[30] TTTech: Time-Triggered Technology[Online]www.tttech.com
[31] Road Vehicles—Controller Area Network (CAN)—Part 4: Time Trig-

gered Comunication, Standard ISO/CD 11 898-4, 2001.
[32] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer,

E. Fuchs, B. Hedenetz, W. Kuffner, A. Krüger, P. Lormann, D.
Millinger, M. Peller, J. Ruh, A. Schedl, and M. Sprachmann,
“FlexRay—The Communication System for Advanced Automotive
Control Systems,” SAE, Doc. no. SAE 2001-01-0676, 2001.

[33] P. Miner. Analysis of the SPIDER fault tolerance protocols. pre-
sented at Lfm 2000: 5th NASA Langley Formal Methods Workshop.
[Online]http://archive.larc.nasa.gov/shemesh/Lfm2000/Presenta-
tions/lfm2000-spider/

[34] J. Rushby, “Bus architectures for safety-critical embedded
systems,” inLecture Notes in Computer Science, Embedded Soft-
ware. Heidelberg, Germany: Springer-Verlag, 2001, vol. 2211,
pp. 306–323.

[35] , “A Comparison of Bus Architectures for Safety-Critical Em-
bedded Systems,” SRI Int., Computer Science Laboratory, Menlo
Park, CA, 2001.

[36] H. Kopetz, “The time-triggered (TT) model of computation,” in
Proc. 19th IEEE Real-Time Syst. Symp., 1998, pp. 168–177.

[37] , Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Norwell, MA: Kluwer, 1997.

[38] “Smart Transducer Interface,” Object Management Group,
Needham, MA, 2001.

[39] M. Mesarovic and Y. Takahara,Abstract Systems Theory. Berlin,
Germany: Springer-Verlag, 1989.

[40] F. Tisato and F. DePaoli, “On the duality between event-driven
and time-driven models,” inProc. 13th Workshop on Distributed
Comput. Contr. Syst., 1995, pp. 31–36.

[41] C. Temple, “Enforcing error containment in distributed time-trig-
gered systems: The bus guardian approach,” Ph.D. dissertation,
Vienna Univ. Technol., Institut für Technische Informatik, Vienna,
Austria, 1999.

[42] H. Kopetz, G. Bauer, and S. Poledna, “Tolerating Arbitrary Node
Failures in the Time-Triggered Architecture,” SAE, Doc. no. SAE
2001-01-0677, 2001.

[43] G. Bauer, H. Kopetz, and P. Puschner, “Assumption coverage under
different failure modes in the time-triggered architecture,” inProc.
8th IEEE Int. Conf. Emerging Technol. Factory Automat., 2001, pp.
333–341.

[44] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.
382–401, 1982.

[45] H. Kopetz, “Elementary versus composite interfaces in distributed
real-time systems,” inProc. 4th Int. Symp. Autonomous Decentral-
ized Syst., 1999, pp. 26–33.

[46] H. Kopetz and R. Nossal, “Temporal firewalls in large distributed
real-time systems,” inProc. IEEE Workshop Future Trends Dis-
tributed Comput., 1997, pp. 310–315.

[47] H. Kopetz and J. Reisinger, “The nonblocking write protocol NBW:
A solution to a real-time synchronization problem,” inProc. 14th
Real-Time Syst. Symp., 1993, pp. 131–137.

[48] H. Kopetz, “Software engineering for real-time: A roadmap,” in
Proc. 22nd Int. Conf. Software Eng., 2000, pp. 201–211.

[49] S. Poledna,Fault-Tolerant Real-Time Systems: The Problem of
Replica Determinism. Norwell, MA: Kluwer, 1995.

[50] J. Gray, “Why do computers stop and what can be done about it? ,”
in Proc. 5th Symp. Reliability Distributed Software Database Syst.,
1985, pp. 3–11.

[51] C. Jones, M. Killijian, H. Kopetz, E. Marsden, N. Moffat, M.
Paulitsch, D. Powell, B. Randell, A. Romanovsky, and R. Stroud,
“Revised Version of DSoS Conceptual Model,” Technical Univer-
sity of Vienna, Institut für Technische Informatik, Vienna, Austria,
35/2001, 2001.

