
SHARPE: SYMBOLIC HIERARCHICAL AUTOMATED
RELIABILITY AND PERFORMANCE EVALUATOR

Introduction and Guide for Users

Robin A. Sahner Kishor S. Trivedi
308 W. Delaware 1713 Tisdale St.
Urbana, IL 61801, USA Durham, NC 27705, USA

February 1992

Chapter 1

Introduction

SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) is a software tool that
analyzes stochastic models. It was developed for three groups of users: practicing engineers [20, 23], researchers
in performance and reliability modeling [26] and students in engineering/science courses [46].

When a computer system design is even moderately complex, it is hard to predict the performance and
reliability characteristics of the resulting system. Usually, it is too expensive and time-consuming to build even
one system to take measurements. Even when that is not the case, it has been argued [21] that measurements
guided by a system model result in a more e�ective design methodology. If the model is a good abstraction of
the system, the analyst can quickly carry out trade-o� studies, answer \what if" questions, perform sensitivity
analysis and compare design alternatives. A tool for easily specifying and quickly solving stochastic models can
be a useful aid in the repertoire of a system designer [20].

Researchers in computer architecture and fault-tolerant computing often wish to evaluate their design ideas
before committing to a prototype or an expensive simulation. Likewise, researchers interested in various approx-
imations involving decomposition, state truncation, etc., need a tool to carry out experiments. SHARPE has
been used by various researchers for this purpose [23, 26, 34, 51].

Computer software can be a very useful aid in the teaching of mathematics, computer science and engineering.
This includes involving students in both writing and using software that illustrates the subject matter. As
examples, we cite the extensive use of Mathematica 1 in all kinds of diverse courses and an increasing use of
software in the teaching of calculus [49, 42, 17]. SHARPE is being used by many universities for the teaching of
fault-tolerant computing, performance evaluation, reliability engineering and applied probability.

The most common type of stochastic model used in practice is discrete-event simulation, because fairly
detailed system behavior can be captured in such models. But since running simulations can sometimes be very
time-consuming, it is useful for system designers to use analytic models instead of or in addition to simulation
models. Due to recent developments in model generation, model hierarchies and solution techniques and their
implementation in tools such as SHARPE, large and realistic models can be developed and studied.

Dependability, performance, and performability modeling techniques provide a useful method for under-
standing the dynamic behavior of a computer or communication system. To be useful, the models should reect
important system characteristics such as fault-tolerance, automatic recon�guration, and repair; contention for
resources; concurrency and synchronization; deadlines imposed on the tasks; and graceful degradation. Further-
more, complexity of current-day systems and corresponding system models should be explicitly addressed.

Reliability, availability, safety, and related measures are collectively known as dependability. Dependability
evaluation encompasses fault-tolerance, recon�guration, and repair aspects of system behavior. Reliability block
diagrams, fault trees, and reliability graphs are commonly used to study the dependability of systems [47].
Although these models are concise and have e�cient solution methods, they cannot represent dependencies
among components [46] as easily as Markov models can [12, 18].

Traditional performance evaluation is concerned with contention for system resources. Performance evalua-
tion of parallel and distributed systems also address concurrency and synchronization of tasks. Real-time system
performance evaluation takes into account various hard and soft deadlines on task exection times. Task prece-
dence graphs [29, 45] can be used to model the performance of concurrent programs with unlimited resources.

1
Mathematica is a trademark of Wolfram Reserch Inc.

1

Product form queueing networks [32, 33, 53], on the other hand, can represent contention for resources. However
they cannot model concurrency within a job, synchronization, or server failures, since these violate the product
form assumptions. Markov models, on the other hand, allow all these characteristics to be modeled.

Thus, performance analysis assumes a fault-free system while reliability and availability analysis is carried
out to study system behavior in the presence of component faults, disregarding di�erent performance levels
in di�erent con�gurations. Several di�erent types of interactions and corresponding tradeo�s have prompted
researchers to consider combined evaluation of performance and reliability/availability [36, 55]. Most work on
the combined evaluation is based on the extension of Markov chains to Markov reward models [22], where a
reward is attached to each state of the Markov process.

Markov reward models have the potential to reect concurrency, contention, fault-tolerance, and degradable
performance; they can be used to obtain not only program/system performance and system reliability/availability
measures, but also combined measures of performance and reliability/availability [5, 10, 36, 55].

Models like fault trees, reliability block diagrams, and reliability graphs, used for dependability analysis, and
product-form queueing networks and series-parallel graphs, used for performance analysis, are \non-state-space"
models. That is, model construction and analysis do not require generation of a \state space", an enumeration
of the possibilities of what can happen to the system. However, certain kinds of real-life system structures
and dependencies violate the assumptions made by these models. State-space methods (such as those based on
Markov and semi-Markov models) can capture system dependencies. They are very widely applicable, but the
possibly large size of the state space can be a problem both during model generation and model analysis.

Generalized Stochastic Petri nets (GSPNs) can be used to generate a (large) underlying Markov model
automatically starting from a concise description. Nevertheless, the combinatorial growth of their state space
(reachability graph) constitutes a major limitation to applicability of GSPN models in real-life problems. A
SHARPE user can exploit model hierarchies to compose an overall model solution from individual model results,
thus avoiding a large overall state space. We emphasize that hierachy is used in SHARPE not just for model
speci�cation but for model solution as well.

Each kind of analytic model is well suited for some particular set of applications, but every model type also
has limitations. Because of this tradeo� between ease of solution and ability to capture system details, the
mathematical modeler needs a \toolchest" of various model types that can be chosen from freely and combined
with each other, as each particular problem dictates. SHARPE is such a toolchest.

SHARPE allows its users to construct and analyze performance, reliability, availability, and performability
models. Users can set up and solve a variety of model types, compare results for di�erent models of the same
system, see how altering system parameters a�ects measures of e�ectiveness of the system, and experiment with
modeling techniques, including the use of exact and approximate system or model decomposition. SHARPE can
also be used to illustrate problems of large state spaces and sti� systems and to provide examples of methods
for avoiding these problems.

In this guide, we will use a series of examples to show how such a toolchest could be used to investigate
the characteristics and design tradeo�s. We will also show how we can set up multiple models for the same
underlying system. This is a good validity check for both the construction and analysis of the models.

1.1 Overview of SHARPE

SHARPE provides a speci�cation language and analysis algorithms for the following model types:

� reliability block diagrams

� fault trees

� reliability graphs

� series-parallel acyclic directed graphs

� product-form queueing networks

� Markov and semi-Markov chains

� generalized stochastic Petri nets

2

SHARPE is a modeler's toolchest; it provides a speci�cation language for building single or hierarchical
combinations of models and for choosing algorithms for analyzing the models. The models are not, a priori,
assumed to be an abstraction of any particular real-world system. To SHARPE, a Markov chain is just a Markov
chain, not a model of (for example) a fault-tolerant system where some faults can be repaired and some cannot.
The advantage of this is that a user of SHARPE is free to use any of the supported model types in any valid
combination. However, this means that it is up to the user to choose models that are an accurate abstraction of
the problem under investigation and to interpret the results in a meaningful way for that particular problem.

SHARPE allows the results of the analysis of each model type it provides to be used in the parameterization
of the other model types, subject only to validity checks on the parameters. Information carried between models
can be either numbers (such as steady-state probabilities, average numbers of tokens in a Petri net's place, or the
probability of failure by a time t) or symbolic functions in time t (such as the cumulative distribution function
for the time to failure of a system).

The SHARPE models are allowed to be hierarchical in the sense that output from one submodel can be used
as input to another. That is, the parameters for a model component can be expressions involving values or
functions obtained by the analysis of another model. There are no restrictions on the ways in which models can
be combined. Users can choose and and mix model types freely.

SHARPE is written in C. It was developed on UNIX2 systems but can be compiled on any system that provides
a C compiler and the usual C math and input/output libraries. The program has two modes of operation: it
can read input from one or more �les (batch, or non-interactive mode) or read interactively from a terminal
(interactive mode).

1.2 New Features

The previous version of this guide was dated September 1986. Since that time, the following new features have
been added to SHARPE:

� the ability to include text from secondary �les (include)

� the ability to echo an input line to the output (echo)

� analysis of irreducible, phase-type and acyclic Generalized Stochastic Petri Nets (gspn)

� analysis of single-chain and multiple-chain Product Form Queueing Networks (pfqn)

� analysis of reliability graphs

� analysis of fault trees with repeated (shared) components (events)

� analysis of Markov and semi-Markov reward models (reward)

� a new built-in function for summation (sum)

� a loop mechanism for requesting results (loop)

� a new one-line form of the bind statement, for use within loops but valid everywhere

� numerical algorithms for �nding transient probabilities for Markov chains, fault trees, reliability block
diagrams, and reliability graphs (tvalue)

� more algorithm choices for phase-type and irreducible Markov chains and GSPNs

� a command to allow the user to set the value of the various error tolerance (\epsilons") used in the
algorithms (epsilon)

2UNIX is a registered trademark of AT&T.

3

1.3 Contents of this Guide

In Chapter 2, we give a brief description of each of the model types. In Chapter 3, we discuss what kind of
distribution functions SHARPE uses and how they are speci�ed. In the following chapters, we present the
SHARPE non-interactive input language through a series of examples. The examples are grouped by application
areas: reliability and availability analysis (Chapter 4), performance analysis (Chapter 5), hierarchical models
(Chapter 6) and performability analysis (Chapter 7).

In Chapter 8, we discuss algorithmic and numerical considerations. In Chapter 9, we describe the SHARPE
command line syntax. In Chapter 10, we explain how to use SHARPE interactively. Appendix A gives a
complete description of the non-interactive input language. Appendix B provides information about the class of
distribution functions used by SHARPE.

Readers interested in background material on probability theory and stochastic modeling may refer to [53].
For background on the basics of GSPN models see [1].

1.4 Some Conventions

In the examples we provide, we will often show input and output �les with line numbers at the beginning of each
line. Actual SHARPE input and output �les do not (and can not) contain line numbers; we have included the
numbers in the �gures so that we can refer to particular lines more easily.

In the text of this guide (but not in actual SHARPE input �les), keywords will appear in boldface. SHARPE
is lenient about the placement of words and separators within each line but is very strict about requiring
that \statements" appear one per line. This line-at-a-time requirement is softened by the fact that SHARPE
recognizes the Unix line-continuation character, backslash (` n '). Any time a line ends in a backslash, the line
and its successor are viewed by SHARPE as a single line.

4

Chapter 2

Model Types

In this chapter, we will introduce the SHARPE model types by means of a running example. First, we will
review some terminology. Then we will summarize the model types and introduce the running example. After
that, each remaining section will introduce one of the model types.

2.0.1 Some Terminology

When we talk about system \reliability", we mean the probability of system failure. Reliability analysis might
yield a number giving the probability that a system has failed during some given time interval, or it might yield
a function F(t) whose value at t is the probability that the system has failed by time t.

If we introduce the possibility that a failed component in a system can be repaired, we are doing \availability"
analysis; we are measuring the likelihood that a repairable system is operating at a particular time. Again, we
might be seeking a number or an availability function.

The word \dependability" is used to mean \reliability" or \availability", safety, and so on [31].
When we model performance, we are generally interested in things like job completion time or system through-

put. We can combine performance and \dependability" analysis by measuring performance of a system that can
experience failures and possibly repair. This combined analysis is called \performability".

By a \state-space" model, we mean one where formulation of the model involves enumerating all the possible
states of each component. Non-state-space models are sometimes called combinatorialmodels. These can describe
systems concisely and have relatively e�cient solution algorithms. However, the assumptions required for their
solution are often not acceptable in practice. There is a tradeo� between ease of model construction and analysis
on the one hand and ability to model more complex relationships between components on the other.

2.0.2 Summary of Model Types

The model types provided by SHARPE are as follows:

� reliability block diagram

Used for: dependability analysis
State-space? no

� fault tree

Used for: dependability analysis
State-space? no

� reliability graph

Used for: dependability analysis
State-space? no

� series-parallel directed acyclic graph

Used for: performance analysis
State-space? no

5

� product-form queueing network

Used for: performance analysis
State-space? no

This model type is well-suited for capturing the a�ects of resource contention.

� homogeneous continuous time Markov chain

Used for: dependability and performability analysis
State-space? yes

SHARPE supports acyclic, irreducible and phase-type Markov chains. SHARPE also supports Markov
reward models for performability analysis; in these models, a reward rate is associated with some or all of
the states.

� semi-Markov chain

Used for: dependability and performability analysis
State-space? yes

SHARPE supports acyclic and irreducible semi-Markov chains.

� generalized stochastic Petri net

Used for: dependability and performability analysis
State-space? yes

A GSPN is non state-space in its speci�cation, but must be converted into a state-space model (a Markov
chain) for solution.

The GSPN model type is provided in SHARPE to concisely specify large Markov models [1]. This is the only
model type in SHARPE that is internally converted into another model type for solution. All the other model
types are solved by the most appropriate algorithms for the model type without internal conversion.

2.0.3 An Example System

For our running example, we consider a a fault-tolerant, multi-processor computer with multiple memory mod-
ules. The system is able to detect a processor or memory module failure and recon�gure itself to continue
operation without the failed component. We will consider two system designs:

1. all memory modules are shared by both processors.

2. some memory modules are shared and some are private to each processor. Access to private memory is
faster than to shared memory.

In the remainder of this chapter, we will show how the various kinds of models SHARPE supports can be
used to look at these two designs and evaluate design decisions and tradeo�s. We will present the following
examples:

block diagram analyze system reliability for �rst design
fault tree analyze system reliability for second design
reliability graph validation of fault tree model
series-parallel graph analyze response time for one concurrent program (both designs)
queueing network analyze system throughput (both designs)
Markov chain analyze system availability and performability (both designs)
Petri net validate and generalize the Markov chain model

6

proc mem

mem

mem
proc

Figure 2.1: A series-parallel reliability block diagram model.

2.1 Series-Parallel Reliability Block Diagram

The SHARPE series-parallel reliability block diagram is a non-state-space model specialized for system depend-
ability analysis. It is the usual block diagram representation of a system in which components are combined
into blocks in series (all must operate for the block to operate), in parallel (one or more of the components must
work for the block to operate) or in a \k-out-of-n" con�guration. All of these constructs can be used together in
a single block diagram.

The system structure is speci�ed by giving a bottom-up description of series, parallel and \k-out-of-n" (k or
more components must be up) combinations of components. Components of the same type that appear more
than once in the system structure are assumed to be copies with independent, identical distribution functions.

Each basic component type i is assigned a number or function, usually one of the following:

� a probability Qi, being the failure probability of the component, either time-independent or the failure
probability by some particular time (the same for all components). SHARPE computes the system failure
probability.

� a function Fi(t), being the cumulative distribution function for the failure probability of the component.
Fi(t) is the probability that component i has failed by time t. SHARPE can compute the system failure
distribution function and the mean and variance of the function. It can be asked to evaluate the function
at particular values of t.

� a probability Ui, being the instantaneous or steady-state \unavailability" for the component. The assump-
tion here is that there are enough independent repair facilities to repair each component that has failed;
Ui is the probability that component i is not functioning. SHARPE computes the system unavailability.

� an unavailability function Ui(t) where Ui(t) is the instantaneous probability that component i is not func-
tioning at time t. SHARPE computes the system unavailability function.

2.1.1 Probabilities Assigned to Components

We can use the reliability block diagram in Figure 2.1 to model the �rst design of our running example. This
is the design where all memory modules are shared. Figure 2.1 shows the case where we have two processors
and three memory modules. Suppose we are interested in �nding out how system reliability is a�ected by the
minimum number of memory modules required to continue operation.

The line numbers in Figure 2.2 are for reference only. On line 1, the keyword block tells SHARPE what
kind of model this is. We give the model a name, arch1, by which we can refer to the model later, and a set
of parameters. k is the number of memory modules required for the system to operate, n is the total number
of memory modules, pfail is the processor failure probability and mfail is the memory failure probability. On
lines 2 and 3, we de�ne the component names and assign to each a probability value. The builtin function prob
takes one argument, the probability that the component has failed by some implicit, unspeci�ed time. On lines
4 through 6, we specify the structure of the block diagram, bottom up.

On lines 9 through 11, we ask for the system to be analyzed. The keyword expr on line 10 tells SHARPE that
the rest of the line contains an arithmetic expression to be evaluated. The SHARPE builtin function sysprob
used on line 10 provides a system failure probability (or availability) value for systems whose components were
assigned probability (or availability) values. The �rst parameter to sysprob is the model name arch1, followed
by the number of memory modules needed for operation k, the total number of memory modules (3), and the
component failure probabilities: 0.0138 for a processor and 0.00692 for a memory module for an implicit time of

7

1 block arch1(k,n,pfail,mfail)
2 comp proc prob(pfail)
3 comp mem prob(mfail)
4 parallel procs proc proc
5 kofn mems k,n,mem
6 series top procs mems
7 end
8
9 loop k,1,3,1
10 expr 1 - sysprob(arch1;k,3,.0138,.00692)
11 end
12 end

Figure 2.2: SHARPE Input for Block Diagram

k=1.000000
1 - sysprob(arch1;k,3,.0138,.00692): 9.9981e-01

k=2.000000
1 - sysprob(arch1;k,3,.0138,.00692): 9.9967e-01

k=3.000000
1 - sysprob(arch1;k,3,.0138,.00692): 9.7920e-01

Figure 2.3: Output for Block Diagram

1 block arch1(k,n,pfrate,mfrate) 11 func rel(t,k,n,pf,mf) n
2 comp proc exp(pfrate) 12 1 - value(t;arch1;k,n,pf,mf)
3 comp mem exp(mfrate) 13
4 parallel procs proc proc 14 loop k,1,3,1
5 kofn mems k,n,mem 15 expr mean(arch1;k,3,.00139,.00764)
6 series top procs mems 16 expr rel(10,k,3,.00139,.00764)
7 end 17 expr rel(365,k,3,.00139,.00764)
8 18 end
9 cdf (arch1;1,3,.00139,.00764) 19 end
10

Figure 2.4: Input for Block Diagram with Distribution Functions

t = 10 days. there are three memory modules, The variable k is to vary from 1 to 3, as indicated by the loop
statement on line 9.

The results are shown in Figure 2.3.
If the system needs only one memory module to operate, chances are 99.8% that the system will still be up

after 10 days. If two memory modules are needed, reliability is 99.7%, almost as good. But if all three memory
modules are needed, reliability is down to 97.9%. It looks like it might be worth the e�ort to design the operating
system so it can work with only two memory modules, but further e�ort to make it work with only one memory
module probably isn't worth it.

2.1.2 Cumulative Distribution Functions Assigned to Components

Figure 2.4 shows a speci�cation and request for analysis for the more general case where each component is
assigned a distribution function rather than a probability value. It assigns the exponential distribution Fp(t) =
1 � e�0:00139t to processors and Fm(t) = 1 � e�0:00764t to memories. We note that Fp(10) = 0:0138 and
Fm(10) = 0:00692, the same as the probability values assigned in Figure 2.2.

Instead of using the function prob to specify the component failure characteristics, we have used the builtin
function exp on lines 2 and 3. exp assigns to the component the exponential distribution with one parameter,
the failure rate.

On line 9, we use the keyword cdf to ask SHARPE to print the Cumulative Distribution Function for the
system time to failure. SHARPE computes this function symbolically in the time variable t. Having the function
available rather than just probability values at particular times is very valuable in modeling practice.

On lines 11 and 12, we have used the SHARPE keyword func to de�ne our own function, rel, to be one minus
the probability of failure. This makes it easier for us to look at results in terms of reliability (probabilities of
being operational) rather than probabilities of failure. The parameters to rel are time t followed by the model
parameters. The backslash character, \n", is used in SHARPE to mean line continuation.

We have used the loop construct to vary k between 1 and 3 and ask for the mean time to failure, the reliability
at 10 days, and the reliability at 365 days. The results are shown in Figure 2.5.

8

k=1.000000
CDF for system arch1: mean(arch1;k,3,.00139,.00764): 9.4629 e+02

rel(10,k,3,.00139,.00764): 9.9981e-01
1.0000e+00 t(0) exp(0.0000e+00 t) rel(365,k,3,.00139,.00764) : 8.3241e-01

+ -6.0000e+00 t(0) exp(-2.0833e-03 t)
+ 6.0000e+00 t(0) exp(-2.7778e-03 t) k=2.000000
+ 1.0000e+00 t(0) exp(-3.4722e-03 t) mean(arch1;k,3,.00139,.007 64): 6.9943e+02
+ -3.0000e+00 t(0) exp(-4.1667e-03 t) rel(10,k,3,.00139,.00764): 9.9967e-01
+ 1.0000e+00 t(0) exp(-4.8611e-03 t) rel(365,k,3,.00139,.00764) : 7.3415e-01

mean: 9.4629e+02 k=3.000000
@ variance: 4.0922e+05 mean(arch1;k,3,.00139,.00764): 3.7029e+02

rel(10,k,3,.00139,.00764): 9. 7920e-01
rel(365,k,3,.00139,.00764): 3 .9355e-01

Figure 2.5: Output for Block Diagram with Distribution Functions

The system failure-time distribution is Fsys(t) = 1�6e�0:0021t+6e�0:0028t+ e�0:0035t�3e�0:0042t+ e�0:0049t.
The reliability at 10 days is, as we expect, exactly the same as we found using the model in Figure 2.2 (with
probability values). The mean failure times are 370 days when three memory modules are needed to run, 700
days when two are needed and 946 when only one is needed. It can be educational to use the reliability numbers
to show that the mean of a distribution doesn't always give us all the important information we need to know.
Suppose we consider it important that our system be able to stay up for a year at a time. We might be satis�ed
with a mean system failure time of 370 days (more than a year) until we look at the probability that the system
is still up after a year. It is only 0.39.

2.1.3 Instantaneous Unavailability Functions Assigned To Components

When a block diagram is used to model availability, it is assumed that there enough repair resources to repair all
components at the same time, if necessary. We would assign to each component an instantaneous unavailability
function or a steady-state unavailability.

If the ith component has exponentially distributed failure behavior with rate �i and repair is also exponentially
distributed with rate �i, the component's instantaneous unavailability is

Ui(t) =
�i

�i + �i
�

�i
�i + �i

e�(�i+�i)t (2:1)

and the steady-state unavailability is given by

lim
t!1

Ui(t) =
�i

�i + �i

These expressions can be derived by solving the two-state (up/down) Markov chain for a component.
If we assign to each component in the block diagram in Figure 2.1 a function of the form of Equation 2.1,

when SHARPE analyses the system the results will be a function giving the instantaneous unavailability Usys(t)
for the system. The probabilistic \mass at in�nity" (1 � limt!1 Usys(t)) of the result will be the steady-state
system availability. A SHARPE input �le doing just this is shown in Figure 2.6.

