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Abstract 
For nearly 30 years the Hewlett Packard NonStop 

Enterprise Division (formerly Tandem Computers 
Inc.) has produced highly available, fault-tolerant, 
massively parallel NonStop computer systems. These 
vertically integrated systems use a proprietary 
operating system and specialized hardware for 
detecting, isolating, and recovering from faults. The 
NonStop Advanced Architecture (NSAA) uses dual or 
triple modular redundant fault-tolerant servers built 
from standard HP 4-way SMP Itanium®2 server 
processor modules, memory boards, and power 
infrastructure. A unique synchronization mechanism 
allows fully compared operations from loosely 
synchronized processor modules. In addition, the 
NSAA improves system availability by additional 
hardware fault masking, and significantly lowers cost 
by leveraging existing high-volume Itanium server 
components. 

 

1. Introduction 

The NonStop system is a massively parallel 
cluster of independent processors each running its own 
copy of the operating system [1]. The processors 
communicate with each other and with shared I/O 
adapters through the ServerNet® [2] system area 
network (SAN). A single hardware failure can disrupt 
at most one processor, I/O adapter, or interconnect 
path. Even with a failure, the redundancy in the system 
allows the user’s application to continue uninterrupted. 

NonStop systems rely on self-checked processor 
modules that provide a simple guarantee: they either 
provide the correct result, or they promptly stop and 
emit no result, preventing incorrect data from 
propagating elsewhere in the system.  

The methods used to achieve self-checked 
processors have evolved over the span of different 
NonStop processor products. Early systems used 
custom designed processors with self-checking 
techniques such as redundancy codes to detect failures. 
For the last sixteen years, all NonStop processors have 
been built with tightly lock-stepped microprocessors. 
Two microprocessors using the same clock have their 
outputs compared after each operation and 
immediately signal any discrepancy. See figure 1. 
Redundancy codes in the memory and cache ensure 
that any memory errors are corrected or result in the 
immediate stopping of the processor.  

Future NonStop systems will not be able to use 
these same techniques. Trends in microprocessor 
design mean it is no longer viable to duplicate and 
compare tightly lock-stepped microprocessors. For 
example: 
• Minor nondeterministic behavior, such as an 

arbiter of asynchronous events, will not affect 
normal operation but will disrupt lock-stepped 
operation of the microprocessors. 

• Power management techniques with variable 
clock frequencies cannot be used with lock-
stepped microprocessors. 

• Multiple very high-speed functional blocks 
integrated onto one die result in multiple clocks 
and asynchronous interfaces, making lock-
stepping difficult (or impractical). 

• Smaller die geometries result in higher soft-error 
rates and require low level fix-up routines. This 
greatly complicates lock-stepped operation of the 
microprocessors. 

• Future microprocessors will predominantly be 
Chip Multi-processors (CMP) and have multiple 
processor cores on each die. NonStop systems 
rely on the fact that a single failure can disrupt at 
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most one processor in the system. A failure in a 
CMP would disrupt multiple processors – 
something the pre-NSAA NonStop system 
architecture cannot tolerate. 
In addition, market forces produce continual 

pressure to reduce the cost of product and cost of 
development.  High volume 4- or 8-way SMP servers 
have significantly better cost/performance than 
previous high-data-integrity NonStop hardware. 
Leveraging these servers would be desirable, but there 
are significant problems, not the least of which is that 
these servers are not self-checking. 

The NonStop Advanced Architecture (NSAA) is a 
new way of building fully self-checked processors 
without requiring lock-stepped comparison of 
microprocessors. NSAA systems can deterministically 
run an application on multiple microprocessors 
without requiring custom processor boards running the 
exact same operations on each clock cycle. NSAA 
uses slightly modified traditional servers in a dual or 
triple modular redundant configuration. The redundant 
processors are said to be in loose lockstep. That is, 
they deterministically run the same application 
instruction stream, but they are allowed to run at 
different clock rates, to independently do error retries 
or fixup routines, and to hit or miss cache(s) at 
different points.  

This paper begins with a description of the 
NonStop architecture and explains the methods for 
achieving high reliability. Next the new NonStop 
Advanced Architecture is explained. Further sections 
describe key features of the NSAA including voting, 
the synchronization of IO and interrupts, as well as 
online replacement of a processor module. 

2. NonStop System Background 

NonStop systems are used in applications that 
require the very highest levels of availability, data 
protection, or scalability, such as automatic teller 
systems, credit card authorization, retail point-of-sale, 
stock trading, funds transfer, cellular phone tracking 
and billing, 911 emergency calls, electronic medical 
records, travel and hotel reservations, and electronic 
mail.   