[52] Specification of the TTP/C Protocol. TTTech Computertechnik AG.
[Online]www.tttech.com

[53] H. Kopetz, M. Holzmann, and W. Elmenreich, “A universal smart
transducer interface: TTP/A,” inProc. 3rd IEEE Int. Symp. Object-
Oriented Real-Time Distributed Comput., 2000, pp. 16–23.

[54] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,”ACM Comput. Surveys, vol. 22, no.
4, pp. 299–319, 1990.

[55] G. Bauer and H. Kopetz, “Transparent redundancy in the time-trig-
gered architecture,” inProc. Int. Conf. Dependable Syst. Networks,
2000, pp. 5–13.

[56] H. Pfeifer, D. Schwier, and F. von Henke, “Formal verification
for time-triggered clock synchronization,” inProc. 7th IFIP Int.
Working Conf. Dependable Comput. Crit. Applicat., 1999, pp.
207–226.

[57] H. Pfeifer, “Formal verification of the TTP group membership
algorithm,” inProc. IFIP TC6/WG6.1 Int. Conf. Formal Description
Techniques Distributed Syst. Communication Protocols (FORTE
XIII) Protocol Specification, Testing and Verification (PSTV XX),
FORTE/PSTV 2000, 2000, pp. 3–18.

[58] D. Schwier and F. von Henke, “Mechanical verification of clock
synchronization algorithms,” inLecture Notes in Computer Science,
Formal Techniques in Real-Time and Fault-Tolerant Systems, A.
Ravn and H. Rischel, Eds., 1998, vol. 1486.

[59] J. Lundelius and N. Lynch, “An upper and lower bound for
clock synchronization,”Inform. Contr., vol. 62, no. 2/3, pp.
190–204, 1984.

[60] J. Rushby and F. von Henke, “Formal Verification of the Interactive
Convergence Clock Synchronization Algorithm,” SRI International,
Computer Science Laboratory, SRI-CSL-89-3R, 1989.

[61] G. Bauer and M. Paulitsch, “An investigation of membership and
clique avoidance in TTP/C,” inProc. 19th IEEE Symp. Reliable Dis-
tributed Syst., 2000, pp. 118–124.

[62] W. Schütz, The Testability of Distributed Real-Time Sys-
tems. Norwell, MA: Kluwer, 1993.

KOPETZ AND BAUER: THE TIME-TRIGGERED ARCHITECTURE 125

[63] E. Lee, “Embedded Software—An Agenda for Research,” Univ.
California, Berkeley, CA, UCB/ERL no. M99/63, 1999.

[64] , “What’s ahead for embedded software?,”IEEE Computer,
vol. 33, pp. 18–26, July 2000.

Hermann Kopetz (Fellow, IEEE) received
the Ph.D. degree in physics “sub auspiciis
praesidentis” from the University of Vienna,
Vienna, Austria, in 1968.

He was Manager of the Computer Process
Control Department at Voest Alpine, Linz,
Austria, and Professor of Computer Process
Control, Technical University of Berlin, Berlin,
Germany. He is currently Professor of Real-Time
Systems, Vienna University of Technology,
Vienna, Austria, and a Visiting Professor at the

University of California, Irvine, and the University of California, Santa
Barbara. In 1993, he was offered a position as Director of the Max Planck
Institute, Saarbrücken, Germany.

Günther Bauer received the Dipl. degree in elec-
trical engineering and the Ph.D. degree in com-
puter science from the Vienna University of Tech-
nology, Vienna, Austria.

He is currently Technical Coordinator of a
European Union–funded Information Society
Technologies research project in the Real-Time
Systems Group at the Vienna University of
Technology. His research interests include
fault-isolation, fault-handling, and fault-tol-
erance aspects of distributed hard real-time

systems. His current research work focuses on the design, implementation,
and validation of a central guardian for the TTA.

126 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