On lines 8 through 10, we use the keyword poly to de�ne our own function (that in equation 2.1) which we
will later (lines 14 and 15) assign to the block diagram's basic components. We give the function a name U,
parameters lambda and mu, and use the keyword gen to tell SHARPE we are going to specify an exponential
polynomial, term by term, with each term atkebt given by the comma-separated three-tuple a; k; b. The built-in
function pinf used on line 22 computes the probabilistic \mass at in�nity" of its arguments.

The results from this input �le are as follows:

k=1.000000

9

1 bind 13 block arch1(k,n)
2 lambdap 1/720 14 comp proc U(lambdap,mup)
3 lambdam 1/(2*720) 15 comp mem U(lambdam,mum)
4 mup 1/4 16 parallel procs proc proc
5 mum 1/2 17 kofn mems k,n,mem
6 end 18 series top procs mems
7 19 end
8 poly U(lambda, mu) gen n 20
9 lambda/(lambda + mu), 0, 0 n 21 loop k,1,3,1
10 -lambda/(lambda + mu), 0, -(lambda + mu) 22 expr 1 - pinf(arch1;k,3)
11 23 end
12 24 end

Figure 2.6: SHARPE Input for Availability Block Diagram

1 - pinf(arch1;k,3): 3.0527e-05

k=2.000000

1 - pinf(arch1;k,3): 3.6290e-05

k=3.000000

1 - pinf(arch1;k,3): 4.1855e-03

We will refer back to these results in section 2.6.3, where we use Markov models to investigate less restrictive
repair behavior.

Further examples of the use of block diagrams are given in sections 4.1 through 4.3, 6.1 and 6.2.

2.2 Fault Trees

Like the block diagram model, the fault tree model is specialized for dependability analysis. The fault tree model
allows \and" gates (all inputs must fail for the gate to fail), \or" gates (any input failure causes the gate to fail),
and \k-out-of-n" gates (k or more input failures cause the gate to fail). Overall inputs of the tree are known as
basic events and there is a single output called the top event representing system failure event.

Each gate is de�ned by giving its type and identifying its inputs. The user speci�es whether appearance of
a event more than once in the structure is meant to be taken as the existence of a single event or as copies of a
event with i.i.d. (identical, independently distributed) occurrence-time distributions.

Fault tree components are assigned probabilities or functions of the same type as those used for block dia-
grams. SHARPE can compute the failure-time distribution for the topmost gate, the mean and variance of the
distribution, and the transient failure probability for any particular time.

Continuing with our running example, we consider the second design, the one where each processor has
private memory modules and there are slower, shared memory modules. We will assume that the system will
operate as long as there is at least one operational processer with access to either a private or shared memory.
We cannot model this system with a block diagram, because it gives us no way to represent the way shared
memories are connected to all processors and private memories to particular processors. So, we turn to a fault
tree model, shown for two processors and three memory modules in Figure 2.7.

Figure 2.8 shows the model speci�cation.
To specify fault trees, we �rst de�ne basic component names and assign failure distributions to them (lines

2 through 6). The keyword repeat on line 6 is used to indicate that when M3 appears more than once as
an input to di�erent gates, it is a single component whose name appears twice (in the language of fault trees,
the corresponding event is said to be shared or repeated). The other possibility would be for M3 to represent
identically distributed copies of a component. On lines 7 through 11, we construct the fault tree out of and
and or gates. The �rst word after each such gate is the name we assign to it, and the rest of the words are
the inputs, which can be either basic components or the names of other gates. On lines 14 through 17, we use

10

Failure

P1 P2

M1 M3 M2 M3

Figure 2.7: Fault Tree

1 ftree t-proc-mem
2 basic p1 exp(1/Ptime)
3 basic p2 exp(1/Ptime)
4 basic m1 exp(1/Mtime)
5 basic m2 exp(1/Mtime)
6 repeat m3 exp(1/Mtime)
7 and mems1 m1 m3
8 and mems2 m2 m3
9 or pm1 p1 mems1
10 or pm2 p2 mems2
11 and top pm1 pm2
12 end
13
14 bind
15 Ptime 720
16 Mtime 2*720
17 end
18
19 cdf(t-proc-mem)
20 pqcdf(t-proc-mem)
21 end

Figure 2.8: SHARPE Input for Fault Tree Model

CDF for system t-proc-mem:

1.0000e+00 t(0) exp(0.0000e+00 t)
+ -4.0000e+00 t(0) exp(-2.0833e-03 t)
+ 2.0000e+00 t(0) exp(-2.7778e-03 t)
+ 1.0000e+00 t(0) exp(-3.4722e-03 t)
+ 1.0000e+00 t(0) exp(-4.1667e-03 t)
+ -1.0000e+00 t(0) exp(-4.8611e-03 t)

mean: 8.7771e+02
variance: 3.5797e+05

CDF for system t-proc-mem:

[Q(p1) �Q(p2)]+
[Q(p1) � P(p2) � Q(m2) �Q(m3)]+
[P(p1) �Q(p2) � Q(m1) �Q(m3)]+
[P(p2) �Q(m1) �Q(m2) �Q(m3) � (1�Q(p1))]

Figure 2.9: SHARPE Output for Fault Tree Model

11

src share sink

1

2

P1

P2

M1

M2

M3

I2

I1

Figure 2.10: Reliability Graph

bind to assign values to the variables Ptime and Mtime. On line 19, the keyword cdf asks for the distribution
function for the time-to-failure for the system symbolically in time t. The keyword pqcdf on line 20 asks for
the distribution function in terms of the functions assigned to the individual components. (The name pqcdf
comes from the fact that the distribution is printed in terms of the probabilities of failure (often denoted \p")
and non-failure (often denoted \q" where q=1-p) of the individual components.) This form of the distribution
can be helpful for students to check their understanding of algorithms for analyzing fault trees.

Figure 2.9 shows the results. The mean-time-to-failure is a bit worse (877) days than for the design with all
shared memories, about a 7 percent di�erence. It is useful to have a student of modeling think about whether this
result makes sense. It does, because in the system where all memories are shared, the system can operate with
only one memory module no matter which particular one is the survivor. In the system with private memories,
if the single survivor is a private memory attached to a processor that is not operational, the system cannot
operate. However, the system may have better performance if the private memories provide faster access time.
In section 2.6.2, we will explain how to use \reward rates" to help evaluate the performance-reliability tradeo�.

The pqcdf form of the system mean-time-to-failure can be interpreted term by term: the �rst represents the
case that both processors have failed, the second and third the case that exactly one processor is up, but both
the shared memory and its private memory have failed, and the fourth the case that both processors are up, but
all memory modules have failed.

Experiments with SHARPE can help illustrate the di�erence between independently, identically distributed
copies of a component and a component that is physically shared. We recall that the event M3 is shared by
two gates in the fault tree of Figure 2.7 and that the interpretation we have put on this duplication is that there
is one physical component whose failure can a�ect both of two subsystems. It is also possible to interpret the
duplication as the presence of two physically di�erent components with the same (but statistically independent)
time-to-failure distributions. It would be easy to make a mistake when using a modeling program and have the
program take the opposite interpretation than the one we wanted. (In the case of SHARPE, this would happen
if we had used the word basic instead of repeat on the line 6 in Figure 2.8.) If we had made that mistake, we
would have found a mean time to failure of 882 days instead of 877.

One way to help detect this kind of speci�cation error is to validate the model before using its results.
With the help of SHARPE, we can validate the fault tree model by constructing and analyzing a di�erent, but
equivalent, model: the reliability graph to be discussed in the next section.

Further examples of use of fault trees are given in sections 4.5 through 4.7, 6.11 and 6.12.

2.3 Reliability Graphs

The reliability graph model consists of a set of nodes and edges, where the edges represent components that
may fail. The graph contains one node, the \source", with no incoming edges and one node, the \sink" with no
outgoing edges. A system represented by a reliability graph fails when there is no path from source to sink.

The edges can be assigned failure or unavailability values or functions, the same as is done for fault trees and
reliability block diagrams.

Referring back to our running example, we can validate the fault tree of Figure 2.7 with the reliability graph
shown in Figure 4.4.

In this particular model, processor failures happen along the edges labeled P1 and P2 and memory failures

12

1 * reliability graph for 14 bind
2 * 2-processor, 15 Ptime 720
3 * 3-memory system 16 Mtime 2*720
4 17 end
5 relgraph rel-proc-mem 18
6 src P1 exp(1/Ptime) 19 cdf(rel-proc-mem)
7 src P2 exp(1/Ptime) 20
8 P1 sink exp(1/Mtime) 21 end
9 P2 sink exp(1/Mtime) 22
10 P1 share inf 23
11 P2 share inf 24
12 share sink exp(1/Mtime) 25
13 end 26

Figure 2.11: SHARPE Input for Reliability Graph

happen along the edges M1, M2 and M3. The edges I1 and I2 do not represent system components; they
represent the structural nature of the system (that M3 is shared). SHARPE gives us a way of saying that edges
I1 and I2 cannot fail; we assign the \in�nite" distribution, de�ned by I(t) = 0, to them. There is a path from
source to sink if P1 and M1 are up or if P1 and M3 are up, and similarly for paths involving P2.

Figure 2.11 shows the SHARPE input �le for the reliability graph. Lines starting with *" are comments,
ignored by SHARPE. We specify each edge in the graph (on lines 6 through 12) by giving two vertex names
followed by a distribution function. The distribution inf (for the edges I1 and I2 on lines 10 and 11) is built into
SHARPE.

The failure-time distribution function computed in response to the keyword cdf on line 19 will be the same
as that computed for the fault tree in the previous section.

For more examples of reliability graph models, see section 6.2.

2.4 Series-Parallel Graphs

The series-parallel graph model consists of a series-parallel directed acyclic graph, with the nodes of the graph
representing activities and the edges representing a precedence relation imposed on the activities. All activities
are assumed to be statistically independent, and there is no restriction on the degree of concurrency of activities.

2.4.1 A Graph Example

Before giving a detailed description of this model type, let us consider our example system again. So far we have
been looking at system reliability. Now suppose we would like to investigate system performance. We consider
the running time of a program that has components that can be executed in parallel. The task graph labeled a
in Figure 2.12 models a very simple parallel program. It starts with an initialization section (A), then performs
a long calculation in two parts, which may be done in parallel (B and C), then ends with some �nal processing
(D). Program sections B, C and D require access to memory. The pro�le of the memory accesses depends on
whether there are private memory modules and which memory modules are operational.

For a system with all shared memory, all memory accesses are obviously to shared memory. If the system has
private memory modules, sections B and C use private memory during their calculations, then deposit results in
shared memory for use by section D, which also accesses shared memory.

Graph b in Figure 2.12 represents the execution of the program in a system having all shared memories. We
have added tasks smB, smC and smD to represent the memory accesses.

Graph c in Figure 2.12 represents the execution of the program in a system having the second design, with
two private memory modules. In this case, there are two memory-access tasks for each of the two parallel parts
of the program, the �rst to private memory and the second to shared (to deposit results). (We will explain the
meaning of the bold circle in section 2.6.2).

13

pA

pD

D

pA

pD

smD
smD

(c)(b)(a)

B C

A
pB

smB

pC

smC

pB

mB

smB

pC

mC

smC

Figure 2.12: Graph Models

Figure 2.13 shows how the graph in Figure 2.12(b) would be speci�ed for SHARPE. On line 1, we specify the
model type (graph) and give it a name (parallel-1) and parameters which are the service rates for tasks smB,
smC and smD. We chose to parameterize the service rates for these particular tasks because we plan to use these
models again in section 2.6.2, where we will want to vary the rates for these tasks.

On lines 2 through 8 we specify the precedence restrictions on the tasks. On line 11, we use the keywords exit
and max to indicate that the two subgraphs that follow pA, the �rst consisting of pB followed by smB and the
second consisting of pC followed by smC, must both �nish before task pD can begin. SHARPE also allows exit
types min, meaning that a set of subgraphs is �nished when the �rst subgraph is �nished, kofn, meaning the
set is �nished when k out of n subgraphs are �nished, and prob, meaning that only one of the set of subgraphs
is chosen to be executed.

On lines 11 through 17, we assign to each task a cumulative distribution function for the time it takes the
task to be completed. In this case we have used the exponential distribution; more general distributions are
allowed. On lines 20 through 27, we assign values to the variables used. On lines 29 and 30, we assign to the
variable G32 the average rate at which the system can �nish jobs like this, working one at a time (this is the
inverse of the mean time it takes to �nish one job). On line 31, we ask to have this rate printed.

2.4.2 Description of the Graph Model

Series-parallel graphs are \well-structured". They are built by starting with single nodes and combining the single
nodes either in series or in parallel. The subgraphs obtained in that way may then be recursively combined in
series or in parallel with other activities or subgraphs. An important characteristic of this structure is that
whenever multiple edges leave a node, they lead to two or more disjoint parallel subgraphs. Once an activity
with multiple successor activities is �nished, the disjoint subgraphs that follow it proceed in parallel, with neither
having any precedence dependencies on what is happening in the other subgraph.

Figure 2.14 contains some examples that may help in understanding when a graph is series-parallel and when
it is not.

In this and many subsequent pictures of graphs, the direction of the edges is not shown explicitly; when
direction is not shown, it is assumed that all edges point downward. Graph 1 is series-parallel. Graphs 2 and
3 are not series-parallel, and any graph that contains either of these graphs as a subgraph is not series-parallel.
Graph 4 is not series-parallel because of the redundant edge from node A to node C. Graph 5 is series-parallel
and is equivalent to Graph 4 if node D represents an activity that takes no time. Graph 6 is not series-parallel
but can be written equivalently as Graph 7 if node 5 takes no time.

When a graph consists of two series subgraphs, the second subgraph begins when the �rst has �nished. If a
graph is composed of parallel subgraphs, we allow several interpretations of what it means for the graph to be
\�nished".

14

1 graph parallel-1 (mBrate,mCrate,mDrate) 20 bind
2 pA pB 21 smrate 1800
3 pA pC 22 smrateD 9600
4 pB mB 23 pArate 7200
5 mB pD 24 pBrate 60
6 pC mC 25 pCrate 50
7 mC pD 26 pDrate 3600
8 pD mD 27 end
9 end 28
10 exit pA max 29 var G32 1/mean(parallel-1; n
11 dist pA exp(pArate) 30 smrate,smrate,smrateD)
12 dist pB exp(pBrate) 31 expr G32
13 dist pC exp(pCrate) 32
14 dist pD exp(pDrate) 33 end
15 dist mB exp(mBrate)
16 dist mC exp(mCrate)
17 dist mD exp(mDrate)
18 end
19

Figure 2.13: Input for Parallel Graph Model

Graph 1 Graph 2 Graph 3

Graph 4 Graph 5 Graph 6 Graph 7

A

B

C

A

B

D

C

1

3

2

4

1

3

2

4

5

Figure 2.14: Some Graph Examples

15

1. probabilistic

Only one of the parallel subgraphs is chosen. The �nishing time is the probabilistic sum of the �nishing
times of the parallel subgraphs. Such probabilistic branching can be used to model conditional statements
in programs.

2. maximum

All of the parallel subgraphs run concurrently. The �nishing time is the time when the last subgraph
�nishes. Maximum type branching would be used to model a parallel algorithm which requires that all
subtasks �nish before the answer is known. Maximum parallelism also models the time-to-failure of a
parallel combination of components, since failure does not occur until all the components have failed.

3. minimum

All of the parallel subgraphs run concurrently. The �nishing time is the time when the �rst subgraph
�nishes. We do not care whether the remaining subgraphs run to completion or are aborted. Minimum
parallel subgraphs can model the parallel execution of a nondeterministic algorithm (several algorithms
are run simultaneously, and the �rst one to �nish provides the desired answer). Minimum parallelism
also models the time-to-failure of a series combination of components, since failure occurs when the �rst
component fails. Another application is while carrying a parallel search of a database; soon as one of
concurrent tasks �nds the required item, the overall search terminates.

4. k-out-of-n

All of the parallel subgraphs run concurrently. The �nishing time is the time when the kth subgraph
�nishes. Note that \maximum" and \minimum" are special cases of k-out-of-n. k-out-of-n parallelism can
be used to model systems containing redundant components, where a minimum number of components
must be operating.

It is important to note that the use of the words \series" and \parallel" is quite di�erent when talking about
series-parallel graphs than when talking about series-parallel reliability block diagrams. In the block diagram
world, \series" means that components are combined in such a way that all components must work in order
for their combination to work; \parallel" means that components are replicated and some minimum number of
them must work in order for their combination to work. In the graph world, \parallel" means that activities
happen concurrently. \Block-diagram-series" and \block-diagram-parallel/active spares" are both special cases
of \graph-parallel", since in these constructs all components are functioning, and the process of failure is going
on in all components at the same time. \Graph-series" means that activities happen sequentially. In the block
diagram world, sequential activities occur when there is \block-diagram-parallel" redundancy with cold spares.

Examples of the use of this model type are given in sections 5. For more examples of graph models, see
sections 5.1.1 through 5.1.5, 6.3 and 6.4.

2.5 Product-Form Queueing Networks

A queueing network is a collection of \service centers", each containing one or more servers and a queue to
hold \jobs" that require service. SHARPE supports a subset of those queueing networks having what is called
\product-form" solution [53]. It is further assumed that the network is a closed queueing network. This means
that when a job �nishes service, it moves to another service center (it cannot leave the network). The distribution
functions for the service times are exponential. The service types (order in which jobs are chosen for service,
degree of server sharing, possible use of preemption) are chosen from a set of possibilities that allow for product-
form solution; the possibilities are listed in section A.4.6 in Appendix A.

A queueing network is speci�ed by listing the service centers, the transition probabilities for jobs going from
one service center to another, the service characteristics and distributions for the service centers, and the number
of jobs in the network.

SHARPE allows \multi-chain" queueing networks, in which there are several classes, or \chains" of jobs.
Each chain of jobs has its own set of transition probabilities (from service center to service center), and the
service centers may have di�erent service time distributions (but not di�erent service types) for the di�erent
chains.

16

P1/P2

M1

M3

M2

M1

Ms

M2

P1

P2

pr =0.31

pr =0.32

pr =0.33prate=3600

smrate=1800

prate=3600

smrate=1800

pmrate=7200

prate=3600

pmrate=7200

pr =0.10

pr =0.110

pr =0.120

pr =0.67511

pr =0.67522

pr =0.2252s

pr =0.2251s

Figure 2.15: Queueing Network Models for the Two System Designs

SHARPE can compute steady-steady throughput, utilization, average response time and average queue length
for each service center. For multi-chain networks, SHARPE can compute these measures on a per-chain basis.

In the previous section, we analyzed system performance from the point of view of one job that had the
system all to itself. If we want to look at overall system performance, we can use queueing network models to
capture the e�ects of contention for the processor and memory resources in the system.

We assume the memorymodules are servers in the sense that they queue requests and perform block transfers.
To set up a realistic queueing model, we would have to take into account the proposed operating system design,
especially the scheduling aspects, and we would need some kind of expected workload characterization. For the
sake of illustration, we will use the closed queueing network models shown in Figure 2.15.

The system on the left is for the design containing two processors and three shared memory modules. We
model the two processors by a multiple-server station. That is, jobs wait in a single queue and enter whichever
server becomes free. We assume that when a job requires access to memory, we know the likelihood that it
will require each particular memory module, pri for module Mi. We also assume that a job �nishes after some
number of visits to the processor; pr0 is the probability that a job is �nished when it leaves one of the processors.
As is usual for closed queueing networks, the assumption is that each �nished job is replaced by a statistically
identical new job.

The system on the right is for the design containing two private memorymodules. For this system, we assume
that jobs are targeted to particular processors. This is reasonable, since once a job starts on a processor, we want
it to continue there where it has access to that processor's private memory. We carry out this assumption by
making the queueing network a \multiple-chain" queueing network, in this case having two \chains", or classes
of jobs. Jobs in the �rst class go from P1 to either M1 or Ms and back to P1 and jobs in the second class go
from P2 to either M2 or Ms and back to P2.

To model the systems when one memory has failed, we would remove the server M1 (and its queue) from
each of the models and adjust the probabilities pri and prij appropriately.

Figure 2.16 shows the SHARPE speci�cation for the two networks in Figure 2.15. The �rst speci�cation
(lines 14 through 31) is for the single-class queueing network (keyword pfqn), called arch1-32. The speci�cation
has three sections, each ending with the keyword end. First (lines 16 through 22) we give a series of triples,
where the �rst two elements are stations and the third is the probability that a job visits the second station after
completing service at the �rst. We do not have to give explicitly the new job path from the processor station
back to itself. The second part of the speci�cation (lines 24 through 27) assigns the service characteristics of the
stations. Station P1/P2 is a \multiple server" (ms) composed of 2 servers, each with exponential service time
distribution with para meter prate. Stations M1, M2 and M3 are \�rst-come-�rst-server" (fcfs) servers with
rate smrate. The third section (line 30) gives the number of customers (c) in the network. The word customers
preceding c is just a placeholder; in a multiple-chain queueing network it would give the name of a chain. We
de�ne the variable P32 to be the system throughput (the rate at which jobs go along the path from P1/P2 back
to P1/P2.