Today, well-managed NonStop systems achieve 
“five nines” (99.999%) application availability in the 
face of unplanned outages (based on customer-
reported outages attributable to NonStop hardware, 
software, or processes).  The goals for data integrity 
protection are similarly ambitious: these NonStop 
systems are expected to experience undetected data 
corruption at a rate of less than one FIT per processor 

(one undetected error per billion hours of operation).   
This data integrity goal is two or more orders of 
magnitude smaller than expected for an unchecked 
microprocessor [3]. 

With respect to scalability, our goal is to approach 
100% linear scalability from a few to thousands of 
processors.  In this context, scalability means that the 
amount of incremental useful work done when any 
processor is added to a cluster is essentially the same 
as the incremental amount of work that was 
accomplished when each earlier processor was added. 
This goal contrasts with conventional systems, for 
which scalability degrades significantly as a system or 
cluster grows from 8 to 16 to 32 to 64 processors, etc.  
NonStop systems are not subject to shared-memory 
multiprocessor scaling issues such as memory 
bandwidth contention, shared lock contention, and 
cache-line contention. 

NonStop systems comprise multiple processors, 
I/O adapters, storage devices, communications lines, 
and system area networks (SAN) (figure 1).  Two or 
more of each of these components are used in an all-
active, ‘N+1’ configuration, providing full backup in 
the event of failure.  Each processor is associated with 
its own memory; there is no memory shared among 
processors.  Instead, the processors are independent 
and communicate with each other only via messages 
passed over the SAN.  The SAN connects all of the 
processors to each other as well as to all I/O adapters. 
Because all system components (processors, I/O 
adapters, I/O devices, and the SAN itself) are 
replicated, no single fault can stop the user's 
application. 

Each of these hardware components is self-
checking and (except for simple correctable or 
retryable errors, such as many memory errors and I/O 
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timeouts) implements a fail-fast philosophy:  when an 
error is detected, the component stops. It either works 
correctly or removes itself from the system.  This 
approach provides a high level of fault containment 
and also serves to unambiguously identify the failing 
component.  When a component fails for any reason, 
its workload is distributed among the remaining 
components, thus providing fault tolerance. 

The operating system executing on these systems 
is the NonStop Kernel [4].  It provides the usual 
operating system features (memory management, 
process control, etc.) along with a sophisticated 
message system and a variety of mechanisms to 
recover from failures, both hardware and software. 

Critical system software is implemented as 
process pairs, a primary and backup copy of the same 
program. The primary process performs the actual 
work of the pair and communicates state changes to 
the backup process via interprocessor messages.  
When a fault occurs, the backup process can take over 
the responsibilities of the pair.  Such a fault could be 
either a hardware fault (e.g., the failure of a processor) 
or a software fault (e.g., the failure of the primary 
process due to a consistency check, an invalid address, 
or similar fault).  When a backup process takes over 
from its primary process, the message system 
automatically routes messages intended for that 
process pair to the former backup (now primary) 
process. 

(Process pair takeovers due to failure of the 
primary process happen immediately.  Takeovers after 
a processor failure, whether done because of a 
hardware or a software fault, are usually accomplished 
within a few seconds.  This time is long enough to 
prevent the NonStop architecture from serving 
extreme real-time requirements, but it is quite 
satisfactory for commercial on-line transaction 
processing applications, and it is very short when 
compared with so-called “high-availability” clustered 
solutions.) 

Twenty-five years ago, application writers had to 
write process pairs by hand and undertake the difficult 
job of assuring that the backup could recover in all 
cases. Modern applications avoid this work by using 
system-supplied middleware such as the NonStop 
Pathway [4] or Tuxedo transaction monitor. By 
layering on top of this middleware, the user’s 
application becomes fault tolerant with no additional 
work or specialized knowledge required. 

With N+1 processor redundancy, the workload of 
a failing processor is shifted to the remaining 
processors without any disruption to the user’s 
application. A single processor failure is not a critical 

problem, as it does not result in a customer system 
outage. After a processor is replaced, the workload 
migrates back to the new processor.  (Workload 
shifting in transactional OLTP applications is done by 
simply routing new transactions to server processes in 
the other processors.) 