The second speci�cation is for the multiple-class queueing network (keywordmpfqn). The �rst section (lines
43 through 55) now has a subsection showing the shape of the network for each chain. Each subsection starts
with a line with the keyword chain and the name of the chain on it. The second section (lines 56 through 66)
again gives the service characteristics for each station. Although we have not used the feature here, it is possible

17

1 bind 39 * queueing network for 3-memory
2 c 6 40 * two-processor system, design 2
3 c1 3 41
4 c2 3 42 mpfqn arch2-11111
5 p0 .1 43 chain 1
6 prate 3600 44 P1 M1 .75*(1-p0)
7 pmrate 7200 45 P1 Ms .25*(1-p0)
8 smrate 1800 46 M1 P1 1
9 end 47 Ms P1 1
10 48 end
11 * queueing network for 3-memory 49 chain 2
12 * two-processor system, design 1 50 P2 M2 .75*(1-p0)
13 51 P2 Ms .25*(1-p0)
14 pfqn arch1-32 52 M2 P2 1
15 * section 1: network shape 53 Ms P2 1
16 P1/P2 M1 (1-p0)/3 54 end
17 P1/P2 M2 (1-p0)/3 55 end
18 P1/P2 M3 (1-p0)/3 56 P1 fcfs prate
19 M1 P1/P2 1 57 end
20 M2 P1/P2 1 58 P2 fcfs prate
21 M3 P1/P2 1 59 end
22 end 60 M1 fcfs pmrate
23 * section 2: station types 61 end
24 P1/P2 ms 2,prate 62 M2 fcfs pmrate
25 M1 fcfs smrate 63 end
26 M2 fcfs smrate 64 Ms fcfs smrate
27 M3 fcfs smrate 65 end
28 end 66 end
29 * section 3: # customers 67 1 c1
30 customers c 68 2 c2
31 end 69 end
32 70
33 var P32 2*prate*util(arch1-32,P1/P2)*p0 71 var P11111 2*prate*mutil(arch2-11111,P1,1)*p0
34 72
35 73 expr P32, P11111
36 74
37 75 end
38

Figure 2.16: SHARPE Input for Queueing Models

18

to give di�erent service rates for each chain. That is why each service characteristic speci�cation ends with end.
In the third section (lines 67 and 68) we give the number of customers for each chain.

The results are P32 = 526.7 and P11111 = 596.7. As expected, the system with private memories provides
higher system throughput.

For more examples of queueing network models, see sections 5.2.1, 5.2.3 and 6.6.

2.6 Markov and Markov Reward Models

The Markov model is a �nite state, homogeneous, continuous-time Markov chain. SHARPE allows three types
of Markov chains:

1. acyclic. A chain is acyclic if every state is visited at most once (the graph of the chain contains no cycles).

2. irreducible. A chain is irreducible if every state can be reached from every other state For an irreducible
chain, a steady-state probability of being in each state exists and is independent of the initial probabilities
[53].

3. phase-type. A phase-type chain is a chain that is neither acyclic nor irreducible It has one or more
absorbing states and one or more transient states. Thus, it is guaranteed that an absorbing state will
eventually be reached.

The structure of a Markov chain is speci�ed to SHARPE by giving each possible state transition with its
associated instantaneous transition rate. Optionally, each state may be assigned a reward rate. If the chain is
not irreducible, initial state probabilities must be supplied. If the chain is irreducible, initial state probabilities
are not needed unless SHARPE will be asked to compute transient measures. For backward compatibility with
earlier versions of SHARPE, it is assumed that initial state probabilities will not be supplied unless a special
indication is given that the speci�cation will include them. See section 7.2 for an example.

SHARPE can compute the following functions and probabilities:

� distribution function for time to reach a particular absorbing state (except for irreducible chains).

� distribution function for time to reach absorption regardless of which particular absorbing state it is (except
for irreducible chains).

� transient probability function with parameter t, giving the probability of being in a particular state at time
t.

� transient probability (not a function but a numerical value) of being in a state at a particular time.

� probability of ever visiting a particular state (except for irreducible chains, for which this probability is 1
for every state).

� steady-state probability of being in a particular state (only for irreducible chains).

� distribution function for the time until a particular state transition occurs (only for acyclic chains).

� expected reward rate at a particular time.

� expected cumulative reward by a particular time.

� reward function with parameter r, giving the probability that cumulative reward at time of absorption is
less than or equal to r (except for irreducible chains).

� steady-state expected reward rate (only for irreducible chains).

19

32 22 12 02

31 21 11 01

30 20 10

3 mλ 2 mλ mλ

2 pλ 2 pλ 2 pλ
3 mλ 2 mλ mλ

pλ pλ pλ

Figure 2.17: Markov Model of Shared-memory System

To illustrate the use of Markov chain models, we return to our running example. We'll start by modeling
system reliability using an acyclic Markov chain, then extend the model in two di�erent ways, �rst to an acyclic
Markov reward model to do performability analysis, then to an irreducible Markov chain to analyze system
availability.

For examples of phase-type Markov chains, see sections 4.10, 6.4 and 6.10. For more examples of acyclic
Markov chains see sections 4.8, 4.9, 6.1 and 6.3. For more examples of irreducible Markov chains, see sections
4.11, 5.2.4, 5.2.5 and 6.11.

It is interesting to note that SHARPE can solve for steady-state measures of �nite, homogeneous, discrete-
time Markov chains. An example will be given in section ??.

2.6.1 Acyclic Markov Model Used For Reliability Analysis

We start by constructing a Markov model equivalent of the reliability block diagram in Figure 2.1. This is a
model of the system where all memory modules are shared. The acyclic Markov model is shown in Figure 2.17.
When the system is in state mp, m memory modules and p processors are working. The failure rates are �m
for a memory module and �p for a processor.

The distribution function for the time-to-absorption in this acyclic Markov chain is the time-to-failure dis-
tribution for the system. It is the same distribution function as obtained by analyzing the the block diagram
model in Figure 2.7.

To see why a block diagram is a non-state-space model and a Markov chain is a state-space model, consider
what you would have to do to modify the models in Figures 2.1 and 2.17 so that there were four memory modules
rather than three. For the block diagram model, all that is needed is to add one more memory module to the
stack of three. In fact, the SHARPE speci�cation for the model would not change at all. We would simply
analyze the model with n = 4 instead of n = 3. To add a memory module to the Markov model, we would have
to add another column to the model; we would be adding three states and �ve transitions.

We can also construct a Markov chain for the second design (one shared memory, two private memories) we
modeled before using the fault tree in Figure 2.7. In this chain (not shown), each state would be a �ve-tuple of
binary digits (p1p2 �m1m2 �ms), one for each of the processors and memories. In state 10-10-1, processor 2
and its private memory have failed. The chain has twenty states. Because this time there really was some risk
that we would make a mistake when setting up the model, making a validity check against the results of the
fault tree model from Figure 2.7 would have more than just instructional value.

This second Markov chain increases in size even faster than the �rst when we add processor or memory
components, while the fault tree would gain just one or two components (two for the case of shared memory
modules) for each new component.

It would seem that it would always be to our advantage to use the more e�cient reliability block diagram
and fault tree models. But, although it is easy to extend the block diagram to include another independent
component, we cannot extend it to include consideration of system performance (for the reliability case) or
shared repair of components (for the availability case). In the next two sections, we show how this extension is
done using Markov models.

20

2.6.2 Acyclic Markov Reward Model Used For Performability Analysis

Now we are in a position to extend the two Markov models to take performance into account. We can attach
a \reward rate" to each state, making the model a \Markov reward" model. A \reward rate" is some measure
of the \goodness" of the state, possibly a performance measure. A Markov reward model can be analyzed for
measures like expected cumulative reward by time of absorption (failure in this case) and the function R(r)
de�ned to be the probability that the cumulative reward is less than or equal to r by time of absorption. So,
we can use this model to analyze both aspects of our design tradeo�: greater reward rate for shorter time versus
smaller reward rate for more time.

As yet another validity check, we start by assigning reward rate 1 to each of the non-failure states. When we
do this, \cumulative reward by time of failure" is really the same as \accumulated time by time of failure", so
we expect (and �nd) R(r) to be the same as F (t), the failure-time distribution function.

We can compute the reward rates from performance models of the system, such as those in sections 2.4 and
2.5. It is important to choose the performance model parameters carefully, so that the time units are compatible
with the time units used for failure rates in the Markov chains.

If we use queueing models, our reward rates capture performance from a system perspective. For each of the
states in the two Markov chains of section 2.6.1, the one in Figure 2.17 and the one not shown having each state
represented by a �ve-tuple, we constructed a queueing model.

The two models in Figure 2.15 are for state 32 of the �rst Markov chain and state 11-11-1 of the second
chain.

If we use graph models to get our reward rates, the rates capture performance from the point of view of a
single parallel program. We constructed graph models for each of the states in the two Markov chains (some
could serve for more than one state). Analysis of graph b in Figure 2.12 gives us a reward rate for state 32 of
the �rst Markov chain. Analysis of graph c gives us a reward rate for state 11-11-1 in the second chain if we
use a service rate for a private memory for the task in the bold circle, and a reward rate for states 10-11-1 and
11-10-1 if we use a shared memory service rate. The following tables show the reward rates for the two designs
using the two di�erent performance models.

1st design
state reward rate, reward rate,

queueing model graph model
32 526.7 34.89
22 454.3 34.89

12 313.0 34.89
31 157.1 26.11
21 139.5 26.11

11 93.7 26.11

2nd design

P1P2-M1M2-M3 reward rate, reward rate,
queueing model graph model

11-11-1 596.7 35.28
10-11-1 177.5 26.72
11-01-1 389.8 35.04

11-11-0 338.7 26.72
10-10-1 177.5 26.72
10-11-0 178.9 26.72

10-01-1 93.8 26.11
11-00-1 313.0 34.76

Reward rates from the queueing networks are in number of job completions per hour. Reward rates from
the graph models are the inverse of the mean-time-to-completion for one program consisting of the tasks in the
graph. Again, we can't compare these reward rates directly, but we can compare the two design choices for
percentage di�erence in accumulated reward by system failure.

We show part of the SHARPE hierarchical model speci�cation in Figure 2.18. Lines 5 through 22 show the
speci�cation for the single-chain queueing network arch1-32 that models the all-shared-memory system with all

21

1 * queueing network for state 11 62 * Markov reward model for �rst architecture
2 * of �rst architecture (other 63
3 * networks not shown) 64 markov arch1(r32,r22,r12,r31,r21,r11)
4 65 32 22 3*lambdam
5 pfqn arch1-32 66 22 12 2*lambdam
6 * section 1: network shape 67 12 Fm lambdam
7 P1/P2 M1 (1-p0)/3 68 32 31 2*lambdap
8 P1/P2 M2 (1-p0)/3 69 31 Fp lambdap
9 P1/P2 M3 (1-p0)/3 70 22 21 2*lambdap
10 M1 P1/P2 1 71 21 Fp lambdap
11 M2 P1/P2 1 72 12 11 2*lambdap
12 M3 P1/P2 1 73 11 Fp lambdap
13 end 74 31 21 3*lambdam
14 * section 2: station types 75 21 11 2*lambdam
15 P1/P2 ms 2,prate 76 11 Fm lambdam
16 M1 fcfs smrate 77 reward
17 M2 fcfs smrate 78 32 r32
18 M3 fcfs smrate 79 22 r22
19 end 80 12 r12
20 * section 3: # customers 81 31 r31
21 customers c 82 21 r21
22 end 83 11 r11
23 84 end
24 * de�ne variables that give the expected 85 32 1.0
25 * job completion rate (only one shown) 86 end
26 87
27 var P11 prate*util(arch1-11,proc1)*p0/2 88 * Markov reward model for second architecture
28 89
29 * graph for state 32 of second arch 90 markov arch1(r11111, r10111, r11011, r11110,n
30 * (other graphs not shown) 91 r10101, r10110, r10011, r11001)
31 92 .
32 graph par-2 (mBrate,mCrate,mDrate) 93 .
33 pA pB 94 .
34 pA pC 95 end
35 pB mB 96
36 mB smB 97 * de�ne percentage by which performability
37 smB pD 98 * of 1st design is better than second
38 pC mC 99
39 mC smC 100 func percent(r32,r22,r12,r31,r21,r11,n
40 smC pD 101 r11111, r10111, r11011, r11110,n
41 pD mD 102 r10101, r10110, r10011, r11001) n
42 end 103 (rmean (arch1;r32,r22,r12,r31,r21,r11) - n
43 exit pA max 104 rmean(arch2;r11111, r10111, r11011, n
44 dist pA exp(pArate) 105 r11110, r10101, r10110, r10011, r11001)) / n
45 dist pB exp(pBrate) 106 rmean (arch1;r32,r22,r12,r31,r21,r11)
46 dist pC exp(pCrate) 107
47 dist pD exp(pDrate) 108 echo PERCENT IMPROVEMENT OF ARCH 1 OVER ARCH 2
48 dist mB exp(mBrate) 109 echo USING PFQNS FOR REWARDS
49 dist smB exp(smrate) 110
50 dist mC exp(mCrate) 111 expr percent(P32,P22,P12,P31,P21,P11,n
51 dist smC exp(smrate) 112 P11111, P10111, P11011, P11110,n
52 dist mD exp(mDrate) 113 P10101, P10110, P10011, P11001)
53 end 114
54 115 echo PERCENT IMPROVEMENT OF ARCH 1 OVER ARCH 2
55 * de�ne variables that give the expected 116 echo USING GRAPHS FOR REWARDS
56 * jobs per hour (only one shown) 117
57 118 expr percent(G32,G22,G12,G31,G21,G11,n
58 var G11111 n 119 G11111, G10111, G11011, G11110,n
59 1/mean(par-2;pmrate,pmrate,smrate) 120 G10101, G10110, G10011, G11001)
60 121
61 122 end

Figure 2.18: SHARPE input for Markov reward model

22

components functioning. On line 27, we de�ne the variable P11 to be the network throughput (rate at which
jobs travel along the \new job" path. We use the SHARPE built-in function util, which gives the service station
utilization in a queueing network. If this were the complete input �le, it would include speci�cations for all of
the queueing networks (for both system designs and all combinations of number of functioning components) and
de�nitions of all of the variables Pij giving the system throughput for systems of the �rst design with i memory
modules and j processors functioning and all of the variables Pnnnnn giving the system throughput for systems
of the second design where each n corresponds to one of the �ve components and is 1 or 0 depending on whether
the component is functioning or not.

Lines 32 through 53 specify the graph model (graph par-2) for the private-memory design with all components
functioning (see Figure 2.12(c)). On lines 58 and 59, we de�ne the expected number of jobs completed per hour,
G11111, for this system. It is the inverse of the mean completion time of a job, as given by the SHARPE built-in
function mean with appropriate parameters. If this were the complete input �le, it would include speci�cations
for all of the graph models for both system designs and all combinations of functioning components and de�nitions
of the variables Gij and Gnnnnn.

On lines 64 through 86, we specify the Markov model arch1 for the all-shared-memory system. On line
64, we assign the model the name arch1 and six parameters, which we will use as the reward rates for the six
operational states of the system. On lines 65 through 76 we specify the chain's state transitions, one per line,
each transition accompanied by the transition rate. The keyword reward on line 77 tells SHARPE we wish to
assign reward rates to the states (reward rates are optional in SHARPE Markov models). On lines 78 through
83, we assign reward rates. By default, if no reward rate is assigned to a state, SHARPE assigns zero. The last
section of the Markov chain speci�cation (line 85) speci�es initial state probabilities. The complete input �le
would also include the Markov chain speci�cation for the second design, called arch2.

On lines 100 through 106, we de�ne the function percent to be rmean(arch1;:::)
rmean(arch1;:::)�rmean(arch2;:::) , where

mean is a built-in SHARPE functioning giving the expected accumulated reward for a Markov chain and given
arguments. percent tells us the relative improvement of the �rst design over the second. The arguments to
percent are passed along via rmean to the Markov chains to be used as reward rates.

The SHARPE keyword echo causes the remainder of the line on which it appears to be echoed to output
and otherwise ignored.

On lines 111 through 113, we evaluate the function percent with arguments (reward rates) being the through-
put values from the queueing network performance models. On lines 118 through 120, we evaluate percent with
arguments being the job completion rates from the graph performance models.

This is the �rst time we have shown SHARPE being used to combine models hierarchically. We have used
three di�erent model types: queueing network models and graph models \inside" a Markov model.

We found that, using the queueing network models to calculate reward rates, the expected number of jobs
completed by the time the system fails is 24,467 for the �rst design and 25,217 for the second. The second design
is 3.1% better. Using the graph models to calculate the reward rates, the �rst design is 7.3% better.

2.6.3 Irreducible Markov Model Used For Availability Analysis

In this section, we will show how we can use an irreducible Markov model to investigate system behavior when
failed components can be repaired or replaced. We will calculate the \availability" of the system, by which we
mean the probability (whether instantaneous or steady-state) that the system is functioning at a given time. We
will examine the all-shared-memory system, and we will look at three repair strategies:

1. There are enough repair resources to repair all components at the same time, if necessary.

2. There are two repair facilities, one for processors and one for memory modules, each able to handle one
component at a time.

3. There is one repair facility, able to handle one component at a time. Processor repair gets priority over
memory repair.

We looked at the �rst repair strategy in section 2.1.3, where we used a reliability block diagram.
To deal with the second and third repair strategies, we cannot use the block diagram model. The block

diagram assumes that all components are statistically independent, but if components must share repair facilities

23

32 22 12 02

31 21 11 01

30 20 10

mλ2 mλ

mµ mµmµ

2 mλ mλ

pµ 2 pλ pµ 2 pλ pµ 2 pλ pµ

mµ mµmµ

pµ pµ pµ

mµ mµ

pλ pλ pλ

3 mλ

3 mλ

Figure 2.19: Markov chain model of 2-memory, 3-processor system

their behavior (with respect to being operational or failed) is not independent; it depends on whether or not
other components are in a failure state. If the failure and repair distributions are exponential, we can use a
Markov chain model.

Consider the Markov model in Figure 2.19. The state name mp represents the system when m memory units
are functional and p processors are functional. The model with all of the solid and dashed-line transitions is
for the second repair strategy (one repair facility for processors and one for memories). To apply the model to
the third strategy (one repair facility for everything), we exclude the lines with smaller dashes; these represent
memory repair in the case where there has been a processor failure.

Figure 2.20 shows how we can specify this model for SHARPE. On lines 2 through 5, we bind values to the
failure rates lambdap and lambdam and repair rates mup and mum. On lines 8 through 43, we specify the Markov
chain state transitions and transition rates. Note that on lines 38 through 42 we assign the rates mum*onerepair.
If onerepair is 0, this e�ectively removes the smaller dashed lines from Figure 2.19. If onerepair is 1, the rates
on the smaller dashed lines are mum.

The built-in function prob, when given as arguments an irreducible Markov chain and a state in the chain,
evaluates to the steady-state probability of being in the state. On lines 45 and 46 of Figure 2.20, we de�ne
the variable munavail1 to be the steady-state probability of system failure if we need only one memory module
for the system to operate; it is the sum of the steady-state probabilities for the states where all processors or
all memories have failed. On line 47, we de�ne munavail2 to be the steady-state probability of system failure
if we need two memory modules; it is the sum of munavail1 and the steady-state probabilities for the states
where there is at least one processor and exactly one memory module functioning. Similarly, munavail3, the
steady-state failure probability if we need all three memory modules, is de�ned in terms of munavail2. On lines
53 and 54, we set onerepair to 1 and ask for the steady-state system probabilities for one repair facility per
component type. On lines 57 and 58, we set onerepair to 0 and ask for the steady-state system probabilities for
one repair facility for all components.

The following table shows steady-state unavailability for the three repair strategies for the cases where one,
two and three memory modules are needed for the system to remain operational.

steady-state unavailability
memories unlimited one repair per one repair

needed component type

1 .0000305 .0000611 .0000611
2 .0000363 .0000726 .0000738
3 .00418 .00422 .00436

Under all three repair strategies, if the system needs two memory modules to keep working the steady-state
unavailability is very little worse than if only one would su�ce; but if three memory modules are needed, then
the steady-state unavailability is considerably higher, but still very small.

24

1 bind 34 * memory repair
2 lambdap 1/720 35 22 32 mum
3 lambdam 1/(2*720) 36 12 22 mum
4 mup 1/4 37 02 12 mum
5 mum 1/2 38 21 31 mum*onerepair
6 end 39 11 21 mum*onerepair
7 40 01 11 mum*onerepair
8 markov M 41 20 30 mum*onerepair
9 * memory failure 42 10 20 mum*onerepair
10 32 22 3*lambdam 43 end
11 22 12 2*lambdam 44
12 12 02 lambdam 45 var munavail1 prob(M,30)+prob(M,20)+ n
13 31 21 3*lambdam 46 prob(M,10)+prob(M,02)+prob(M,01)
14 21 11 2*lambdam 47 var munavail2 munavail1 +n
15 11 01 lambdam 48 prob(M,11) + prob(M,12)
16 49 var munavail3 munavail2 +n
17 * processor failure 50 prob(M,21) + prob(M,22)
18 32 31 2*lambdap 51
19 31 30 lambdap 52 * one repair per component type
20 22 21 2*lambdap 53 bind onerepair 1
21 21 20 lambdap 54 expr munavail1, munavail2, munavail3
22 12 11 2*lambdap 55
23 11 10 lambdap 56 * one repair facility
24 57 bind onerepair 0
25 * processor repair 58 expr munavail1, munavail2, munavail3
26 30 31 mup 59
27 31 32 mup 60 end
28 20 21 mup 61
29 21 22 mup
30 10 11 mup
31 11 12 mup
32 01 02 mup
33

Figure 2.20: SHARPE Input for Markov Availability Model

We also observed that for a particular number of required memories, the repair strategy didn't seem to make
much di�erence in the system availability especially between the second and third repair strategies. In a teaching
situation, we could advise students to use the SHARPE prob function to con�rm that this was a reasonable
answer by looking at the steady-state probabilities for each state of the Markov chain. For the single-repair case,
the probabilities are as follows:

one kind of component both kinds of components
has failed have failed

state steady-state state steady-state
probability probability

32 0.984 21 0.00013

31 0.0108 20 0.000007
30 0.00006 11 0.000009
22 0.00415 10 0.000000005

12 0.000119 01 0.000000002
02 0.00000002

The probability of being in a state where both processors and memories have failed (states 21, 11, 01, 20 and
10) is so small that it isn't surprising that the di�erence in repair rates while in those states doesn't have much
of an e�ect on system unavailability. We would expect that if repair rates were much slower in comparison to

25

failure rates, that we would see much more of a di�erence in unavailability for the di�erent repair schemes (in
addition, of course, to higher unavailability for all the schemes). In fact, we tried this and the results were as
expected.

We note that we could have used the Markov model for the �rst repair strategy also. We would have assigned
di�erent transition rates to the repair transitions to reect the fact that more than one component can be
repaired at a time. As an example, the rate for the transition 02 to 12 would be 3 � �m rather than �m. We
used SHARPE to verify that the analysis of this model yields the same results as the block diagram model. It
can be especially satisfying for students to validate the models in this way, since the model types and analysis
algorithms are completely di�erent. We note again that the block diagram model is not only much easier to
construct, but much more e�cient to analyze.

2.7 Semi-Markov Models

The semi-Markov model is a discrete-state, continuous-time, acyclic or irreducible semi-Markov chain. Phase-
type semi-Markov chains are not supported.

The only di�erence between a semi-Markov model and an acyclic or irreducible Markov model is in the
speci�cation of distributions on the edges. In a Markov chain, the rate associated with each state transition
must be constant; that is, the distribution for the time between entering the source state and entering the
destination state is the exponential distribution. Because the rate is constant, for a Markov chain the behavior
of a transition can be speci�ed completely by just giving the rate.

For a semi-Markov chain, the transition rates leading out of a state may depend upon the time already spent
in that state, and hence the distribution for the state's holding time can be arbitrary. SHARPE expects users
to specify an exponomial distribution for each edge in a semi-Markov chain.

All state transition distributions are either conditional (on the fact that this transition is the one that causes
a state change) or unconditional. The conditional distributions would be used for a "competing process" model,
where the state transitions represent independent processes, the �rst of which to �nish determines which state
transition occurs. The unconditional distributions would be used in a situation where the modeler knows the
holding time distribution for each state and the transition probabilities for the state transitions. See section
5.2.10 for an example.

A semi-Markov chain is solved for the same measures as an acyclic Markov chain except that transient results
are not available for irreducible semi-Markov chains. Furthermore, reward rates may be attached to the states
of a semi-Markov model and corresponding reward-based measures can be computed.

Semi-Markov chains are used in section 5.2.11, 6.5 and 6.10.

2.8 Generalized Stochastic Petri Nets

A Petri Net consists of \places" containing \tokens" and transitions that specify how tokens move from one
place to another (possibly multiplying themselves or being removed from the net in the process). A Generalized
Stochastic Petri Net (GSPN) is Petri Net that allows the transitions to be either \immediate" (transition occurs
as soon as enough tokens are present in the right places) or \timed". A timed transition has a \�ring-time"
distribution that might be non-exponential.

A GSPN is speci�ed by listing

� place names along with the initial number of tokens in each place,

� the names of timed transitions along with the transition's distribution

� the names of immediate transitions

� arcs from places to transitions, along with the number of tokens that must be in the place for the transition
to �re

� arcs from transitions to places, along with the number of tokens that appear in the the place when the
transition �res

26

ppup

pprep

pmup

pmrep

tprep tpfail tmfail tmrep

2 3

1

λ
p

λ
m

µ
m

µ
p

Figure 2.21: GSPN Availability Model

� the names of inhibitor arcs from places to transitions (tokens present in the place prevent the transition
from �ring), along with the number of tokens that must be in the place for the transition to be inhibited

GSPNs can be acyclic, irreducible and phase-type in a way analogous to Markov chains. SHARPE can
compute (where the GSPN type is appropriate for the measure) steady-state average throughput and utilization
for a transition, steady-state average number of tokens in a place, steady-state expected probability that a place
is empty, and transient measures for expected number of tokens in a place, probability that a place is empty and
throughput or utilization of a transition.

Continuing with the running example, we model availability using GSPN.Modeling the availability of this
system with a GSPN does more than just give us another validity check. It would allow us to �nd the unavail-
ability for a system with any number of processors and memories without having to construct a separate model
for each number of components. The GSPN in Figure 2.21 is a model of the system in which there is one repair
facility to be shared for all components.

There is a token for each processor and each memory. When a processor fails, its token moves from state
ppup (place: processor up) through transition tpfail (transition: processor fails) to state pprep (place: processor
waiting for repair). Processor repair is represented by a token moving from state pprep through transition tprep
to state ppup. The inhibitor arcs from pprep to tmfail and pmrep to tpfail reect the assumption that if the
system has already failed because all processors or all memories have failed, the remaining working components
do not fail while they aren't running. This aspect of the system was modeled only implicitly in the Markov chain
model, by the absence of failure transitions from the states with either no operating processors or no operating
memory modules. The inhibitor arc from pprep to tmrep is the one that represents our assumption that there is
only one repair facility; if there are any failed processors, there can be no memory repair.

A SHARPE input �le for this GSPN is shown in Figure 2.22. On line 1, we ask to have results shown to
8 decimal places (this is a formatting command only; it does not a�ect the precision with which calculations
are made). On lines 10 through 41, we specify the GSPN in six sections. The �rst section (lines 12 through
15) speci�es place names and the initial number of tokens in each place. The section section (lines 18 through
21) speci�es timed transitions and their �ring characteristics. Line 18 says that transition tpfail has a �ring
rate that is dependent (dep) on the number of tokens in place ppup and has parameter lambdap. This means
that the distribution function for the time it takes transition tpfail to �re is exponentially distributed with
parameter k*lambdap when there are k tokens in place ppup. Line 20 says that transition tprep has a �ring
rate independent (ind) of the number of tokens in any place, and the rate is mup. The third section speci�es
immediate transitions; there are none in this GSPN. The fourth section (lines 26 through 29) speci�es input arcs
(from places to transitions) and the number of tokens needed in the place to �re the transition. The �fth section
(lines 32 through 35) speci�es output arcs (from transitions to places) and the number of tokens that appear
in the place when the transition �res. The sixth section (lines 38 through 40) speci�es inhibitor arcs (places to
transitions) and the number of tokens needed in the place to inhibit the transition.

On lines 43 through 46, we de�ne our own function ssunavailg to give us the steady-state unavailability of the
system. We make use of the SHARPE builtin function prempty, which gives the steady-state probability that
a place contains no tokens. To illustrate the fact that it is easy to vary the number of processors or memories

27

1 format 8 31 * output arcs
2 32 tpfail pprep 1
3 bind 33 tmfail pmrep 1
4 lambdap 1/720 34 tprep ppup 1
5 lambdam 1/(2*720) 35 tmrep pmup 1
6 mup 1/4 36 end
7 mum 1/2 37 * inhibitor arcs
8 end 38 pprep tmrep 1
9 39 pprep tmfail nproc
10 gspn repg(nproc, nmem) 40 pmrep tpfail nmem
11 * places 41 end
12 ppup nproc 42
13 pmup nmem 43 func ssunavailg(p,m) n
14 pprep 0 44 prempty(repg,ppup;p,m) +n
15 pmrep 0 45 prempty(repg,pmup;p,m) -n
16 end 46 prempty(repg,ppup;p,m)*prempty(repg,pmup;p,m)
17 * timed transitions 47
18 tpfail dep ppup lambdap 48 loop p,2,10,2
19 tmfail dep pmup lambdam 49 expr ssunavailg(p,3)
20 tprep ind mup 50 end
21 tmrep ind mum 51
22 end 52 end
23 * immediate transitions
24 end
25 * input arcs
26 ppup tpfail 1
27 pmup tmfail 1
28 pprep tprep 1
29 pmrep tmrep 1
30 end

Figure 2.22: SHARPE Input for GSPN

with the GSPN model, on lines 48 through 50 we use a loop to vary the number of processors from 2 to 10 and
look at the steady-state unavailability. The results are as follows:

p=2.000000

ssunavailg(p,3): 6.10665306e-05

p=4.000000

ssunavailg(p,3): 4.75570390e-08

p=6.000000

ssunavailg(p,3): 3.06582157e-08

p=8.000000

ssunavailg(p,3): 3.67183540e-08

p=10.000000

ssunavailg(p,3): 4.35124851e-08

We veri�ed that analyzing this GSPN with two processors gave the same result for system steady-state
unavailability as the Markov chain model. It took 0.2 processing-seconds on a NextStation (containing a 68040
processor) to get these results, and almost all of that time was spend on �le input/output. We note that the
GSPN, although a more e�cient speci�cation, is no more e�cient to analyze than the Markov chain, since the
SHARPE analysis of a GSPN involves translating the GSPN into a Markov chain.

28

For additional examples of the GSPN model, see section 5.2.5.

29

30

Chapter 3

Distribution Functions

One of SHARPE's most important features is that it produces model results as functions of one variable, usually
time but sometimes cumulative reward. In this section, we explain the assumptions needed to allow this and
why it works.

Suppose we have a system containing two independent components such that the system remains operational
if at least one of the components has not failed. This could be modeled as a fault tree consisting of one AND gate
with two inputs. If we knew that the likelihood that the components would fail within 6 months was p1 = :02
for the �rst component and p2 = :04 for the second, then the failure probability for the system during that time
is p1 � p2 = :0008.

Now suppose we knew the failure behavior in more detail. We might have access to failure data and a
program for �tting a function to the data [35]. Suppose, for the sake of discussion, that we have �tted the
failure data to two exponential distributions, F1(t) = 1 � e�0:004t and F2(t) = 1 � e�0:005t, where Fi(t) is the
probability that component i has failed by time t. We can compute the system failure probability as a function
of t by multiplying the two functions together, just as we multiplied the two probabilities together. The result
is F (t) = 1� e�0:004t� e�0:005t+ e0:009t.

The result is not another exponential distribution, but it does have the same form in that it is a sum of
terms that look like aebt (where b might be 0). The algorithms for analyzing all of the models supported by
SHARPE involve manipulating the probability distributions attached to components using addition, subtraction,
multiplication, integration, di�erentiation and convolution (see section 2.12). With the exception of convolution,
each of these operations when applied to terms of the form aebt results in more terms of the same form. If we
take the convolution of two terms, we may get a term of the form atebt. Further application of the operations to
these terms produce only terms of the form atkebt. Functions consisting of sums of terms of this form are called
\exponential polynomials", and they are closed under all of the operations the SHARPE algorithms need to use.

Because of this closure property, we can allow model components to be assigned probability distributions that
are any exponential polynomial, and the model analysis yields another exponential polynomial. SHARPE allows
the functions to be speci�ed using any number of variable names, with the variable t being implicit. SHARPE
computes symbolically only in t; it evaluates all other variables before beginning model analysis and produces
a function symbolic in t. At a user's request, SHARPE will evaluate this function for any desired mission time
t. To compute the mean or variance, SHARPE does the necessary integral computation symbolically rather
than by using a numerical solution. Hierarchical modeling is supported by allowing users to assign a function
produced by analyzing one model as the distribution of a basic component of another model.

Of course, not every exponential polynomial is a valid distribution function. There is no way to ensure that
a given user-speci�ed exponential polynomial is a valid probability distribution, but SHARPE does check that
0 � F (0) � limt!1F (t) � 1. We deliberately allow the possibility that 0 < F (0) and limt!1F (t) < 1. A
distribution with either or both of these conditions that is valid in every other respect is called a \defective"
distribution. In later sections, we will give examples of where these arise and how they are handled. A single-
point probability F (t) = a; t � 0 is a special, degenerate case of an exponential polynomial and is allowed. The
ai and bi are allowed to be complex numbers, as long as the function is real-valued (the complex numbers must
appear as conjugate pairs). In fact, this generality is needed if we are to analyze non-acyclic Markov chains for
a solution symbol in t (see section ??).

31

In addition to the exponential distribution, the class of distribution functions with exponential polynomial
form includes the hypoexponential, hyperexponential, Erlang and mixtures of Erlang distributions. In [43], it
was shown that the class is identical to the Coxian distributions and is a proper superset of the class PH of
phase-type distributions de�ned by Neuts [38].

For more information about exponential polynomials, see Appendix B.

32

Chapter 4

Reliability and Availability Analysis

Three common non-state-space model types used for reliability and availability analysis are series-parallel relia-
bility block diagrams, fault trees and reliability graphs. Common state-space model types used for this purpose
include Markov chains, semi-Markov chains and GSPN models. In this chapter, we present some examples of
these model types and show how they are speci�ed for SHARPE.

4.1 A Reliability Block Diagram

Consider a 5-stage system modeled by the reliability block diagram shown in Figure 4.1. Assume that the
components behave in a statistically independent fashion. Figure 4.2(a) shows a SHARPE batch input �le
containing two speci�cations for this model. Remember that the line numbers are not (and cannot be) part of
the �les; they are included only so that we may easily identify lines while explaining the �les.

In the speci�cation called example1a, each component is assigned a probability value. This might be the
probability that the component fails before some speci�c time t or that it fails before some particular mission is
accomplished. Lines 1 through 10 de�ne the structure of the reliability block diagram and assign probabilities
to the component types. Line 1 identi�es the type of model (block) and gives the model a name (example1a).
Every model must have a name consisting of any printable characters except comma, semicolon and backslash.
The names may be any length, but must be unique in the �rst 14 characters.

Lines 2 through 6 specify the �ve distinct component types in the block diagram. Each component type is
identi�ed with a name and assigned the probability of its failure by using the built-in distribution prob. Lines
7, 8 and 9 specify the structure of the block diagram. Line 10 marks the end of the block diagram speci�cation
using the keyword end. If this model had been entered interactively, line 10 would have been entered as a null
line.

On line 12 of the input �le, we ask to have an expression's value printed by using the keyword expr. An
expression can involve variables, operators, parentheses, user-de�ned functions, and various built-in functions
that SHARPE provides. In this case, we have the built-in function sysprob, which takes as its argument the
name of a model whose components were assigned probabilities using the prob function. The interpretation
of the value of sysprob(example1a) depends on the meaning of the probabilities attached to the component
types. If each component type was assigned the probability that it has �led by a particular time, then sysprob
(example1a) is the probability that the system has failed by that time.

Suppose that instead of assigning each component type a probability, we want to attach a time-to-failure

A B

C

C

C

D

D
E

Figure 4.1: A Reliability Block Diagram

33

1 block example1a

2 comp A prob(0.05)

3 comp B prob(0.01)

4 comp C prob(0.3)

5 comp D prob(0.25)

6 comp E prob(0.1)

7 parallel threeC C C C

8 parallel twoD D D

9 series sys1 A B threeC twoD E

10 end

11

l2 expr sysprob(example1a)

13

14 block example1b

15 comp A exp(0.05)

16 comp B exp(0.01)

17 comp C exp(0.3)

18 comp D exp(0.25)

19 comp E exp(0.1)

20 parallel threeC C C C

21 parallel twoD D D

22 series sys1 A B threeC twoD E

23 end

24

25 cdf (example1b)

26 end

a) input

sysprob(example1a): 2.2788e-01

CDF for system example1b:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.0000e+00 t(0) exp(-7.1000e-01 t)

+ 3.0000e+00 t(0) exp(-9.6000e-01 t)

+ 6.0000e+00 t(0) exp(-1.0100e+00 t)

+ -3.0000e+00 t(0) exp(-1.2600e+00 t)

+ -2.0000e+00 t(0) exp(-1.3100e+00 t)

+ 1.0000e+00 t(0) exp(-1.5600e+00 t)

mean: 2.6518e+00

variance: 3.7874e+00

b) output

Figure 4.2: Input and Output for Block Diagram

distribution to each one. For simplicity, we assume each distribution to be exponential. SHARPE provides the
keyword exp to be used when assigning the exponential distribution. It has one parameter, which must be
positive. The parameter is the inverse of the mean; in the case of block diagram components, it is the (constant)
failure rate of the component.

Lines 14 through 23 show a SHARPE de�nition (example1b) that assigns exponential time-to-failure distri-
butions to components. It is all right to use the same component type names that we used for example1a; the
scope of a component type name is limited to the model in which it is de�ned.

On line 25, we ask to see the cumulative distribution function (keyword cdf) for the system. A CDF is
computed in closed form as a function of t.

Figure 4.2(b) shows the output produced by SHARPE. First we see the system failure probability for the
�rst model (example1a), then the failure distribution for the second model (example1b). The distibution is an
exponential polynomial with seven terms:

1t0e0t � 6t0e�0:71t+ 3t0e�0:96t + 6t0e�1:01t� 3t0e�1:26t � 2t0e�1:31t+ 1t0e�1:56t:

Each term of the polynomial is printed on a separate line. The mean and variance of the time-to-failure of the
system are also printed.

4.2 Emulating Relcomp

To illustrate the way in which a user de�nes distribution types, we will show how SHARPE can be made to look
like the Relcomp (Reliability Computation) program [14], a simple block diagram analyzer. With the exception
that SHARPE cannot handle the Weibull distribution, we can use SHARPE to analyze any Relcomp-type system,

34

and we can make appropriate de�nitions so that a user can specify the structure of a system in a way very similar
to the Relcomp interface.

R(t) = e��t single exponential, with failure rate �

R(t) = 2e��t � e�2�t activeE redundancy, 2 units with
equal failure rates �

R(t) = e��at + e��bt � e�(�a+�b)t activeU redundancy, 2 units with unequal
failure rates �a (primary) and �b (secondary)

R(t) = e��t + e��st�te��t standbyE redundancy, 2 units with equal failure
rates � and a sensing switch with failure rate �s

R(t) = e��at + e��st
�

�a

�b��a

� �
e��at � e��bt

�
standbyU redundancy, 2 units with unequal

failure rates �a (primary) and �b (secondary)
and a sensing switch with failure rate �s

R(t) =
P

m

i=0

�
n

i

�
(e��t)n�i(1� e��t)i binomial (m-out-of-n system), with

equal failure rates �

R(t) = p single, oneshot system, with probability p

of success

Figure 4.3: Relcomp Reliability Functions

First, we describe the Relcomp program. At its top level, Relcomp computes the probability of survival
(until a user-speci�ed time t) for a series system in which there is no repair. Redundancy in the form of active
or standby spare units is brought in by allowing the basic components in the series system to have reliability
functions chosen from a set of pre-computed functions that were obtained by analyzing systems with redundancy.
The set of reliability functions for components is shown in Figure 4.3. An example of a Relcomp-type system
(taken from [14]) is shown in Figure 4.4.

The system of Figure 4.4 has four components in series; three of the components are internally redundant.
This system would be speci�ed for Relcomp by giving four component types: single exponential, active redundant
equal, standby redundant equal, and binomial. The Relcomp program computes that the probability that the
system is functioning at time t = 20 is 0.99581.

When using SHARPE to emulate Relcomp, it is important to recall that SHARPE computes a failure-time
distribution rather than a reliability function. The Relcomp program computes the probability that the system
is still operating at a speci�ed time t. SHARPE computes the distribution function of the time-to-failure of the
system; we can then evaluate the distribution at time t and subtract this value from one to obtain the reliability
at time t.

The �le in Figure 4.5 is a SHARPE input �le that de�nes the distribution functions that are built into
Relcomp.

Line 1 contains a comment; any line beginning with the character *" is ignored. To de�ne a distribution
function, we use the keyword poly (for exponential polynomial), give the function a name and a parameter list,
and then specify the the distribution function. Lines 3 through 6 de�ne the distribution function activeE, having
one parameter lambda. The keyword gen (for general exponential polynomial) tells SHARPE that we want

cpu

cpu

cpu

rcvr

timer

timer

tuner

tuner

 mux

sense muxexponential

active redundancy
 equal rates binomial

2 out of 3

standby redundancy
 equal rates

λ=.0002

λ=.000025 λ=.00025
λ=.0004

λ =.000005s

Figure 4.4: A Relcomp-type System

35

1 * emulation of RELCOMP 18

2 19 poly standbyU (lambda,mu,s) gen n
3 poly activeE (lambda) gen n 20 1,0,0 n
4 1,0,0 n 21 -1,0,-lambda n
5 -2,0,-lambda n 22 -lambda/(mu-lambda), 0, -(lambda+s) n
6 1,0,-2*lambda 23 lambda/(mu-lambda), 0, -(mu+s)

7 24

8 poly activeU (lambda,mu) gen n 25 poly oneshot(p) prob(1-p)

9 1,0,0 n 26

10 -1,0,-lambda n 27 block KN (lambda, k, n)

11 -1,0,-mu n 28 comp x exp(lambda)

12 1,0,-(lambda+mu) 29 kofn top n-k+1,n, x

13 30 end

14 poly standbyE (lambda, s) gen n 31

15 1,0,0 n 32 poly binomial (lambda, k, n) n
16 -1,0,-lambda n 33 cdf (KN;lambda,k,n)

17 -lambda,1,-(lambda+s) 34

Figure 4.5: File De�ning Relcomp Functions

to de�ne the distribution giving all of the exponential polynomial terms in the sum
Pn

j=1 ajt
kjebj t. SHARPE

requires the de�nition of a distribution function to be all on one line, but as was mentioned previously it allows
the UNIX-style use of the backslash character for line continuation. Each of lines 4 through 6 contains one term,
in the order aj; kj; bj. The three terms of the exponential polynomial activeE specify the distribution

1t0e0t � 2t0e��t + 1t0e�2�t = 1� [2e��t � e�2�t]:

Lines 8 through 23 similarly de�ne the distribution functions for activeU, standbyE and standbyU systems.

The �fth de�nition is for the component type oneshot, which is assigned a probability value rather than
a distribution function. This de�nition uses the built-in distribution type prob, having one parameter. The
parameter of the distribution prob gives the probability that the component fails immediately; if it does not fail
immediately, then it never fails. (For more information about this distribution, see Appendix B.)

To provide the binomial distribution we must do more work (lines 27 through 33). First, we de�ne a block
diagram system calledKN. The system has one basic component x having exponential distribution with parameter
lambda. The binomial distribution results when n identically distributed independent copies of x are combined
in such a way that the system of n components fails whenever k or more of the components have failed. That
means that the system is operational whenever n � k + 1 or more components are operational. This structure
is expressed on line 29. Once the system KN is de�ned, we can use the system to de�ne the distribution called
binomial (line 32); it is de�ned to have the distribution of the system KN when evaluated with parameters
lambda, k, and n.

The �le in Figure 4.6(a) speci�es the model shown in Figure 4.4 and asks for the probability of it being
operational at time t = 20. The Relcomp program obtains the probability by analyzing the system numerically,
using numerical integration (Simpson's rule) to compute the answer for the particular value of t. To compute the
reliability for a di�erent value of t, Relcomp would have to do the entire computation over again. When we use
SHARPE to analyze the system, SHARPE computes (symbolically in t) the complete distribution function of the
failure time for the system, and then evaluates the function at the particular time desired. With no additional
work, SHARPE can print the entire distribution function.

Figure 4.6(b) shows what the output looks like. The reliability at time t=20 matches that obtained by the
Relcomp program.

We could use the power of SHARPE to provide extensions to the Relcomp model. For example, we could
allow k-out-of-n systems where the components were not identically distributed. We could also, by using Markov
submodels, allow redundant systems with varying numbers of active and standby spares.