The system area network, ServerNet, is a high-
speed, low-latency, packet-switched network, used for 
both inter-processor communications (IPC) and input-
output (I/O).  It comprises two independent fabrics, 
connecting all processors to each other as well as to all 
I/O adapters.  A single failure in ServerNet can disrupt 
at most one fabric.  Packets are protected by a (CRC) 
checksum; lost or corrupted packets are retransmitted, 
first on the same fabric, and then, if necessary, on the 
other fabric.  Both fabrics are typically used at all 
times by the various processors making independent 
choices of the fabric to be used for any given message. 

ServerNet provides “memory semantics” similar 
to InfiniBand® [5] or RDMA/Ethernet [6] (although 
ServerNet does not provide direct user-mode access to 
RDMA).  Data can be pushed (remote write) or pulled 
(remote read) between any pair of components on the 
SAN, with appropriate permissions established by the 
owner of the resource (which can be enforced at byte 
granularity).  Thus, for IPC, the message system uses 
the SAN to send and receive messages to/from other 
processors. For I/O, the I/O adapters use the SAN to 
pace the movement of I/O data to and from the host 
(processor) memory. 

Fault tolerance for storage data is provided by two 
mechanisms:  end-to-end checksums for error 
detection and mirrored volumes for data recovery.   

Logical disk volumes are implemented by a pair 
of mirrored drives or Logical Units.  Writes are 
performed to both volumes; reads are optimized to use 
the copy that should provide the quickest access time.  
In case of a read error, the data can be read from the 
mirror copy.  In case of a catastrophic media failure of 
one of the drives in a logical disk volume, the drive 
can be replaced and “revived” with the contents of the 
other disk drive in an on-line operation.  Optional 
Enterprise Storage Systems can also mask many disk 
failures from both application software and even the 
operating system. 

Disk data is protected by end-to-end checksums.  
For each block, a checksum covering the data and 
block address is calculated in the processor, written to 
disk along with the data, and verified by the processor 
when the block is read.  In the event of a checksum 
error, the data is read from the other member of the 
mirrored pair. 

Layered on top of the NonStop Kernel are a 
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distributed, transactional, relational database (NonStop 
SQL), and other transaction processing software.  
These software layers are designed and tightly 
integrated with the operating system to provide high 
performance, scalability, and high levels of fault 
tolerance and data integrity protection.  In addition, a 
distributed file system and middleware present an 
integrated single-system image to application software 
and to external (LAN and WAN) clients. 

3. The NonStop Advanced Architecture 

The new architecture retains the overall logical 
structure and all of the features of the previous 
NonStop architecture, but it uses a different method of 
error detection in the processors. 

Instead of lockstepping microprocessors, the 
NSAA detects processor failures by comparing the 
outputs of I/O operations (both IPC and device I/O) 
from two or three slightly modified high-volume 4- or 
8-way SMP servers. The two or three servers execute 
similar instruction streams, each running on an 
independent clock.  All outputs from the servers are 
compared for 100% detection of faults. Because the 
primary point of comparison is on I/O output 
operations, variations in operation for error handling, 
e.g. error correction, cache retries etc. are tolerated and 
do not result in a processor miscompare, unlike in 
traditional lockstep mechanisms. 

Either dual or triple modular redundant (DMR, 
TMR) configurations of Itanium servers are used in 
the NSAA.  Each server is slightly modified to support 
reintegration (see Reintegration below) and output 
comparison (see Voter below). Both DMR and TMR 
provide full detection of faults. While DMR is more 
cost effective, TMR is capable of unambiguous 
determination of which server is in error and allows 
uninterrupted operation, even after a failure. 

DMR meets the requirements for fault tolerance in 
a NonStop System: it provides unassailable detection 
and isolation of failures within a processor. Since the 
NonStop System can tolerate the stopping of a single 
processor, DMR adequately ensures continuous 
application availability for the customer.  

A successful fault-tolerant computer minimizes 
the impact of hardware and software errors on the 
customer’s application. However, that improvement 
means that human errors, such as erroneous service 
actions, become a more significant cause of outages. 
For example, a user attempting to replace the lone 
working module of a redundant pair can cause the 
application to fail. The NSAA TMR system is resilient 
to such faults. Removing the wrong module in a TMR 

system reduces the degree of redundancy but does not 
stop processor operation. 

Another benefit of TMR is that it shields old 
applications that were neither written as process pairs 
nor layered above fault-tolerant middleware from 
hardware failures. Such non-fault-tolerant applications 
would be disrupted by a single processor outage. TMR 
removes almost all single hardware causes of failure. 