36

1 include relcomp

2

3 block DP

4

5 comp receiver exp(.0002)

6 comp tuner activeE(.000025)

7 comp mux standbyE(.00025, .000005)

8 comp cpu binomial(.0004, 2, 3)

9 series DP receiver tuner mux cpu

10 end

11

12 expr 1-value(20;DP)

13 cdf(DP)

14 end

a) input

1-value(20;DP): 9.9581e-01

CDF for system DP:

-1.5000e-03 t(1) exp(-1.2800e-03 t)

+ 7.5000e-04 t(1) exp(-1.3050e-03 t)

+ 1.0000e-03 t(1) exp(-1.6800e-03 t)

+ -5.0000e-04 t(1) exp(-1.7050e-03 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.0000e+00 t(0) exp(-1.2750e-03 t)

+ 3.0000e+00 t(0) exp(-1.3000e-03 t)

+ 4.0000e+00 t(0) exp(-1.6750e-03 t)

+ -2.0000e+00 t(0) exp(-1.7000e-03 t)

mean: 1.4794e+03

variance: 1.2465e+06

b) output

Figure 4.6: Input and Output Files for Relcomp-type System

1

10

7

8

9

5

6

2

3

4

11

Figure 4.7: Another Reliability Block Diagram

4.3 Instantaneous Availability

If a system is composed of components each having an independent repair facility, SHARPE can be used to
compute the instantaneous availability of the system. Consider the series-parallel system of components pictured
in Figure 4.7

This is the example presented in [37], where an approximation method is given for computing the steady
state unavailability of a series-parallel system. Using our model, we can compute the steady state unavailability
exactly, and in addition we compute the transient unavailabilities.

Assume that each component is subject to failure, and has its own independent repair facility. If the time-
to-failure of component i is exponentially distributed with failure rate �i and the time-to-repair is exponentially
distributed with repair rate �i, then the instantaneous availability is [53]

Ai(t) =
�i

�i + �i
+

�i
�i + �i

e�(�i+�i)t:

As t approaches in�nity, Ai(t) approaches the steady-state availability. If �i = 0 (no repair), Ai(t) reduces to
the reliability (as a function of time) of the component.

37

bind poly unavail(mu,lambda) gen n
lambda1 .001 1,0,0 n
lambda2 .01 -mu/(lambda+mu),0,0 n
lambda3 .01 -lambda/(lambda+mu),0,-(lambda+mu)

lambda4 .01

lambda5 .005 block inst avail

lambda6 .005 comp 1 unavail(mu1,lambda1)

lambda7 .01 comp 2 unavail(mu2,lambda2)

lambda8 .01 comp 3 unavail(mu3,lambda3)

lambda9 .01 comp 4 unavail(mu4,lambda4)

lambda10 .01 comp 5 unavail(mu5,lambda5)

lambda11 .01 comp 6 unavail(mu6,lambda6)

mu1 1/5 comp 7 unavail(mu7,lambda7)

mu2 1/7.5 comp 8 unavail(mu8,lambda8)

mu3 1/7.5 comp 9 unavail(mu9,lambda9)

mu4 1/7.5 comp 10 unavail(mu10,lambda10)

mu5 1/6 comp 11 unavail(mu11,lambda11)

mu6 1/6

mu7 1/7.5 parallel 56 5 6

mu8 1/7.5 parallel 234 2 3 4

mu9 1/7.5 parallel 789 7 8 9

mu10 1/5 series 1-6 1 234 56

mu11 1/5 series 7-11 789 10 11

end parallel all 1-6 7-11

end

cdf(inst avail)

Figure 4.8: Input for the Instantaneous Unavailability Example

Let the distribution function associated with component i be Ui(t) = 1�Ai(t). This distribution represents
the instantaneous unavailability of the component and is in exponential polynomial form with a mass at in�nity.
We want to compute the instantaneous unavailability of the system as a whole. For subsystems in parallel,
we must take the product of the component unavailabilities (the system is unavailable only when all parallel
subsystems are unavailable). This is the \maximum" combination. For a series of components, the availability
is the product of the component availabilities (the system is available only when all subsystems are available).
Thus, the unavailability of the system is exactly the \minimum" combination of the components.

Because the combining operations are exactly \maximum" and \minimum", we can use SHARPE to compute
U (t), the instantaneous unavailability for the system as a whole. By taking the limit of U (t) as t approaches
in�nity, we obtain the steady-state system unavailability, and by setting all �i = 0;we obtain system unreliability
as a function of the mission time t. Note that �i may be zero for some or all of the components, and we still
obtain the instantaneous unavailability for the overall system.

We used SHARPE to compute the unavailability for this system using the same parameters as in [37]. A
SHARPE input �le for this example is shown in Figure 4.8. The parameters are �5 = �6 = :005, �1 = :001,
�i = :01 for all other i, �5 = �6 = 1=6, �1 = �10 = �11 = 1=5, and �i = 1=7:5 for all other i. The steady state
unavailability is computed to be 5:743010�4. It should be noted that the approximation given in [37] is in error.
The approximation as computed using the method in [37] should be 7:102110�4.

Because SHARPE distributions can contain complex numbers, we can allow the failure or repair time distri-
butions to be non-exponential. Suppose the failure time distribution for a component i is 2-stage Erlang with
parameter 2�i and the repair time distribution is exponential with rate �i. Then its instantaneous availability
is given by:

Ai(t) =
�i

�i + �i
+

�i
�i + �i

�
�i1 � �i � �i
�i1 � �i2

e��i1t +
�i2 � �i � �i
�i2 � �i1

e��i2t
�

38

a

b

c

d

v1 v2

v3

v4 v5

1 2

54

3

Figure 4.9: A Reliability Graph and Equivalent Non-series-parallel Block Diagram

where

�i1; �i2 =
4�i + �i �

p
�i(�i � 8�i)

2
:

If �i < 8�i, the above function will contain complex numbers, a situation that SHARPE allows.

4.4 A Reliability Graph

A reliability graph consists of nodes and directed arcs. One node is the \source", meaning no arcs enter it, and
one node is the \sink", meaning no arcs leave it. A system represented by a reliability graph fails when there is
no path from the source to the sink. The arcs are assigned failure distributions.

The left-hand side of Figure 4.9 shows a reliability graph model. The system it represents is operational if
there is a path from a to d; the possible paths are abd, acd, abcd and acbd. The system fails if the arcs labeled
v1 and v4 both fail or if the arcs v2 and v5 both fail.

This reliability graph is equivalent to the non-series-parallel reliability block diagram on the right-hand side
of Figure 4.9; this particular block diagram is called a \bridge". In the reliability graph, the components are the
arcs, while in the block diagram the components are the boxes. The block diagram cannot be analyzed by (or
even speci�ed for) SHARPE, but the reliability graph can.

Suppose the arcs in the reliability graph are assigned exponential time-to-failure distributions with parameters
vi. Figure 4.10(a) shows a SHARPE input �le for the reliability graph.

On lines 3 through 6, we specify four unidirectional arcs by giving, on each line, an ordered pair of nodes
followed by a distribution function. The keyword bidirect on line 7 means that all succeeding lines de�ne
bidirectional arcs. If a reliability graph contains only unidirectional arcs, this keyword need not be present. On
line 11 we ask for the time-to-failure distribution for the system as an exponential polynomial. On line 12, we
use the keyword pqcdf to ask for the failure distribution in terms of the failure distributions of the individual
arcs. The name pqcdf comes from the fact that it is a \CDF" (Cumulative Distribution Function) in terms of
probabilities of failure (often denoted \p") and non-failure (often denoted \q" where q=1-p) of the individual
components. The algorithms SHARPE uses for analyzing reliability graphs and fault trees with repeated nodes
can produce a result in the \pq" format; the format is not available for other model types.

Results are shown in Figure 4.10(b). In the \pq" form of the distribution, P(0:a,b) is the probability that
the arc from a to b, which SHARPE has internally numbered 0, is functioning. On the fourth line of the form,
Q(3:c,d) is the probability that the arc from c to d, internally numbered 3, is not functioning.

4.5 A Fault Tree

We consider a reliability model proposed in [7]. The system being modeled consists of two components, A and
B, combined in series. Assume that the distribution of the time-to-failure of component A is hyperexponential:

39

1 relgraph bridge(v1,v2,v3,v4,f5)

2

3 a b exp(v1)

4 b d exp(v2)

5 a c exp(v4)

6 c d exp(v5)

7 bidirect

8 b c exp(v3)

9 end

10

11 cdf (bridge;1,2,3,4,5)

12 pqcdf (bridge;1,2,3,4,5)

13

14 end

a) input

CDF for system bridge:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-3.0000e+00 t)

+ -3.0000e+00 t(0) exp(-9.0000e+00 t)

+ 1.0000e+00 t(0) exp(-1.0000e+01 t)

+ 1.0000e+00 t(0) exp(-1.1000e+01 t)

+ 1.0000e+00 t(0) exp(-1.2000e+01 t)

+ 1.0000e+00 t(0) exp(-1.3000e+01 t)

+ 1.0000e+00 t(0) exp(-1.4000e+01 t)

+ -2.0000e+00 t(0) exp(-1.5000e+01 t)

mean: 3.7741e-01 variance: 9.9183e-02

CDF for system bridge:

1� ([P(0 : a;b) � P(1 : b;d)]+
[P(2 : a; c) � P(3 : c;d) � (1� P(0 : a; b) � P(1 : b;d))]+
[P(0 : a;b) �Q(1 : b;d) �Q(2 : a; c) � P(3 : c;d) � P(4 : b; c)]+
[Q(0 : a; b) � P(1 : b;d) � P(2 : a; c) �Q(3 : c;d) � P(4 : b; c)])

b) output

Figure 4.10: Input and Output File for Bridge

Failure

A B
1-e -bt1-pe -(1-p)e-a t2

-a t1

Figure 4.11: A Fault Tree for a Series System

F (t) = 1� pe�a1t� (1� p)e�a2t, and that of component B is exponential. A series system with two components
A and B can be modeled using a very simple fault tree (Figure 4.11).

The tree has two basic components joined by an \or" gate; the system fails if either of the two components
fails. The fault tree model can be written for SHARPE as shown in Figure 4.12(a).

On lines 6 through 10, variables are given values. On line 12, we de�ne a fault tree system by using the
keyword ftree, give the system a name, and de�ne a parameter b for the system.

On line 13, we de�ne the component B. A component is de�ned by the keyword basic, followed by the
component name, and then by a distribution speci�cation. Component B is assigned the exponential distribution.
On line 14, we de�ne the component A. To specify the hyperexponential distribution, the distribution type gen
(general exponential polynomial) is used. This tells SHARPE that we want to de�ne our own distribution.
The distribution type gen allows us to specify an exponential polynomial where all of the parameters are real
numbers. The input line must continue with a sequence of triples, each triple giving one of the terms aj; kj; bj.
Thus the distribution attached to event A is 1t0e0t � pt0e�a1t � (1 � p)t0e�a2t. On line 15, we de�ne the \or"
gate combining the two components. The gate is de�ned using the keyword or, given the name TOP, and has
inputs A and B. Every gate must be given a name.

On line 18, we ask to see the CDF of the fault tree. For a fault tree, the CDF is that of the time-to-failure for
the system. Since the de�ned system has a parameter, the name series is followed by a semicolon and then an

40

1

2 *time to failure for two components in series

3 *component A failure time is hyperexponential

4 *component B failure time is exponential

5

6 bind

7 a1 .28

8 a2 2.5

9 p .5

10 end

11

12 ftree series(b)

13 basic B exp(b)

14 basic A gen 1,0,0,-p,0,-a1,-(1-p),0,-a2

15 or TOP A B

16 end

17

18 cdf (series;1)

19 eval (series;1) .5 1.5 .5

20 eval (series;3) .5 1.5 .5

21 end

a) input

CDF for system series:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -5.0000e-01 t(0) exp(-1.2800e+00 t)

+ -5.0000e-01 t(0) exp(-3.5000e+00 t)

mean: 5.3348e-01

variance: 4.0738e-01

system series

t F(t)

5.0000 e-01 6.4947 e-01

1.0000 e+00 8.4588 e-01

1.5000 e+00 9.2407 e-01

system series

t F(t)

5.0000 e-01 8.7105 e-01

1.0000 e+00 9.7914 e-01

1.5000 e+00 9.9622 e-01

b) output

Figure 4.12: Input and Output File for Fault Tree Example

argument. When the system series is analyzed, the parameter b takes on the value 1. Although in this example
the argument is a constant value, in general, an argument can be any expression as long as all variables in it
have been given values. On line 19, we ask to have the CDF evaluated over between 0.5 and 1.5 at intervals of
0.5 with b set to 1. SHARPE will see that the parameter has the same value as before and will not reanalyze the
system. On line 20, we ask to have the system CDF evaluated when b has the value 3. SHARPE will recognize
that the parameter has a di�erent value and reanalyze the system to obtain a new CDF for evaluation. Figure
4.12(b) shows the results produced by SHARPE for this input �le.

4.6 Another Fault Tree

Another example of a fault tree is the system speci�ed in the input �le in Figure 4.13(a). This system consists of
nsys redundant subsystems con�gured in parallel, such that the system fails if ksys or more subsystems have failed.
Each of these subsystems uses n-fold redundancy with the proviso that k or more must fail for the subsystem to
have failed. The time-to-failure distributions for the components are independent and exponentially distributed.
Note that for the top gate we have a ksys/nsys gate with dissimilar distributions attached to the gate inputs.
The SHARPE command format controls the number of \signi�cant" digits printed by SHARPE when it prints
results. It has no a�ect on the precision of the internal calculations, which are carried out using whatever format
the hardware and software uses to implement the C data type double. The output for this example is shown in
Figure 4.13(b).

41

ftree fcc1

basic A exp(lambda)

basic B exp(mu)

basic C exp(sigma)

kofn Afail k,n, A

kofn Bfail k,n, B

kofn Cfail k,n, C

kofn Sysfail ksys,nsys, n
Afail Bfail Cfail

end

bind

k 2

n 3

ksys 2

nsys 3

lambda 0.00001

mu 0.00002

sigma 0.00003

end

format 8

cdf (fcc1)

eval (fcc1) 10 60 10

end

a) input

CDF for system fcc1:

1.00000000e+00 t(0) exp(0.00000000e+00 t)

+ -9.00000000e+00 t(0) exp(-6.00000000e-05 t)

+ 6.00000000e+00 t(0) exp(-7.00000000e-05 t)

+ -3.00000000e+00 t(0) exp(-8.00000000e-05 t)

+ 2.00000000e+00 t(0) exp(-9.00000000e-05 t)

+ -9.00000000e+00 t(0) exp(-1.00000000e-04 t)

+ 6.00000000e+00 t(0) exp(-1.10000000e-04 t)

+ 5.60000000e+01 t(0) exp(-1.20000000e-04 t)

+ -3.00000000e+01 t(0) exp(-1.30000000e-04 t)

+ -3.60000000e+01 t(0) exp(-1.40000000e-04 t)

+ -1.60000000e+01 t(0) exp(-1.50000000e-04 t)

+ 2.40000000e+01 t(0) exp(-1.60000000e-04 t)

+ 2.40000000e+01 t(0) exp(-1.70000000e-04 t)

+ -1.60000000e+01 t(0) exp(-1.80000000e-04 t)

mean: 4.06425437e+04

variance: 4.71105707e+08

system fcc1

t F(t)

1.00000000 e+01 4.32986980 e-14

2.00000000 e+01 7.05213665 e-13

3.00000000 e+01 3.56403795 e-12

4.00000000 e+01 1.12529985 e-11

5.00000000 e+01 2.74560374 e-11

6.00000000 e+01 5.68869396 e-11

b) output

Figure 4.13: Input and Output for Another Fault Tree

4.7 Aircraft Flight Control System

We consider a somewhat modi�ed version of the ight control system modeled in Appendix G of [4]. The system
contains three inertial reference sensors (IRS) and three pitch rate sensors (PRS), that monitor the status of
the aircraft. All of the sensors are connected to each of four computer systems (CS). The computer systems
independently collect information from the sensors and process the information. The computers are connected
to each other and to three secondary actuators (SA). At least two of each type of component must be operational
in order for the overall system to function correctly. In this system, the computers are most susceptible to failure
(the failure rate for a computer is an order of magnitude greater than the failure rates for any of the other
components). That is why there are four computers and only three of each of the other component types. A
fault tree for this system is shown in Figure 4.14

Figure 4.15 shows input and output of SHARPE for this ight control system. The failure probability for a
10 hour mission is 1:02381� 10�6.

4.8 An Acyclic Markov Chain

To illustrate the use of acyclic Markov chains, we consider a Markov chain version of the fault tree presented
in Section 4.5. The Markov model was proposed in [7]. The system being modeled consists of two components,

42

Failure

2/3 2/3 3/4 2/3

C3of4

IRS1 2 3 PRS1 2 3 SA1 2 3

I2of3 P2of3 S2of3

CS1 2 3 4

Figure 4.14: A Fault Tree for Aircraft Control System

* aircraft flight control system

bind

mIRS .000015

mPRS .000019

mSA .000037

mCS .00048

end

ftree aircraft

basic IRS exp(mIRS)

basic PRS exp(mPRS)

basic CS exp(mCS)

basic SA exp(mSA)

kofn IRS23 2,3, IRS

kofn PRS23 2,3, PRS

kofn CS34 3,4, CS

kofn SAS23 2,3, SA

or TOP IRS23 PRS23 CS34 SAS23

end

format 8

expr mean(aircraft)

eval (aircraft) 1000 10000 1000

expr value(10;aircraft) end

input

mean(aircraft): 2.21322439e+03

system aircraft

t F(t)

1.00000000 e+03 1.62926398 e-01

2.00000000 e+03 5.15384469 e-01

3.00000000 e+03 7.70884601 e-01

4.00000000 e+03 9.02767485 e-01

5.00000000 e+03 9.61222540 e-01

6.00000000 e+03 9.85111991 e-01

7.00000000 e+03 9.94421933 e-01

8.00000000 e+03 9.97944094 e-01

9.00000000 e+03 9.99250932 e-01

1.00000000 e+04 9.99729373 e-01

value(10;aircraft): 1.02381366e-06

output

Figure 4.15: Input and Output for Aircraft Control System

43

0

1

2

0 1

0-0
0-1

1-0
1-1

2-0

a) component A

b) component B

c) system model

a1

a2

b

a1

a2

b

b

p

1-p

p

1-p

Figure 4.16: A Markov Model for a Series System

A and B, combined in series. Component B has two possible states: operating (state 0) and failed (state 1).
Component A has three possible states: in states 0 and 1 it is operational and in state 2 it has failed. A starts
operation in state 0 with probability p and in state 1 with probability 1-p. Figure 4.16 (a) and (b) show the
failure processes of components A and B, respectively.

The Markov chain in Figure 4.16 (c) can be used to �nd the time-to-failure for the series system. Each state is
an ordered pair, with the �rst element giving the condition of component A and the second giving the condition
of component B. The system starts in state 0-0 with probability p and in state 1-0 with probability 1-p. The
states 2-0, 0-1, and 1-1 are failure states.

Figure 4.17(a) shows an input �le for this model. Lines 1 through 3 are comments. On lines 5 through 10,
we assign values to some simple variables. Lines 12 through 21 de�ne the Markov chain. Line 12 identi�es the
type of the model (markov) and gives the model a name. It is not necessary to specify the type of the Markov
chain; SHARPE will determine that it is acyclic and analyze it appropriately.

Lines 13 through 16 give all the state transitions in the chain and their associated transition rates. Each
line is a triple: from-state, to-state, transition-rate. Like model names, state names may contain any characters
except comma, semicolon, and backslash. The lines in this section can appear in any order; the arcs do not have
to be presorted. Line 17 marks the end of the arc/rate speci�cation.

Once the arcs and rates are speci�ed, we must specify the initial state probabilities for the Markov chain.
These are de�ned in lines 19 through 21. The probabilities must add up to one. Note that the probability
speci�cation for state 1-0 is an expression rather than a simple variable. In fact, SHARPE allows the use of
arbitrary expressions (using addition, subtraction, multiplication, division, exponentiation, and parentheses) any
place where a scalar quantity (as opposed to a distribution function) is needed.

Line 23 requests that the CDF of the model series be printed. When SHARPE reads this line, it will analyze
the system series and print the CDF of the time-to-absorption, along with the mean and the variance. Since
this is a reliability model, the CDF is that of the time-to-failure of the series system. On line 24, we ask to have
the CDF evaluated over the interval from 0.5 to 1.5, with increments of 0.5. SHARPE will not reanalyze the
system; it simply evaluates the CDF at the requested values of t.

Suppose we are interested in the e�ect of a larger value of b on the reliability of the system. We can specify
another value for b by rebinding it and requesting that the system CDF be evaluated for the new value of b. On
lines 26 through 30 we rebind b and ask for a new evaluation of the CDF. SHARPE reanalyzes a system when
an evaluation is requested and any of the variables are rebound.

Note that we have rebound b without rebinding the other variables. The other variables are assumed to retain
their original values. Once a variable is bound to a value, it retains that value until (and unless) it is rebound
to a di�erent value.

Now suppose we are interested in the probability that a system failure is due to a failure in component A,
and we would like to know how long it takes before the system fails in that case. We can get that information
by asking SHARPE to print the CDF for the time to reach the state 2-0 in the Markov chain. This is done on

44

1 * system reliability for A and B in series

2 * failure time for B is exponential

3 * failure time for A is hyperexponential

4

5 bind

6 a1 .28

7 a2 2.5

8 b 1

9 p .5

10 end

11

12 markov series

13 0-0 2-0 a1

14 1-0 2-0 a2

15 0-0 0-1 b

16 1-0 1-1 b

17 end

18

19 0-0 p

20 1-0 1-p

21 end

22

23 cdf(series)

24 eval(series) .5 1.5 .5

25

26 bind

27 b 3

28 end

29

30 eval(series) 0.5 1.5 0.5

31

32 cdf(series,2-0)

33 expr prob(series,0-1) + prob(series,1-1)

34 end

a) input

1

2 CDF for system series:

3

4 1.0000e+00 t(0) exp(0.0000e+00 t)

5 + -5.0000e-01 t(0) exp(-1.2800e+00 t)

6 + -5.0000e-01 t(0) exp(-3.5000e+00 t)

7

8 mean: 5.3348e-01

9 variance: 4.0738e-01

10

11 ---

12

13 system series

14 t F(t)

15

16 5.0000 e-01 6.4947 e-01

17 1.0000 e+00 8.4588 e-01

18 1.5000 e+00 9.2407 e-01

19

20 ---

21

22 system series

23 t F(t)

24

25 5.0000 e-01 8.7105 e-01

26 1.0000 e+00 9.7914 e-01

27 1.5000 e+00 9.9622 e-01

28

29 ---

30

31 information about system series node 2-0

32

33 probability of entering node: 2.6996e-01

34

35 conditional CDF for time of reaching this state

36

37 1.0000e+00 t(0) exp(0.0000e+00 t)

38 + -1.5811e-01 t(0) exp(-3.2800e+00 t)

39 + -8.4189e-01 t(0) exp(-5.5000e+00 t)

40

41 mean: 2.0128e-01

42 variance: 4.4543e-02

43

44 ---

45

46 prob(series,0-1) + prob(series,1-1): 7.3004e-01

47

b) output

Figure 4.17: Input and Output for Acyclic Markov Chain

45

line 32. SHARPE does not have to do any additional computation to respond to this request.
On line 33, we ask for the value of an expression that give us the probability that a system failure is due to

a failure in component B. The built-in function prob (not to be confused with the built-in distribution function
with the same name) takes as its �rst argument the name of a Markov or semi-Markov system. The second
argument must be the name of a state in that system. The value of prob is the probability that the given state
is ever visited. Here we ask for the sum of the probability of visiting state 0-1 and the probability of visiting
state 1-1.