In a TMR NonStop system, three 4-way SMP 
servers operate as four processors of the scalable 
NonStop system. Given this arrangement, the term 
“processor” is ambiguous. Instead, the NSAA defines 
the terms ‘slice’, ‘logical processor’, and ‘processor 
element’ (PE). Figure 2 shows the three 4-way SMP 
servers as columns, each referred to in the NSAA as a 
slice. Each row in figure 2 represents a logical 
processor. In a NonStop system, the logical processor 
is the self-checked member of the cluster. The logical 
processor is made up of processor elements (PEs), one 
from each of the slices. Each processor element is a 
microprocessor running its own instruction stream and 
has a portion of the slice memory dedicated to its use. 
There are no synchronized clocks among the slices. 
Each PE runs asynchronously of the other PEs in the 
logical processor. 

  
Processors in the NonStop architecture do not 

share memory among themselves; instead, each 
maintains its own copy of the operating system and 
communicates only through the system area network 
(SAN). Even though the NSAA hardware supports 
shared memory, it is not used by the NSAA 
processors. The memory system in each slice is 
partitioned so that each PE can access only its own 
portion of the memory. This isolation of each PE’s 
memory space is enforced through unique virtual to 
physical mappings as well as the Itanium protection 

Slice A

PEA0

PEA1

PEA3

Slice B

PEB0

PEB1

PEB3

Slice C

PEC0

PEC1

PEC3

Each logical processor is
three (TMR) processor
elements running the
same instruction stream
on three loosely lock
stepped Processor
Elements

PEA2 PEB2 PEC2

Each Slice is an
individually powered
and clocked 4-way
SMP server

Each Processor
Element is an individual
microprocessor running
its own instruction
stream.

Figure 2: Four Logical NSK Processors
built from TMR 4-way SMP servers.
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key mechanism [7]. 
All I/O from the logical processor goes through 

the system area network, which in turn connects to 
additional TMR/DMR processors and to I/O adapters. 
There are no individual I/O adapters on the slices. The 
I/O section of each standard high-volume server is 
replaced with serial links tying the two or three server 
boxes to ‘logical synchronization units’ or LSUs 
(figure 3). The fully self-checked LSU contains the 
voting logic and SAN interface for one logical 
processor. The voting unit compares all output 
operations of a logical processor, ensuring that all 
slices agree on a result before the data is written to the 
system area network. Should one of the slices 
disagree, the voting unit selects the data from the other 
two and software stops the failing PE.  

The NSAA allows each logical processor to have 
either one or two LSUs. If a logical processor is 
configured with a single LSU, an LSU failure stops the 
logical processor. Such a failure does not stop the 
customer’s fault-tolerant application because LSU 
replacement does not affect the slices (it is an 
independently-replaceable unit), and the NonStop 
system can tolerate a single logical processor failure.  

For those customers seeking to be shielded from 
any possible hardware induced failure, a second LSU 
can be associated with the logical processor. The 
second LSU enables four independent SAN fabrics. 
With two LSUs per TMR logical processor, the system 
can be configured to be fully tolerant of any two 
hardware faults. 

3.1 Symmetric Memory State 

When fault-tolerant microprocessors are run on 
the same clock they are referred to as lock-stepped or 
tightly synchronized. By contrast the NSAA is loosely 

synchronized. Each PE of the logical processor 
updates memory so that on any output operation the 
data pulled from each slice’s memory is the same. To 
keep the memories symmetric, each PE executes 
basically the same instruction stream. 

The PEs of a logical processor all have the same 
virtual to physical mapping and all take page faults at 
the same point in the instruction stream. However, 
they need not all have the same cache state and TLB 
entries. One PE can miss in cache or TLB while the 
others hit. This flexibility is allowed since the only 
requirement is that I/O operations of each PE be the 
same. 

The requirement that the PEs do symmetric page 
faults limits the NSAA’s ability to exploit Itanium data 
and control speculation [7]. Even though the 
speculative code executed by an Itanium processor is 
not necessarily symmetric across all PEs, the resulting 
state of memory is deterministic. Unfortunately, the 
speculation fixup routine that might execute on one PE 
and not the other could create an asymmetric page 
fault. Lacking the compiler restrictions to prevent 
these asymmetric page faults, the NSAA takes the safe 
path and disallows all data and control speculation that 
uses independent speculation fixup routines. The 
NSAA allows only the inline form of Itanium data 
speculation fixup. Single instruction check loads, (e.g. 
ld.c) are allowed, but to avoid asymmetric page faults 
the NSAA does not allow advanced load check fixup 
routines (e.g. a fixup routine reached by a chk.a 
instruction) or any form of control speculation. 

At any point in time each PE will be slightly 
ahead or behind the other PEs in the logical processor. 
The process scheduling and interrupt handling 
algorithms on each server are modified so that 
asynchronous inputs are acted upon by each server at 
the same point in their instruction stream (See 
Rendezvous below). 

Input data from the system area network is written 
into each slice’s memory. Incoming packets from the 
system area network arrive in each PE’s memory at 
slightly different times. This data is considered 
asymmetric until an I/O completion notification 
informs all the PEs that the data has arrived. A 
program must not read incoming data before the 
completion notification. To prevent an application 
program from reading this potentially asymmetric 
data, the operating system marks the page inaccessible 
until the I/O operation completes. If an application 
reads or writes the page prematurely, a fault is 
generated and the process is made inactive until the 
I/O operation completes. Similarly, a process is not 
allowed to modify an active outbound I/O buffer. 
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To ensure symmetric operation, the time-of-day 
(TOD) value used in the logical processor must be 
synchronized for each PE. On a typical system, the 
TOD is derived directly from a timer in the 
microprocessor. Such a timer is unusable in the NSAA 
since each slice executes instructions at a slightly 
different rate due to asymmetric cache misses and 
slightly different clock oscillators. To solve this 
problem the LSU hardware provides a TOD value for 
the entire logical processor. Software can access this 
TOD value by reading a register in the LSU. For 
higher performance, the TOD value either can be 
pushed to each PE during the Rendezvous operation 
(see below) or can be deterministically estimated by 
each PE. 

3.2 Logical Synchronization Unit: Voter & 
SAN Interface 

The Logical Synchronization Unit (figure 3) is 
NSAA specific hardware that provides the voter and 
SAN interface function for the processor. There are 
one or two LSUs per logical processor. For an NSAA 
system built from 4-way SMP slices, there would be 
four or eight LSUs for the four logical processors. 
Failure of any one LSU affects only a single logical 
processor. The LSU (both the voter and SAN interface 
function) is designed with a completely self-checking 
methodology [8] to ensure that any data passing 
through it is not corrupted. The LSU is designed to 
either function correctly or self-detect the failure and 
shut down, thus isolating failures from the rest of the 
system.  An LSU can be replaced on-line without 
affecting any of the other logical processors. The 
failure rate of an LSU is expected to be a small 
fraction of the failure rate of a PE. For the first 
implementation of the NSAA, the LSU is built from an 
FPGA voter and an ASIC ServerNet SAN interface. 

The voter logic ensures that any data leaving the 
logical processor is agreed to by a strict majority of the 
slices. The voter logic checks all PIO (Programmed 
I/O) loads and stores from the PEs to ensure that the 
identical operation is coming from each slice. Since all 
I/O operations from the logical processor go through 
the SAN interface, the voter guarantees that any data 
going onto the SAN is agreed to by all the slices. The 
voter logic not only keeps any failure from 
propagating outside the logical processor, but also can 
often identify which slice is in error. 

In a TMR configuration, a voter miscompare 
unambiguously identifies which slice is at fault. With 
the failing slice identified, the I/O is allowed to 
complete with the good data. Application software 
continues running on the logical processor, and low 

level system software can shut down the failed PE. 
After a failure, the PE can either be restarted and 
reintegrated or the entire slice can be replaced. 
Restarting the PE is the best choice for a random soft 
error. If the error repeats, replacement is in order. A 
three-way voter miscompare results in halting of the 
logical processor, although there is no known single 
failure mode that could cause such a miscompare. 

In a DMR configuration, a voter miscompare can 
be ambiguous as to which slice is at fault. Certain 
errors, like a bus fault, are self-identifying and allow 
continued operation on the good slice. But if the voter 
logic simply detects a miscompare with no other 
information, the logical processor must be halted. 
Since the NonStop architecture can tolerate the loss of 
a single logical processor, the application will fail-over 
to other logical processors and continue to run.  

The NSAA offers an option to add a simple 
heuristic that may disambiguate a DMR voter 
miscompare. The heuristic uses a probation vector 
with one bit for each possible slice. If a bit is set and 
there is an ambiguous DMR vote miscompare, the 
voting is resolved either in favor of the slice that does 
not have its probation bit set or against the slice that is 
unable to access the probation bit. The probation bit is 
set for a short time after a slice with a known error is 
restarted or if the slice has been experiencing 
excessive correctable errors. On the assumption that a 
slice already identified as having problems will tend to 
exhibit more problems, the bit allows hardware to 
choose which slice’s I/O to block and which to allow. 
Probation bits are expected to be only infrequently set 
and then only for a short period. 