The input �le ends with the keyword end on line 34, indicating there are no further de�nitions or requests.
Figure 4.17(b) shows the output produced by SHARPE. Lines 2 through 9 are the response to line 23 of the

input �le, giving the CDF for the system. SHARPE identi�es the system series on line 2, gives the CDF of
the time to absorption in the form of an exponential polynomial on lines 4 through 6, and gives the mean and
variance of the CDF on lines 8 and 9.

The next two sets of results are for the two requests for evaluation of the system CDF (lines 24 and 30 of
the input �le). Each time, the system is identi�ed by name and the results are given. Lines 31 through 42
are the response to line 32 of the input �le, which requested the CDF for the state 2-0. The system and state
are identi�ed on line 31. Line 33 gives the probability of reaching the state, and lines 37 through 42 give the
conditional CDF (and its mean and variance) for the time to reach this state, given that this state is ever reached.
The last result is the response to the request for the value of an expression (input �le line number 33). SHARPE
echoes the expression as it appeared in the input �le and then gives the value of the expression. The probability
that the system failed due to a failure in component B is 0.73004.

4.9 A Markov Chain with Function De�nitions

For this example, we consider a model of the fault-tolerant SIFT (Software Implemented Fault Tolerance) system
[60]. Suppose we have a computer system that contains 4 identical processors and 3 identical bus systems. The
system can detect when a processor or bus has failed, and it can recon�gure so that the failed component is
removed. There must be at least 2 processors and 2 buses working in order for the system to be operational.

Suppose recon�guration fails if and only if, during recon�guration, a second failure occurs of the same
component type as the failed component. Then the coverage (probability that recon�guration is successful)
depends on the state of the system, since the more components there are in the system, the more likely it is that
a second, near-coincident fault occurs while processing the �rst fault. If the component (processor or bus) failure
rate is x, there are k operational copies of the component, and the recon�guration rate is �, then the coverage is
given by (see [54])

c(x; k) =
�

�+ (k � 1)x
:

Figure 4.18 shows a Markov chain that models this system.
For clarity, the failure state F has been shown twice. In state (i,j), i processors and j buses are operational.

Figure 4.19 shows how this chain can be speci�ed for SHARPE.
On line 3, we de�ne the coverage function c(x,k) as de�ned above, with � = 360. On line 4, we de�ne the

rate r(x,k) for a successful recon�guration. On line 5, we de�ne the rate f(x,k) for a failure due to unsuccessful
recon�guration. Note that the functions r and f are de�ned in terms of the function c. In this example, all
three functions happen to have two parameters. SHARPE allows functions to be de�ned with any number of
parameters, including the special case of no parameters.

On lines 7 through 26, we de�ne the Markov chain. Note that this de�nition contains no initial state
probabilities. This example is typical of many Markov chain models, in that there is only one \start" state
(having no predecessors). In this case, the user is allowed to leave out the starting probabilities, and SHARPE
will assume that the initial probability is 1 for the unique start state and 0 for all other states. Note that line 26,
marking the end of the initial state probability speci�cation, must be present even if no probabilities are given.

The built-in functions mean and variance can be used to get the mean and variance of the conditional
distribution for the time to reach or leave (depending on whether the state is absorbing or not) a state in a
Markov or semi-Markov chain. The name of the chain would be followed by a comma and the name of the state
of interest. If the system had been declared with parameters, the system or state name would be followed by a
semicolon and then an argument list. On lines 33 and 34, we ask for the mean and variance for the distribution of

46

2λ+2µ

F

F

3λ (3,λ)c

3µ (3,µ)c

3λ (3,λ)c4λ (4,λ)c

4λ (4,λ)c

3µ (3,µ)c

2,23,24,2

4,3

3µ (3,µ)c

3,3 2,3

4λ(1− (4,λ))+
3µ(1− (3,µ))c

c

4λ(1− (4,λ))+2µc

2λ+3µ(1− (3,µ))c

c3λ(1− (3,λ))+2µ

3λ(1− (3,λ))+
3µ(1− (3,µ))c

c

Figure 4.18: A Markov Model for a SIFT-like System

1 * SIFT example 19 4-2 3-2 r(lambda,4)

2 20 3-2 2-2 r(lambda,3)

3 func c(x,k) 360/(360 + (k-1) * x) 21

4 func r(x,k) k * x * c(x,k) 22 4-2 F (2 * mu) + f(lambda,4)

5 func f(x,k) k * x * (1-c(x,k)) 23 3-2 F (2 * mu) + f(lambda,3)

6 24 2-2 F (2 * mu) + (2 * lambda)

7 markov SIFT 25 end

8 4-3 3-3 r(lambda,4) 26 end

9 3-3 2-3 r(lambda,3) 27

10 28 bind

11 4-3 F f(lambda,4) + f(mu,3) 29 lambda .0001

12 3-3 F f(lambda,3) + f(mu,3) 30 mu .00001

13 2-3 F (2 * lambda) + f(mu,3) 31 end

14 32

15 4-3 4-2 r(mu,3) 33 expr mean(SIFT,F)

16 3-3 3-2 r(mu,3) 34 expr variance(SIFT,F)

17 2-3 2-2 r(mu,3) 35 expr value(10;SIFT,F)

18 36 end

Figure 4.19: Input File for the SIFT-like system

47

mean(SIFT,F): 1.0604e+04

variance(SIFT,F): 3.9905e+07

value(10;SIFT,F): 3.7333e-08

Figure 4.20: Results for the SIFT System

...10 9 2 1

0

µ

10λc 3λc 2λc9λc

µ µ µ

λ

9λ(1−)c 2λ(1−)c

10λ(1−)c

Figure 4.21: A Cyclic Markov Chain with Absorbing States

the time-to-failure of the system. We might be interested in knowing the probability that this system fails within
ten hours. On line 35, we use expr and the built-in function value, which evaluates the CDF for the given state
(the third argument) in the given system (second argument) at the given time value (the �rst argument). Note
that the time value is followed by a semicolon. If the system SIFT had been de�ned with parameters, the state
name F would have been followed by a semicolon and an argument list. Note that since this system has only
one absorbing state (F), the time to reach state F is exactly the same as the time to reach absorption for the
system as a whole.

Figure 4.20 shows the results produced by SHARPE for this model.
SHARPE shows that the probability that the system fails within ten hours is .000000037333. Depending on

the application of this system, that may or may not be considered small enough.

4.10 A Cyclic Markov Chain with Absorbing State

Suppose we have a system with ten statistically identical components con�gured in parallel and with a single
repair facility. Assume that some faults can not be handled by the automatic detection and recon�guration
mechanism of the system. The system has failed if all components have failed or if a non-recoverable failure
occurs in one of the components. A Markov chain for the failure process is shown in Figure 4.21 where state i
of the Markov chain models the system state with i operational components. The failure rate for each of the
components is given by �. The repair rate is �. The coverage factor (probability that a faulty component is
detectable and recon�gurable) is c. The 2-component version of this system was used as an example by Arnold
[2] and also discussed in [53].

We are interested in how much improvement we get in mean time to system failure because there is a repair
facility. If MTTF (�) is the mean time to system failure when the repair rate is �, then we de�ne the Mean
Time Improvement Factor (MTIF) to be MTIF(�) = MTTF(�)/MTTF(0). We would like to know MTIF(�)
for various value of � and to see how much a�ect the coverage value c has on the MTIF.

48

markov 10proc(lam, mu, c) 1 0 lam func mtif(mu) mean(10proc;lam, mu, c) n
10 9 10*lam*c 1 2 mu mean(10proc;lam, 0, c)
10 0 10*lam*(1-c) 2 3 mu
9 8 9*lam*c 3 4 mu bind c 0.9999
9 0 9*lam*(1-c) 4 5 mu bind lam 1.0
8 7 8*lam*c 5 6 mu
8 0 8*lam*(1-c) 6 7 mu expr c
7 6 7*lam*c 7 8 mu
7 0 7*lam*(1-c) 8 9 mu expr 1.0/lam, mtif(lam,1.0,c)
6 5 6*lam*c 9 10 mu expr 5.0/lam, mtif(lam,5.0,c)
6 0 6*lam*(1-c) end expr 10.0/lam, mtif(lam,10.0,c)
5 4 5*lam*c 10 1.0
5 0 5*lam*(1-c) end bind c 1.0
4 3 4*lam*c expr c
4 0 4*lam*(1-c) expr 1.0/lam, mtif(lam,1.0,c)
3 2 3*lam*c expr 5.0/lam, mtif(lam,5.0,c)
3 0 3*lam*(1-c) expr 10.0/lam, mtif(lam,10.0,c)
2 1 2*lam*c
2 0 2*lam*(1-c) end

Figure 4.22: Input File for the Ten Processor Example

Figure 4.22 shows an input �le for this system. The speci�cation of the Markov chain is as for previous
examples. Notice the de�nition of the function mtif. It is de�ned in terms of the mean of the CDF for the same
Markov chain analyzed with two di�erent sets of parameters. It is also worth noting that if c is nonzero, then
the Markov chain with the �rst set of parameters is cyclic and the second is not.

Output is shown in Figure 4.23.

4.11 Irreducible Markov Chains: Comparing Repair Strategies

To show how irreducible Markov chains can be used, consider a system with three statistically identical compo-
nents, each with failure rate �. The system is up whenever one or more of the three components are up. When
a component fails, it gets repaired. The measure of interest is the system's steady state availability.

Suppose we have a single repair facility with repair rate � and have found that the availability of the system
is not high enough. Suppose we want to evaluate two possible improvements to the system. One is to get two
more of the same kind of repair facility and the other is to trade in the single repair facility for one that is twice
as fast. single repair facility for a faster one. We are considering three repair strategies:

Scheme 2: A single repair facility of rate � is shared among all components.

Scheme 1: Each component has its own repair facility with repair rate �.

Scheme 3: Speedup of the repair facility to rate 2�, while retaining a single repair facility.
Three Markov chains for this example are shown in Figure 4.25 where state j models a system with j working

components. Input and output �les for SHARPE for this example is shown in Figure 4.25. Notice that we
can use model parameters to let us de�ne a single SHARPE model to serve for all three schemes. The output
con�rms that schemes 2 and 3 both improve steady-state availability, and that scheme 3 improves it more than
scheme 2.

49

c: 9.9990e-01 c: 1.0000e+00

--- ---

1.0/lam : 1.0000e+00 1.0/lam : 1.0000e+00

mtif(lam,1.0,c): 1.4133e+00 mtif(lam,1.0,c): 1.4137e+00

--- ---

5.0/lam : 5.0000e+00 5.0/lam : 5.0000e+00

mtif(lam,5.0,c): 1.3277e+01 mtif(lam,5.0,c): 1.3524e+01

--- ---

10.0/lam : 1.0000e+01 10.0/lam : 1.0000e+01

mtif(lam,10.0,c): 2.3177e+02 mtif(lam,10.0,c): 4.9550e+02

Figure 4.23: Output for the Ten Processor Example

2 1
µ

03

3λ 2λ λ

3µ

µ µ

2 1
µ

03

3λ 2λ λ

2 1 03

3λ 2λ λ

2µ 2µ 2µ

2µ
Scheme 2

Scheme 3

Scheme 1

Figure 4.24: Markov Models for the Three Repair Strategies

50

markov 3repair(r1,r2,r3)

3 2 3*lam

2 1 2*lam

1 0 lam

0 1 r1

1 2 r2

2 3 r3

end

bind

lam 0.0001

mu 0.001

end

func avail(r1,r2,r3) n
1 - prob(3repair,0;r1,r2,r3)

var scheme1 avail (mu,mu,mu)

var scheme2 avail (mu,2*mu,3*mu)

var scheme3 avail (2*mu,2*mu,2*mu)

expr scheme1, scheme2, scheme3

end

a) input

scheme1: 9.9561e-01

scheme2: 9.9910e-01

scheme3: 9.9936e-01

b) output

Figure 4.25: Input and Output for Arnold's System

51

52

Chapter 5

Performance Analysis

There are several di�erent analytic models that are suitable for perfomance analysis. Each of the models, has
its own limitations and advantages over the others:

1. Series-Parallel Directed Acyclic Graphs These can be used to model concurrency and synchronization
within programs with unlimited resources. However, contention for limited resources cannot be modeled
using such graphs.

2. Product Form Queuing Networks (PFQN): These models are necessary for representation of contention for
limited resources. However realistic situations like concurrency within a job, synchronization, simultaneous
resource possession etc. cannot be modeled using PFQNs as they violate the assumptions required for an
e�cient (product-form) solution.

3. Markov chains: These models overcome the inadequacies of the above two model types. They provide a
general framework that can be used to model all the above mentioned characteristics of systems. However,
the construction of these models can be very di�cult and error-prone. Generalized Stochastic Petri Nets
provide a higher level interface which can be used for concise description of these models. The underlying
Markov chain can then be generated automatically and solved using existing methods.

For our present purpose of performance modeling there are six di�erent model
types:

� Series-parallel acyclic directed graphs

� Single or Multiple-chain Product-Form Queuing Networks

� Markov chains

� Semi-Markov chains

� Generalized Stochastic Petri nets

� Any Hierarchical combination involving the above model types.

In this chapter we will provide examples that illustrate the use of above model types for performance analysis.

5.1 Program Performance Analysis

In this section, we consider methods for predicting the performance of programs. For several di�erent methods
for analyzing sequential programs, the reader is referred to [53]. For example, if we consider structured programs
then we can use combinatorial methods (see chapters 1-5 and appendix E of [53]). For more general programs
discrete time Markov chains can be used (see chapter 7 of [53]).

For programs with internal concurrency Bucher has conducted a study of their execution times and speedups
on vector and parallel processing systems using measurements [?]. Analytic evaluation of the execution times

53

A

1 2 3 4

5 6 7

B

max

p
q

r

Figure 5.1: A Task Precedence Graph

for programs with internal concurrency can be equated to the analysis of an extended stochastic PERT network
[15, 13]. The general problem is quite di�cult but it is possible to derive bounds on the performance. Our
approach is to consider series-parallel graphs for computing the distribution function of the execution time of a
concurrent program in an environment with ample processors. In the case that the actual program graph is not
series-parallel and/or it contains cycles, we will see that we can often use the model hierarchies available in our
approach to solve the problem.

Series-parallel directed acyclic graphs are very useful in analyzing task graphs of programs. By associating
various task graphs with nodes in a SP graph, we are able to evaluate program performance measures such as
the distribution of time to completion of the program, dynamic failure probability of the program etc. SP graphs
allow the completion time distributions associated with each task to be an arbitrary exponential polynomial.
However their only drawback is that they cannot model non-series parallel graphs. The following sections present
some examples of program performance using SP graphs.

5.1.1 Performance Analysis of a Concurrent Program

We now consider a model of program execution for a program that has internal concurrency. A task graph for
the program is shown in Figure 5.1. To reduce clutter, the distributions for the nodes are not shown. Typically,
the program segment A might be responsible for reading data and setting up a number of disjoint subproblems
that need to be solved. These problems are passed to a number of processors to be solved concurrently (in
this example, we assume four processors). The subproblems might be solved with identical algorithms or with
di�erent algorithms. After all of the concurrent segments have �nished, segment B collects the answers and
examines them. Since node B cannot begin execution until all of the segments 1 through 4 have �nished, the
�nishing time for the collection of segments is the maximum of their individual �nishing times. This is expressed
in the SHARPE model by assigning an exit type of \maximum" to segment A.

Depending on the results, the program might terminate or one of two possible further actions might be taken.
In the graph, nodes 5 and 6 represent the two possible actions. Node 7 is a null action (having distribution zero)
and represents the possibility that no action is taken. Since only one of the nodes 5, 6, or 7 is chosen, segment
B is assigned the exit type \probabilistic", and the edges going from B to each of 5, 6, and 7 are assigned a
probability value.

An input �le for this model is shown in Figure 5.2. Lines 3 through 31 de�ne the series-parallel graph. On line
3, the keyword graph identi�es the system as a series-parallel graph, and the graph is given the name program.
Lines 4 through 14 de�ne the graph structure by giving one edge on each line. Each edge is speci�ed by its start
and end node. The end of the edge de�nition section is marked by line 15 containing the keyword end. Lines
16 through 31 de�ne the concurrency types for parallel subgraphs and the distribution functions for the nodes.
In this section, there are three types of lines.

1. exit type assignment (keyword exit)

Nodes that have multiple successors must be assigned exit types. In this example, node A is given exit
type max on line 16 and node B is given exit type prob on line 25.

54

1 * a program with concurrency 25 exit B prob
2 26 prob B 5 p
3 graph program 27 prob B 6 q
4 A 1 28 dist 5 exp(u5)
5 A 2 29 dist 6 exp(u6)
6 A 3 30 dist 7 zero
7 A 4 31 end
8 1 B 32
9 2 B 33 bind
10 3 B 34 uA 2
11 4 B 35 u1 1
12 B 5 36 u2 1.4
13 B 6 37 u3 1.2
14 B 7 38 u4 1.1
15 end 39 u5 .6
16 exit A max 40 u6 .7
17 dist A exp(uA) 41 p .4
18 dist 1 exp(u1) 42 q .4
19 dist 2 exp(u2) 43 end
20 dist 3 exp(u3) 44
21 dist 4 exp(u4) 45 expr mean(program)
22 dist B gen 1,0,0 n 46 expr variance(program)
23 -1,0,-2*uA n 47 eval (program) 1 10 1
24 -2*uA,1,-2*uA 48 end

Figure 5.2: Input File for Program with Concurrency

2. distribution assignment (keyword dist)

Every node must be assigned a distribution. In this example, nodes A and 1 through 6 are assigned
exponential distributions with di�erent arguments. Node B is assigned a 2-stage Erlang distribution with
argument twice that of node A. On line 30, node 7 is assigned the distribution zero, which is a built-in
distribution type that has no parameters and requires no parentheses.

3. probability values (keyword prob)

Whenever a node has exit type prob, the edges leaving the node must be assigned probability values. On
lines 26 and 27, we assign p to the edge going from B to 5 and q to the edge going from B to 6. There is no
probability assigned to the edge going from B to 7. SHARPE allows us to leave one probability unspeci�ed;
it will compute that probability by adding up the other probabilities and subtracting the sum from one.
Of course, the partial sum must be less than or equal to one. If all of the probabilities are speci�ed, they
must add up to one.

The lines within this section can appear in any order, with the obvious exception that a group of lines
continued with \n" cannot be separated from each other.

On lines 33 through 43, we bind the variables to values. Since this is a performance model, the CDF for
the graph is that of the execution time of the program. We are often not so much interested in the actual CDF
as in its mean and variance and its values at points of interest. On lines 45 and 46, we request the mean and
variance of the CDF for the system using the expr keyword and the built-in functions mean and variance.
These functions give the mean and variance, respectively, of the CDF for the graph. On line 47, we request that
the CDF be evaluated over the interval 1 through 10 at increments of 1. The results are given in Figure 5.3.

5.1.2 Modeling Interprocess Communication

Consider the task graph shown in Figure 5.4(a). This example is based on a model suggested by Kung [30]
Nodes 1, 2, 3, and 4 represent tasks; after task 1 is completed, tasks 2 and 3 could be executed concurrently

55

mean(program): 4.0520e+00

||||||||||||||-

variance(program): 3.8177e+00

||||||||||||||-

system program
t F(t)

1.0000 e+00 5.9672 e-03
2.0000 e+00 1.0767 e-01
3.0000 e+00 3.3506 e-01
4.0000 e+00 5.7027 e-01
5.0000 e+00 7.4498 e-01
6.0000 e+00 8.5581 e-01
7.0000 e+00 9.2067 e-01
8.0000 e+00 9.5702 e-01
9.0000 e+00 9.7691 e-01
1.0000 e+01 9.8765 e-01

Figure 5.3: Results for Program with Concurrency

1

2 3

4

1

2 3

1

4

2

3

4

S13

S24

(a) (b) (c)

max

Figure 5.4: Three Task Precedence Graphs

if two processors are available. Since task 4 needs the results of tasks 2 and 3, it cannot begin execution until
tasks 2 and 3 are �nished. Suppose �rst that the system on which this task graph is to execute has only one
processor and hence it has to be executed sequentially. The graph in Figure 5.4(b) is one way of sequencing the
tasks. Next suppose that the system on which the graph of Figure 5.4(a) is to execute possesses two processors.
Assume that tasks 1 and 2 are executed on one processor and tasks 3 and 4 are executed on another processor.
Results from task 1 must be sent from one processor to the other before task 3 can begin, and similarly for tasks
2 and 4. The time needed for communication between tasks 1 and 3 and tasks 2 and 4 is modeled by the nodes
S13 and S24, respectively, in the graph of Figure 5.4(c).

Kung assumed that all of the distributions are exponential and analyzed the graph by converting it into a
Markov chain. The SHARPE technique allows distributions to be any exponential polynomial. We assigned
task 2 the 2-stage Erlang distribution with parameter 0.4, and the rest of the tasks the exponential distribution
with parameters 0.3, 0.57 and 0.25 for tasks 1, 3 and 4, respectively. Each communication task is exponentially
distributed with mean c. By varying the value of c, we can get a feel for when the cost of communication
outweighs the bene�ts gained from using two processors. A SHARPE input �le for this example is shown in
Figure 5.5 (a). In the input �le, the graph called SEQUENCE models the sequential execution as in Figure

56

poly erlang (u) gen n graph PARALLEL(c)
1,0,0 n 1 2
-1, 0, -u n 1 s13
-u, 1, -u 2 s24

s13 3
bind s24 4
u1 .3 3 4
u2 .4 end
u3 .57 exit 1 max
u4 .25 dist 1 exp (u1)
end dist 2 erlang (u2)

dist s13 exp (1/c)
graph SEQUENCE dist s24 exp (1/c)
1 2 dist 3 exp (u3)
2 3 dist 4 exp (u4)
3 4 end
end
dist 1 exp(u1) expr mean (SEQUENCE)
dist 2 erlang(u2) expr mean (PARALLEL;.5)
dist 3 exp(u3) expr mean (PARALLEL;.75)
dist 4 exp(u4) expr mean (PARALLEL;1)
end expr mean (PARALLEL;1.25)

expr mean (PARALLEL;1.5)
end

a) input

mean (SEQUENCE): 1.4088e+01

||||||||||||||-

mean (PARALLEL;.5): 1.3155e+01

||||||||||||||-

mean (PARALLEL;.75): 1.3433e+01

||||||||||||||-

mean (PARALLEL;1): 1.3721e+01

||||||||||||||-

mean (PARALLEL;1.25): 1.4017e+01

||||||||||||||-

mean (PARALLEL;1.5): 1.4321e+01

b) output

Figure 5.5: Input and Output for Kung's Example

57

poly erlang (u) gen n graph PARALLEL(f1,f2)
1,0,0 n 1 2
-1, 0, -u n 1 s13
-u, 1, -u 2 s24

s13 3
poly defective (f,u) gen n s24 4
u/(f+u), 0, 0 n 3 4
-u/(f+u), 0, -(f+u) end

exit 1 max
bind dist 1 exp (u1)
u1 .3 dist 2 erlang (u2)
u2 .4 dist s13 defective(f1,1/c)
u3 .57 dist s24 defective(f2,1/c)
u4 .25 dist 3 exp (u3)
c 1.0 dist 4 exp (u4)
k13 .0001 end
k24 .0003
end cdf (PARALLEL;0,0)

cdf (PARALLEL;k13,k24)
end

Figure 5.6: Input File for Extended Version of Kung's Example

5.5(b), and the model called PARALLEL models the concurrent execution of the task graph as in Figure 5.4(c),
including the e�ect of communication delays. From the results shown in Figure 5.5(b), we see that when c is
greater than about 1.25, the communication cost causes the two-processor implementation to take longer (on the
average) than if the tasks were all run on a single processor.

We can use the defective distributions allowed by SHARPE to model the case where the communication link
can fail so that with some probability, the overall program will not �nish. If the link used for communication

task S13 has failure rate �13 then the completion time distribution for S13 is (1=c
�13+1=c

)(1 � e�(�13+1=c)t). The

distribution for S14 is computed similarly. When these defective distributions are used, the resulting CDF for
the entire graph is defective, and gives both the probability of a link failure before completion of all the tasks
as well as the distribution for the time-to-�nish in case all tasks do complete. If �13 = :0001, �24 = :0003, and
c = 1, the probability of a link failure before completion of the graph is 0.0003999. A SHARPE input �le for
this example is shown in Figure 5.6.

5.1.3 Speedup with Varying Number of Processors

Graph models can be used to compute the speedup achieved by using concurrency within programs. Fig. 5.7(a)
shows a parallel program in pseudo-code. Fig. 5.7(b) shows the graph when we have three processors to run
these tasks on. The graph converted to show the execution on a single processor is shown in Fig. 5.7(c). In the
�gure, p denotes the probability that B is true.

If we let Xi denote the random execution time of task Ti, the execution time Y3 of the program when run on
three processors, is given by:

Y3 =

�
X1 +X3 +X7 +X8 if B = false
X1 +X2 +maxfX4; X5; X6g+X8 if B = true

For the sequential case the execution time of the program is given by:

Y1 =

�
X1 +X3 +X7 +X8 if B = false
X1 +X2 +X4 +X5 +X6 +X8 if B = true

Two important performance measures can be computed using this model: the speedup and the probability of
�nishing the job by a particular time. The �rst is a simple computation of the ratios of the mean execution times

58

If B then

(d)(c)

(b)(a)

S1;

begin
S2;
cobegin

coend

end
else
begin
S3;
S7;

S4;S5;S6;

end.
S8;

T1

T2

T4 T5

T6 T7

T3

T8

p 1-p
T1

T2 T3

p 1-p

T4 T5 T6 T7

min

T8

T8

T7T6T5T4

max

1-pp

T3T2

T1

Figure 5.7: (a) Example parallel program. Graph models for the execution of the program on (b) 3 processors,
(c) 1 processor, (d)\min" case

59

exp()

exp()

CPU1

CPU2

IO1

IO2

ZERO

max

prob

exp()

p 1-p

λ

λ

exp()

µ
1

2
µ

Figure 5.8: Precedence Graph for the CPU-I/O Overlap Example

(E[Y1]=E[Y3]), while the second one is available to us through the CDF (Cumulative Distribution Function) of
the completion time of the task graph (P (Y3 � d) or P (Y1 � d)). For example, when T1; T2 � EXP (1); T3 �
EXP (0:2); T7 � EXP (0:5); T8 � EXP (1:3); T4; T5; T6 � EXP (0:1) and p = 0:9, the speedup achieved is
1.5285. The probability that the program is completed within time t = 30 on a single processor is 0.595 which
is considerably lower than that for three processors, which is 0.83167.

Now consider the case where the type of concurrency spawned after the completion of task T2 is such that
the �rst task to complete among T4; T5; and T6 may allow the execution of T8 to begin. This will model, for
example, the situation where T4,T5, and T6 are carrying out a parallel search of a database. The graph model
for this case is as depicted in Fig. 5.7(d). The random completion time in this case is given by

Z3 =

�
X1 +X3 +X7 +X8 if B = false
X1 +X2 +minfX4; X5; X6g+X8 if B = true

One can compare the completion time distribution for this with the case of max with three processors. The
probability that the program completes by a deadline t = 30 is 0.991, which is the highest among the three cases
considered.

5.1.4 CPU/IO Overlap

Figure 5.8 shows a series-parallel graph representing one iteration of the program with CPU-I/O overlap con-
sidered by Towsley, Chandy and Browne [52]. In each iteration of the program there are two stages. The �rst
stage is always a CPU burst. The second stage consists of either pure input/output, or input/output that may
be overlapped with a second CPU burst. The probability that the second stage consists of CPU-I/O overlap is
given by p. The node called ZERO is a dummy node having distribution zero. It allows us to have one branch of
the CPU node lead to a single node, while the other branch leads to a group of nodes to be executed in parallel.

We might like to know how much it helps to allow the overlap. We de�ne the \speedup" to be the ratio of
the mean sequential execution time (the time when no overlap is allowed) to the mean parallel execution time.
We can use the SHARPE program to compute the speedup for various values of p. Figure 5.9 shows a SHARPE
input �le for this example.

Note the use of the loop keyword to vary the value of p from 0.6 to 1.0. Note also that we have used an
alternate one-line form of the bind statement.

Results are shown in Figure 5.10. When p is 0.7, the mean execution time for the serial graph is .27505, the
mean execution time for the graph with overlap is .22733, and the speedup is 1.21. It is interesting to note that
even when we have maximum parallelism for this graph (when the branch leading to IO1 is never taken), the
speedup is only 1.28. This is because of the time spent in CPU1. When we decreased the mean service time at
CPU1 from 0.0376 to 0.01, the speedup with maximum parallelism increased to 1.31.

As a further experiment, we can add more detail to the model. First, we recognize the fact that the length
of each CPU burst may vary, depending on the particular job being done. We can model this by dividing the
jobs into n classes and assigning each CPU node in the graph an n-stage hyperexponential distribution. Second,
we assume that the I/O service consists of three sequential phases. The �rst phase, corresponding to seek time,

60

* CPU-I/O overlap exit cpu1 prob
bind prob cpu1 zero p
mu1 1 / 0.0376 exit zero max
mu2 1 / 0.125 dist cpu1 exp (mu1)
lambda 1 / 0.14995 dist zero zero
end dist io1 exp (lambda)

dist cpu2 exp (mu2)
graph SERIAL(p) dist io2 exp (lambda)
cpu1 cpu2 end
cpu2 io2
cpu1 io1 expr mean(SERIAL;0.7)
end expr mean(OVERLAP;0.7)

loop p, 0.6, 1.0, 0.1
exit cpu1 prob expr mean(SERIAL;p)/mean(OVERLAP;p)
prob cpu1 cpu2 p end
dist cpu1 exp (mu1)
dist io1 exp (lambda) bind mu1 1 / 0.01
dist cpu2 exp (mu2)
dist io2 exp (lambda) expr mean(SERIAL;1.0)/mean(OVERLAP;1.0)
end end

graph OVERLAP(p)
cpu1 zero
cpu1 io1
zero cpu2
zero io2
end

Figure 5.9: Input for the CPU-I/O Example
mean(SERIAL;0.7) : 2.7505e-01 p=0.800000

mean(SERIAL;p)/mean(OVERLAP;p) : 1.2341e+00
||||||||||||||-

p=0.900000
mean(OVERLAP;0.7) : 2.2733e-01 mean(SERIAL;p)/mean(OVERLAP;p) : 1.2570e+00

||||||||||||||- p=1.000000
mean(SERIAL;p)/mean(OVERLAP;p) : 1.2790e+00

||||||||||||||-
p=0.600000

mean(SERIAL;p)/mean(OVERLAP;p) : 1.1845e+00
mean(SERIAL;1.0)/mean(OVERLAP;1.0) : 1.3145e+00

p=0.700000
mean(SERIAL;p)/mean(OVERLAP;p) : 1.2099e+00

Figure 5.10: Output for the CPU-I/O Example

61

is assumed to be exponentially distributed with a mass at the origin:

Fseek(t) = pnoseek + (1� pnoseek)(1� e��seekt)

Thus with probability pnoseek the required information is on the cylinder located under the head, and hence
no head movement is necessary. The second phase is the rotational latency phase, and the third phase is the
transfer phase; we assume that the time spent in each of these phases is exponentially distributed.

We choose the parameter values so that the mean for the 2-stage hyperexponential distribution for each CPU
node is the same as the mean for the previously used exponential distributions for the nodes, and the mean
for the I/O nodes is the same as before. The more detailed model shows a shorter mean execution time for
the graph with overlap and a greater speedup for each value of p. This illustrates the fact that the mean of a
distribution does not contain all of the information about a distribution. A SHARPE input �le for the extended
case is shown in Figure 5.11.

5.1.5 Program Execution with a Possibility of Failure

To see how SHARPE can be used to analyze the completion time of a program that is subject to software or
hardware failure, we consider an example taken from Wei and Campbell [59]. In Figure 5.12, the nodes in the
graph represent segments of a process.

Associated with each segment i is the distribution function Fi(fi; �i; t) = (1� fi)(1� e��it). The probability
of failure during the execution of the segment is 1 � limt!1 F (fi; �i; t) = fi. All branching in the graph is
probabilistic, and the label pij on the edge leading from node i to node j gives the probability that after the
completion of segment i the branch to segment j is taken.

In [59], a formula is given for approximating the overall failure probability. Using the SHARPE technique,
the result function F for the overall graph gives the CDF for the completion time of the entire process. The
mass at in�nity of this CDF gives the probability p that a failure occurs before the whole process completes.
The distribution F/p is the CDF of the process completion time given that a failure did not occur.

We used SHARPE to analyze this graph for the same two sets of values for the probabilities on the edges and
failure probabilities as in [16]. We assigned the �i arbitrary values, since the original example did not contain
execution-time parameters.

Figures 5.13(a) and 5.13(b), respectively, contain the input and output �les for this example.

5.1.6 A Large Task Graph

As another example of concurrency, we consider the task graph shown in Figure 2.1 adopted from [?]. In [?]
task execution times were assumed to be deterministic; however, here we treat individual task execution times as
random variables. The number associated with each node in Figure 2.1 is taken as the mean time to completion
of the task associated with that node in seconds. Times to completion of individual tasks are assumed to be
exponentially distributed random variables, unless otherwise mentioned. Acyclic series-parallel graph models
along with Markov models (to handle cycles in graphs) are used to solve this problem.

In the following subsections, we �rst analyze the task graph in order to assess the e�ect of concurrency on pure
performance measures under the assumption that the underlying processors on which the task graph executes
do not fail. Next we allow for the possibility of a task failing during execution.

Performance Measures for Completely Reliable Systems

Performance models for the execution of this task graph on systems with one, two and three processors are
developed. The uniprocessor system performs these tasks (T1; : : : ; T9) sequentially. Two di�erent scheduling
schemes, schedule 1 and schedule 2, are used for the two-processor case and only one scheduling scheme is
studied for the three processor system. Graph models representing these four cases are shown in Figures 2.2a,
2.2b, 2.2c and 2.2d respectively. The word \max" in Figure 2.2 used at branch points shows that the task at
which the branches meet again can be executed only upon completion of all required tasks on those branches.
Thus the completion time of the task graph in Figure 2.2d is given by

T1 +max(T3 + T6; T2 +max(T4; T5) +max(T7; T8)) + T9

62

* CPU-I/O overlap * CPU-I/O overlap bind
* with hyperexponential mu1a 0.1 / .0156

bind * CPU service mu1b 0.9 / .022
mu1 1 / 0.0376 * and 3-stage IO service mu2a 0.1 / 0.0250
mu2 1 / 0.125 mu2b 0.9 / 0.1
lambda 1 / 0.14995 poly hyper(x1,x2) gen n pn .001
end 1, 0, 0 n Lseek 1 / .05

-0.1, 0, -x1 n Llatency 1 / .02
graph SERIAL(p) -0.9, 0, -x2 Ltransfer 1 / .08
cpu1 cpu2 end
cpu2 io2 graph IO
cpu1 io1 seek latency expr mean(IO)
end latency transfer expr mean (DETAIL;0.8)

end expr mean (OVERLAP;0.8)
exit cpu1 prob expr mean (DETAIL;0.9)
prob cpu1 cpu2 p dist seek gen n expr mean (OVERLAP;0.9)
dist cpu1 exp(mu1) 1, 0, 0 n
dist io1 exp(lambda) -(1-pn), 0, -Lseek expr mean(SERIAL;0.6) n
dist cpu2 exp(mu2) /mean(DETAIL;0.6)
dist io2 exp(lambda) dist latency exp(Llatency) expr mean(SERIAL;0.7) n
end dist transfer exp(Ltransfer) /mean(DETAIL;0.7)

end expr mean(SERIAL;0.8) n
graph OVERLAP(p) /mean(DETAIL;0.8)
cpu1 zero graph DETAIL(p) expr mean(SERIAL;0.9) n
cpu1 io1 cpu1 zero /mean(DETAIL;0.9)
zero cpu2 cpu1 io1 expr mean(SERIAL;1.0) n
zero io2 zero cpu2 /mean(DETAIL;1.0)
end zero io2 end

end
exit cpu1 prob
prob cpu1 zero p exit cpu1 prob
exit zero max prob cpu1 zero p
dist cpu1 exp(mu1) exit zero max
dist zero zero dist cpu1 hyper(mu1a,mu1b)
dist io1 exp(lambda) dist zero zero
dist cpu2 exp(mu2) dist io1 cdf (IO)
dist io2 exp(lambda) dist cpu2 hyper(mu2a,mu2b)
end dist io2 cdf (IO)

end

Figure 5.11: Input File for the Extended CPU-I/O Example

63

1

2

3

5

4

67 z

8

F (t)=(1-f)(1-e)i i

F (t)=1z

i- tµ

p
23

p
24

p
57 p

5z

Figure 5.12: A Program Graph

In Figure 2.2d, one processor is scheduled to do tasks T3 and T6 while the other two processors are scheduled
to tasks on the branch starting at T2. So the three processors could be simultaneously scheduled to tasks T6,
T4 and T5. Note that dummy nodes (such as C and D) with zero completion times are introduced wherever
necessary in order to obtain series-parallel graphs without altering the problem.

Two performance measures are used in this analysis, speedup and dynamic failure probability. \Speedup"
(Sk) is de�ned by:

Sk = ET1=ETk

where ET1 and ETk are the mean execution times of the task graph on uniprocessor and multiprocessor system
with k processors, respectively. Speedup gives us a measure of the bene�ts of using multiprocessor systems
and hence could be used in optimization studies. The second measure \Dynamic Failure Probability at Time
d" (DFP (d)) is de�ned as the probability of not completing the job by time, d. Since SHARPE computes the
distribution function of the completion time of task graphs, DFP (d) is easily computed. This is a useful measure
since it gives us the probability of not meeting a �xed deadline, and thus we are able to assess the timeliness
property, an important characteristic of real-time systems.

The results of the analysis obtained from SHARPE are given below in Table 2.1. For the deterministic case
with two processors using schedule 1, the speedup given in [?] is 1.8, while for the random case, the speedup
is 1.3124 as shown in Table 2.1. As expected, the three-processor case has the best speedup, and for the two-
processor case, schedule 2 has better speedup than schedule 1. We use a deadline of 25 seconds for the dynamic
failure probability measure. We note that apart from speedup, the use of multiple processors signi�cantly reduces
the probability of not meeting the deadline.

Table 2.1 Performance measures for uni- and multi- processor systems

Case Speedup DFP(25)
One processor 1.0 0.6398
Two processors - schedule 1 1.3124 0.37469
Two processors - schedule 2 1.3527 0.34783
Three processors 1.4518 0.29123

Task Failures

Let pfi denote the failure probability of task i. The distribution function assigned to the time to complete task
i is then (1� pfi)(1� e��it), a defective distribution. The combined performance-reliability measure used here
is \Dynamic Failure Probability with Task failures"(DFPTF (p; d)) where p is the probability that a task fails,
i.e. pfi = p 8 i. It is de�ned as the probability that the job is not completed by time d when each task is allowed

64

* program execution with * 1st data set
a possibility of failure bind

f1 .02
poly F(f, u) gen n f2 .03

1-f, 0, 0 n f3 .04
-(1-f), 0, -u f4 .05

f5 .06
graph main f6 .07
e1 e2 f7 .08
e2 e3 f8 .09
e2 e4 u 3
e3 e5 p23 .6
e5 e7 p57 .8
e5 z end
e7 e8
z e8 cdf (main)
e4 e6
e6 e8 * 2nd data set
end bind

f1 .002
exit e2 prob f2 .003
exit e5 prob f3 .004
prob e2 e3 p23 f4 .005
prob e5 e7 p57 f5 .006

f6 .007
dist z zero f7 .008
dist e1 F(f1, u) f8 .009
dist e2 F(f2, u) u 3
dist e3 F(f3, u) p23 .6
dist e4 F(f4, u) p57 .8
dist e5 F(f5, u) end
dist e6 F(f6, u)
dist e7 F(f7, u) cdf (main)
dist e8 F(f8, u) end
end

a) input

CDF for system main:

probability at 0: 0.0000e+00
probability at in�nity: 2.5590e-01
continuous probability: 7.4410e-01

-6.9806e-01 t(5) exp(-3.0000e+00 t)
+ -2.5113e+00 t(4) exp(-3.0000e+00 t)
+ -3.3485e+00 t(3) exp(-3.0000e+00 t)
+ -3.3485e+00 t(2) exp(-3.0000e+00 t)
+ -2.2323e+00 t(1) exp(-3.0000e+00 t)
+ 7.4410e-01 t(0) exp(0.0000e+00 t)
+ -7.4410e-01 t(0) exp(-3.0000e+00 t)

mean and variance are conditional on �nite time

mean: 1.8211e+00
variance: 6.3466e-01

||||||||||||||-

CDF for system main:

probability at 0: 0.0000e+00
probability at in�nity: 2.8319e-02
continuous probability: 9.7168e-01

-9.4129e-01 t(5) exp(-3.0000e+00 t)
+ -3.2794e+00 t(4) exp(-3.0000e+00 t)
+ -4.3726e+00 t(3) exp(-3.0000e+00 t)
+ -4.3726e+00 t(2) exp(-3.0000e+00 t)
+ -2.9150e+00 t(1) exp(-3.0000e+00 t)
+ 9.7168e-01 t(0) exp(0.0000e+00 t)
+ -9.7168e-01 t(0) exp(-3.0000e+00 t)

mean and variance are conditional on �nite time

mean: 1.8261e+00
variance: 6.3643e-01

b) output

Figure 5.13: Input and Output Files for Program Execution with Failure

65

to fail with probability p. Table 2.2 shows the value of this measure for one- and three- processor systems with
p = 0:1 and d = 25 seconds. This table has been included so that the reader could compare these values with
those of Table 2.1 to see the e�ect of allowing task failures.

Table 2.2 Combined measure for one- and three- processor systems

Case DFPTF (0:1; 25)
One processor 0.86045
Three processors 0.72541

Fig. 2.6 shows plots of the variation of DFPTF (p; d) with respect to d for both one and three processor systems
and for three values of p, 0, 0:1 and 0:5. When p = 0 DFPTF reduces to DFP as de�ned in the previous section.
Note that for p = 0:5, the values of DFPTF remains the same for one and three processors for the time range
considered.

Another useful measure that can be obtained from this analysis is the probability that the job never completes
also called the omission failure probability (OFP (p)). This can happen since tasks are allowed to fail and not
recover. The omission failure probability is obtained directly in SHARPE by requesting the mass at in�nity in
the overall execution time distribution for the task graph. This obviously depends on the value of p as shown
below in Table 2.3.

Table 2.3 Omission failure probability

p OFP - 1 processor OFP - 3 processors
0.0 0 0
0.1 6.1258e-01 6.1258e-01
0.5 9.9805e-01 9.9805e-01

E�ect of Di�erent Distributions for Task Completion Times

We then test the e�ect of assigning distributions other than exponential for the completion times of tasks. The
task graph used is that in Figure 2.1 and no task or server failures are considered. The servers used are the one
and three processor systems with scheduling as in Figures 2.2a and 2.2d. Performance measures are speedup
and DFP (25 seconds) as de�ned in section 2.1. Results are shown in Table 2.6. For each case in Table 2.6,
only one node's distribution is explicitly mentioned. All other nodes in the graph models are assumed to have
exponentially distributed times to completion unless otherwise mentioned in the Table 2.6. The mean task
completion times have been maintained the same while changing distributions and the values used for the mean
times are as shown in Figure 2.1. The distributions used are exponential, hypoexponential with two stages and
hyperexponential with two phases with branch probabilities of 0.25 and 0.75.

Table 2.6 E�ect of varying distributions of some task times

Case Speedup DFP(25) - 1 processor DFP(25) - 3 processor
Exp. distr. for T1 1.4518 0.63980 0.29123
Hypoexp. distr. for T1 1.4518 0.63986 0.29080
Hyperexp. distr. for T1 1.4518 0.63902 0.29295
Exp. distr. for T3 1.4518 0.63980 0.29123
Hypoexp. distr. for T3 1.4519 0.63986 0.29121
Hyperexp. distr. for T3 1.4507 0.63902 0.29145
Exp. distr. for T7 1.4518 0.63980 0.29123
Hypoexp. distr. for T7 1.4753 0.65706 0.27037
Hyperexp. distr. for T7 1.4152 0.59617 0.28928
Exp. distr. for T9 1.4518 0.63980 0.29123
Hypoexp. distr. for T9 1.4518 0.63986 0.29080
Hyperexp. distr. for T9 1.4518 0.63902 0.29295

66

CPU

disk1

disk2

1000/20

p0=.1

p1=.667

p2=.233

1000/30

1000/42.9

Figure 5.14: The Central-Server Queueing System

The results in Table 2.6 show that if the node that is assigned these various distributions (hypoexponential
and hyperexponential) is one that cannot be performed concurrently with any other task (T1 and T9 in Figure
2.1), then speedup is insensitive to the distributional assumption. Otherwise, the hypoexponential case gives
the most speedup since this distribution has a smaller coe�cient of variation than either the exponential or
the hyperexponential. Changing the distributions of completion times of nodes T1, T3 and T9 have the same
e�ect on DFP (25) for the one processor system while we get di�erent values for this parameter by changing the
distribution of the completion time of node T7. This is because tasks T1, T3 and T9 have the same mean time to
completion of unity while T7 has a mean time to completion of 7. Hence its contribution to the distribution of
the total completion time is di�erent.

5.2 System Performance Analysis

5.2.1 A Central-Server Queueing System

Figure 5.14 shows a \closed central-server model" ([53]), in which jobs receive service at a CPU, then proceed
to wait for service from one of two disks or another time-slice from the CPU. The system is assumed to contain
a �xed number, N, of jobs. Each server has exponentially distributed service time, with the service rate shown
above or below the server.

Figure 5.15(a) shows the SHARPE input for this model. The queueing network model is speci�ed in three
sections starting on line 8. The �rst section (lines 9 through 13) gives the shape of the network and the routing
probabilities. Each line is a 3-tuple consisting of two station names and the probability that a job goes to the
second station after it has received service at the �rst.

The second section (lines 15 through 18) speci�es the service parameters for the stations. There is a line
for each station; the line contains the station name, the service type, and one or more service parameters, the
number of parameters depending on the service type. In this case, all of the servers are \�rst-come-�rst-serve"
fcfs; this service type takes one parameter, the service rate.

The third section (lines 20 through 21) gives the number of jobs in the network. It consists of a line containing
any identi�er followed by the number of jobs. The �rst identi�er on the line is meaningless for a \single-chain"
network like this one; for a multiple-chain network there would be a line for each chain, with the �rst identi�er
on each line identifying the chain.

SHARPE provides four measures (all steady-state) for each server in a PFQN: throughput, utilization, re-
sponse time and queue length. In this case, we vary the number of jobs from 2 to 10 to see how the number
of jobs a�ects these measures at the CPU. The results are shown in Figure 5.15(b). We see that average queue
length at the CPU grows from 0.8233 to 4.595, average response time at the CPU grows from 0.03 to 0.102,
average utilization of the CPU grows from 0.588 to 0.899, and CPU throughput grows from 2.94 to 4.499.

Besides fcfs, SHARPE allows the following service types: processor-sharing, multiple, in�nite (simultaneously
serves all jobs at the same rate), load-dependent, and last-come, �rst-serve preemptive resume. See Section A.4.6
for more details.

5.2.2 A Terminal-Oriented System

Consider a terminal-oriented system as shown in Fig. 5.16, where each one of the M terminals can issue
requests at a rate �. A request �rst requires CPU service for an exponentially distributed amount of time. The

67

1 * central-server queueing system
2
3 bind
4 p1 0.667
5 p2 0.233
6 end
7
8 pfqn csm
9 cpu drum p1
10 cpu disk p2
11 drum cpu 1
12 disk cpu 1
13 end
14 * fcfs servers
15 cpu fcfs 1000/20
16 drum fcfs 1000/30
17 disk fcfs 1000/42.918
18 end
19 * number of jobs
20 chain1 custs
21 end
22
23 loop i,2,10,2
24 bind custs i
25 expr tput(csm,cpu)
26 expr util(csm,cpu)
27 expr qlength (csm,cpu)
28 expr rtime (csm,cpu)
29 end
30
31 end

a) input

i=2.000000
custs <- 2.000000
tput(csm,cpu): 2.9406e+01
util(csm,cpu): 5.8811e-01
qlength (csm,cpu): 8.2331e-01
rtime (csm,cpu): 2.7998e-02

i=4.000000
custs <- 4.000000
tput(csm,cpu): 3.7976e+01
util(csm,cpu): 7.5952e-01
qlength (csm,cpu): 1.7202e+00
rtime (csm,cpu): 4.5298e-02

i=6.000000
custs <- 6.000000
tput(csm,cpu): 4.1733e+01
util(csm,cpu): 8.3465e-01
qlength (csm,cpu): 2.6591e+00
rtime (csm,cpu): 6.3717e-02

i=8.000000
custs <- 8.000000
tput(csm,cpu): 4.3753e+01
util(csm,cpu): 8.7506e-01
qlength (csm,cpu): 3.6209e+00
rtime (csm,cpu): 8.2758e-02

i=10.000000
custs <- 10.000000
tput(csm,cpu): 4.4992e+01
util(csm,cpu): 8.9983e-01
qlength (csm,cpu): 4.5955e+00
rtime (csm,cpu): 1.0214e-01

b) output

Figure 5.15: Input and Output for Central Server Queueing Network

68

�

�

CPU

M

1

p0

TERMINALS

�1

�m

�0

DISKm

DISK1
p1

pm

Figure 5.16: Terminal Oriented System

request may then complete with probability p0 or use either one of the m disks with probability pi for DISKi.
After the use of the disks, the cycle continues from the CPU. If we assume that all the servers have exponentially
distributed service times and follow the FCFS scheduling discipline, we have a product-form queuing network.
SHARPE's PFQN model type can be used to compute the average performance measures such as throughput and
mean response time of the system. If we have m = 2; p1 = 0:667; p2 = 0:233; � = 1=25; �0 = 1000=20; �1 =
1000=30; �2 = 1000=42:918, the throughput of the CPU is obtained as 1.9597, the mean response time at DISK2,
0.043599, and the mean queue length at DISK1, 0.040473.

5.2.3 Multi-Chain Product Form Queueing Networks

Queueing networks considered thus far were \single-chain" queueing networks. By \single-chain", we mean that
all jobs in the queue behave the same with regard to routing probabilities and service characteristics at the
stations. If we want the chain to be populated by jobs with di�erent behavior, we can use a \multi-chain"
network.

First consider a variation of this example with two classes of jobs : the CPU-intensive class and the I/O-
intensive. Parameters like routing probabilities, service time distributions at the CPU (where PS discipline is
used in this case) can di�er for these two classes. SHARPE's multiple class PFQN model can be used to compute
steady-state performance measures for this case as well. Let p0 = 0:7; p1 = 0:1; p2 = 0:2; and �0 = 30 for the
CPU-intensive class, and let p0 = 0:2; p1 = 0:5; p2 = 0:3; and �0 = 70 for the I/O-intensive class. Let the rest
of the parameters be the same as before for both the classes. Then, for 2 CPU-intensive jobs and 3 I/O-intensive
jobs, the average throughput at the CPU for the CPU-intensive class is 0.11399 and for the I/O-intensive class,
0.0084992.

Next suppose we have a system with two processors, each having one disk, and one shared disk. Suppose that
processes in this system are targeted to a particular processor. We can draw this queueing network as shown in
Figure 5.17.

Jobs in chain 1 visit processor P1, then go either to P1's private disk (D1), the shared disk (Ds), or back
to P1 (if it left P1 because the job was �nished or reached the end of a time slice). Jobs in chain 2 behave
similarly, but use P2, D2 and Ds.

A SHARPE input �le for this model is shown in Figure 5.18(a). On lines 1 through 10, we bind values to the
routing probabilities and the station service rates. For the sake of illustration, we decided to assume that the

69

D1

Ds

D2

P1

P2

prate=3600

sdrate1=7000

pdrate=7200

prate=3600

pdrate=7200

pr =0.110

pr =0.120

pr =0.67511

pr =0.67522

pr =0.2252s

pr =0.2251s

sdrate2=1800

Figure 5.17: A Multi-Chain Queueing Network

1 bind 27
2 pr11 .675 28 P1 fcfs prate
3 pr1s .225 29 end
4 pr22 .675 30 P2 fcfs prate
5 pr2s .225 31 end
6 prate 3600 32 D1 fcfs pdrate
7 pdrate 7200 33 end
8 sdrate1 7000 34 D2 fcfs pdrate
9 sdrate2 1800 35 end
10 end 36 Ds ps
11 37 1 sdrate1
12 mpfqn serve2(c) 38 2 sdrate2
13 chain 1 39 end
14 P1 D1 pr11 40
15 P1 Ds pr1s 41 end
16 D1 P1 1 42 1 c/2
17 Ds P1 1 43 2 c/2
18 end 44 end
19 45
20 chain 2 46 loop c,10,40,10
21 P2 D2 pr22 47 expr mqlength (serve2,Ds; c)
22 P2 Ds pr2s 48 expr mqlength (serve2,Ds,1; c),
23 D2 P2 1 49 mqlength (serve2,Ds,2; c)
24 Ds P2 1 50 end
25 end 51
26 end 52 end

a) input

c=10.000000
mqlength (serve2,Ds; c): 2.8807e+00
mqlength (serve2,Ds,1; c): 7.7162e-01
mqlength (serve2,Ds,2; c): 2.1091e+00

c=20.000000
mqlength (serve2,Ds; c): 7.0994e+00
mqlength (serve2,Ds,1; c): 1.8135e+00
mqlength (serve2,Ds,2; c): 5.2859e+00

c=30.000000
mqlength (serve2,Ds; c): 1.2108e+01
mqlength (serve2,Ds,1; c): 3.0067e+00
mqlength (serve2,Ds,2; c): 9.1008e+00

c=40.000000
mqlength (serve2,Ds; c): 1.7661e+01
mqlength (serve2,Ds,1; c): 4.3077e+00
mqlength (serve2,Ds,2; c): 1.3353e+01

b) output

Figure 5.18: Input and Output for Multi-Chain Queueing Network

70

0 1 2 3 4 5 6 99 100

λ

µ

λ λ λ λ λ λ λ λ

2µ 3µ 4µ 5µ 5µ 5µ 5µ 5µ

. . .

Figure 5.19: A Birth-Death Type Markov Chain for the M/M/5/100 System

shared disk provides asymmetric service; it provides faster service (at sdrate1) for jobs running on processor 1
than for jobs running on processor 2 (sdrate2).

On lines 12 through 44 we de�ne the multi-chain queueing network. We start with the keyword mpfqn on
line 12. On lines 13 through 26, we de�ne the shape and routing probabilities of the network, with chain 1
de�ned on lines 13 through 18 and chain 2 de�ned on lines 20 through 25. On lines 28 through 41, we de�ne
the service characteristics of the stations. Each station has its own section ending with the keyword end. This
is because except for the station type fcfs, it is possible to assign di�erent service parameters for each chain.
The service characteristics for P1 (service type fcfs and parameter prate) are on lines 28 through 29. Those
for P2 are on lines 30 and 31, for D1 on lines 32 and 33, and for D2 on lines 34 and 35. Again for the sake of
illustration, we decided to give the shared disk a service type of ps (processor-sharing) so we could show how
di�erent service parameters could be assigned for each chain. On line 36, we de�ne just the service type ps for
Ds. This is followed by a line for each chain (lines 37 and 38), with each line containing a chain name followed
by the service parameters for the chain, in this case just a single service rate per chain.

It is also possible to specify default service parameters on the line containing the service type. In that case,
the line de�ning the service type could be followed by lines for only those chains for which the service parameters
are di�erent than the default parameters. In this case, we could have replace lines 36 through 39 with the lines

Ds ps sdrate1

2 sdrate2

end

On lines 42 through 44, we specify the number of jobs in each chain. On lines 46 through 50, we use a loop
to look at the average queue length for the shared disk as the number of jobs in the network increases from
10 to 40. If the built-in function mqlength has two arguments before the semi-colon, the result is the average
number of jobs from all chains in the queue. If the function has three arguments before the semi-colon, the third
argument is a chain name and the result is the average number of jobs in the queue from that chain.

Figure 5.18(b) shows the results.

5.2.4 The M/M/N/K Queueing System

We consider a queueing system with N processors. We will assume that the arrival stream of jobs forms a Poisson
process with rate � and that the service times of jobs are independent and identically distributed exponential
random variables with service rate �. Further assume that the maximum queue length is K. Such a queueing
system is known as an M/M/N/K queue. A birth-death Markov chain for N = 5 and K = 100 is shown in
Figure 5.19. SHARPE input and output �les for this Markov model are shown in 5.20.

Using the parameters � = 1:0 and � = 1:2, we request the values of two expressions: the probability that the
service facility is idle (prob(mm5,0)) and the rate at which jobs are turned away (rejected) because the system
is full (� * prob(mm5,100)). The output produced by SHARPE is 0.43457 and 0, respectively. This tells us
that at this level of tra�c, the processor is busy less than half the time and it is very unlikely for the backlog to
build up beyond 100 jobs.

This input �le shows the need for providing some kind of looping mechanism within the SHARPE input
language. Such a mechanism would make it easy to specify large systems having a regular structure. Plans for
a general loop mechanism are under way.

5.2.5 The M/M/N/K Queueing System with Failure and Repair

71

bind 17 16 5*MU 85 86 LAM
LAM 1.0 17 18 LAM 86 85 5*MU
MU 1.2 18 17 5*MU 86 87 LAM
end 18 19 LAM 87 86 5*MU

19 18 5*MU 87 88 LAM
markov mm5 19 20 LAM 88 87 5*MU
0 1 LAM 20 19 5*MU 88 89 LAM
1 0 MU 20 21 LAM 89 88 5*MU
1 2 LAM 21 20 5*MU 89 90 LAM
2 1 2*MU 21 22 LAM 90 89 5*MU
2 3 LAM 22 21 5*MU 90 91 LAM
3 2 3*MU 22 23 LAM 91 90 5*MU
3 4 LAM 23 22 5*MU 91 92 LAM
4 3 4*MU 23 24 LAM 92 91 5*MU
4 5 LAM 24 23 5*MU 92 93 LAM
5 4 5*MU 24 25 LAM 93 92 5*MU
5 6 LAM 25 24 5*MU 93 94 LAM
6 5 5*MU 25 26 LAM 94 93 5*MU
6 7 LAM 26 25 5*MU 94 95 LAM
7 6 5*MU 26 27 LAM 95 94 5*MU
7 8 LAM 27 26 5*MU 95 96 LAM
8 7 5*MU 27 28 LAM 96 95 5*MU
8 9 LAM 28 27 5*MU 96 97 LAM
9 8 5*MU 28 29 LAM 97 96 5*MU
9 10 LAM 29 28 5*MU 97 98 LAM
10 9 5*MU 29 30 LAM 98 97 5*MU
10 11 LAM 30 29 5*MU 98 99 LAM
11 10 5*MU 30 31 LAM 99 98 5*MU
11 12 LAM 31 30 5*MU 99 100 LAM
12 11 5*MU 31 32 LAM 100 99 5*MU
12 13 LAM 32 31 5*MU end
13 12 5*MU ..
13 14 LAM .. var Pidle prob(mm5,0)
14 13 5*MU .. var Pfull prob(mm5,100)
14 15 LAM .. var Lreject LAM * Pfull
15 14 5*MU .. expr Pidle
15 16 LAM .. expr Lreject
16 15 5*MU .. end
16 17 LAM ..

a) input

Pidle: 4.3457e-01
||||||||{
Lreject: 0.0000e+00

b) output

Figure 5.20: Input and Output Files for the M/M/5/100 Queue

01 11 21

µ µµ

λ λλ

91 a1

µ

λ

µ

λ
. . .

00 10 20

λ λλ

90 a0

λλ
. . .

τ γ τ τ τ τγ γ γ γ

Figure 5.21: Markov Model for the Queueing System with Failure and Repair

72

markov mm1k 71 70 GAM
01 11 LAM 70 71 TAU
11 01 MU 81 80 GAM
11 21 LAM 80 81 TAU
21 11 MU 91 90 GAM
21 31 LAM 90 91 TAU
31 21 MU a1 a0 GAM
31 41 LAM a0 a1 TAU
41 31 MU 00 10 LAM
41 51 LAM 10 20 LAM
51 41 MU 20 30 LAM
51 61 LAM 30 40 LAM
61 51 MU 40 50 LAM
61 71 LAM 50 60 LAM
71 61 MU 60 70 LAM
71 81 LAM 70 80 LAM
81 71 MU 80 90 LAM
81 91 LAM 90 a0 LAM
91 81 MU end
91 a1 LAM
a1 91 MU bind
01 00 GAM LAM 1
00 01 TAU MU 2
11 10 GAM GAM 0.0001
10 11 TAU TAU 0.1
21 20 GAM end
20 21 TAU var Pidle prob(mm1k,00) n
31 30 GAM +prob(mm1k,01)
30 31 TAU var Pfull prob(mm1k,a0) n
41 40 GAM +prob(mm1k,a1))
40 41 TAU var Lreject LAM*Pfull
51 50 GAM expr Pidle
50 51 TAU expr Lreject
61 60 GAM end
60 61 TAU

a) input

Pidle: 4.9953e-01
||||||-
Lreject: 9.6239e-04

b) output

Figure 5.22: Input and Output for the Queueing System with Failure and Repair

Now we consider an M/M/N/K queueing system where the processors are subject to failure, and are repaired
whenever they fail. Again, let the job arrival rate be � and the job service rate be �. Let the the processor
failure rate be and the processor repair rate be � .

First, we model this system by an irreducible Markov chain for N = 1 and K = 10 (see Figure 5.21). Each
state is named with a two-digit number ij where i 2 f0; 1; :::;9; ag is the number of jobs in the system and
j 2 f0; 1g is the number of operational processors.

SHARPE input and output �les for this example are given in Figure 5.22. The probability that there are no
jobs in the system is given by prob(mm1k,00) + prob(mm1k,01), and the rate at which jobs are turned away
because the system is full is given by �� (prob(mm1k,a0) + prob(mm1k,a1)).

If we wanted to use Markov models to get results for di�erent values of N and K, we would have to build a
new Markov model for each di�erent pair of values. Instead, we can use the Generalized Stochastic Petri Net
(GSPN) in Figure 5.23 to model the queueing system.

The cycle in the upper part of the �gure is a representation of an M/M/1/K queue. The lower cycle models
a server that can fail and be repaired. The inhibitor arc from place server-down to transition service reects
the fact that customers cannot be served while the server is not functioning. The number below each place is

73

queue

server-
down

job-
source

server-
up

K

job-arrival service

repair

1

0λ=1 µ=2

γ=.0001 τ=.10

failure

Figure 5.23: Petri Net Model for the Queueing System with Failure and Repair

the initial number of tokens in the place. All of the transitions are timed, and each transition's rate is shown
below the transition. An input �le for this model is shown in �gure 5.24.

On lines 1 through 7, we assign values to values to the model parameters. Starting with line 12, we specify
the GSPN in six sections. The �rst section (lines 15 through 19) speci�es the places in the net. Each line is an
ordered pair consisting of a place name followed by the number of initial tokens in the place. The second section
(lines 21 through 25) speci�es the timed transitions. Each line gives the name of a transition followed by the
transition type and the transition rate. The transition type is either \independent" (ind) or \dependent" dep)
on the number of tokens on incoming arcs. If the rate is independent, the transition rate gives, unconditionally,
the �ring rate of the transition. If the rate is dependent, the �ring rate is the transition rate multiplied by the
number of tokens on incoming arcs. The third section (in this model just the end on line 28) gives immediate
transitions.

The fourth section (lines 31 through 35) describes the enabling arcs going from places to transitions. Each
line is a 3-tuple consisting of a place name, a transition name, and the number of tokens needed to �re the
transition. The �fth section (lines 38 through 42) describes the arcs going from transitions to places. Each line
is a 3-tuple consisting of a transition name, a place name, and the number of tokens that move to the place when
the transition is �red.

The sixth section (lines 44 through 45) gives the inhibitor arcs for the model. Each line is a 3-tuple consisting
of a place name, a transition name, and the number of tokens that inhibit the transition from �ring when they
are in the place.

This GSPN is irreducible. SHARPE makes available four steady-state measures for irreducible GSPNs:
throughput, utilization, average number of tokens, and probability of being empty. The �rst two apply to
transitions, the last two to places. On line 50 of �gure 5.24, we de�ne the variable Pidle to be prempty
(mm1k-fail,queue), the probability that the place called queue is empty. This is the probability that the
server is idle. On line 54, we de�ne Preject, the probability that an incoming job is rejected. This happens
if the place called jobsource is empty (because all K jobs are in the place queue. On line 57, we de�ne the
rejection rate Lreject, which is the arrival rate lambda multiplied by the probability that a job is rejected. On
line 61 we de�ne avqueulenth, the average queue length at the server; this is the average number of tokens
in the place queue. On line 64 we de�ne thruput to be the throughput of the transition service and on line
67 we de�ne utilization to be the utilization of the transition service. On lines 69 through 72 we ask for the
values of the variables we have de�ned. Figure 5.25 shows the results.

We can check that the values of Pidle and Lreject are the same as computed using the Markov chain model
(see �gure 5.22).

For GSPNs that are non-irreducible, SHARPE also can compute the expected number of tokens in a place
at a particular time t, the probability that a place is empty at t, the throughput and utilization of a transition
at t, the time-averaged number of tokens in a place during the interval (0,t), and the time-averaged throughput
of a transition during (0,t). See table A.2 for the syntax for these functions.

74

1 bind 46 * use variables to de�ne some measures
2 lambda 1.0 47
3 mu 2.0 48 * of interest
4 gamma 0.0001 49 * probability that the server is idle
5 tau 0.1 50 var Pidle prempty(mm1k-fail,queue)
6 K 10 51
7 end 52 * probability that a job is rejected