3.3 Reintegration  

Reintegration is the process where Processing 
Elements (PEs) on a single slice are brought back into 
loose synchronization with PEs on other slices.  
Reintegration is required after a new slice is installed 
or replaced or after a voting error results in a stopped 
PE. After just a single error, a failing PE might be 
reintegrated with the rest of the logical processor on 
the assumption the voting error was the result of a 
transient error and not a persistent fault. 

The reintegration procedure copies the state of the 
running, on-line PE’s memory into the memory of the 
newly added PE. After the memory state is copied, the 
new PE starts executing the exact same instruction 
stream as the other PEs. The reintegration operation 
happens while the logical processor is online and 
executing the customer’s application.  All memory 
writes that occur in the source PE are also copied to 
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the target, assuring a consistent memory image.  
Reintegration consumes only a small percentage of 
CPU utilization and takes less than ten minutes to 
complete for a 32 GByte logical processor. 

To facilitate reintegration, the standard 4- or 8-
way SMP server is modified to support a reintegration 
link (figure 4).  The reintegration link forms a 
directional ring connecting the two or three slices. The 
reintegration link connects to logic inserted between 
the processor chipset and the main memory. The logic 
replicates each local write to memory and sends it 
across the reintegration link to the neighbor slice. A 
slice in normal operation ignores the input from the 
reintegration link. But during reintegration, the 
reintegration target feeds its memory with write 
operations from the reintegration link. The 
reintegration link for our Itanium2 servers supports 
full-speed memory writes transmitting 7.5 GByte/s 
over 24 optical fibers, each operating at 3.125 Gbit/s.  
The reintegration links are CRC protected, and correct 
link operation is checked even when the links are not 
in use for a reintegration operation. 

The reintegration procedure consists of several 
steps: 

1) The reintegration target PE is quiesced and 
executes a tight, in-cache loop, not accessing memory. 

2) The reintegration target PE switches its 
memory system to accept write operations from the 
incoming reintegration link. 

3) A background reintegration process is started 
on the running processor elements. The process 

sweeps all of physical memory forcing a write-back of 
each cache line (by touching each cache line with an 
atomic read and write of the same data). This causes 
all of the memory contents of the source slice to be 
copied to the reintegration target. DMA write 
operations from the SAN as well as memory writes 
from the active processes are also copied to the 
reintegration target. 

4) At the end of the sweep, the running PEs are 
momentarily stopped while their internal state is 
written to memory and their caches are flushed to 
memory. After the flush, the reintegration target 
memory is identical to that of the source. 

After the flush completes, all the processor 
elements (including the reintegration target) can 
resume operation. All the PEs are executing the same 
instruction stream and memory is symmetric among 
the PEs of the logical processor.  Except for the brief 
(a few milliseconds) disruption in step (4), the user’s 
application continues to run throughout the 
reintegration operation.  This disruption is much less 
than the disruption caused by a processor takeover in 
the traditional NonStop architecture. 

3.4 Rendezvous 

Interrupts to the processor, such as I/O completion 
interrupts, arrive at each PE at slightly different times. 
If the processor were to immediately handle an 
interrupt, each PE would be interrupted at a different 
point in its instruction stream. This divergent 
execution would result in asymmetric memory state in 
the logical processor.  In order to keep memory 
symmetric, each processor element must handle an 
interrupt at the exact same point in the instruction 
stream as the other PEs in the logical processor. 

To do symmetric interrupt handling, the NSAA 
defines a scheme for synchronizing the execution of 
interrupt handler code. This “rendezvous” scheme 
consists of: 
• Hardware in the Voter logic that writes up to 32 

bytes of data from each PE to the rest of the PEs in 
the logical processor. 

• A small section of code called a Voluntary 
Rendezvous Opportunity (VRO) embedded 
throughout the OS and implicitly invoked by user 
applications. 

• A rendezvous protocol, in which each PE proposes 
a certain VRO that, when reached, will schedule 
the interrupt handler for execution. 
After receiving an interrupt, each PE initiates a 

rendezvous operation. A rendezvous operation consists 

LSU

Voter

SAN
Intfc

Voter

SAN
Intfc

Voter

SAN
Intfc

Slice A

Slice B

Slice C

Reintegration Links

LSU LSU

System Area Networks

Figure 4: Reintegration Link Reflects
Memory Writes in one Slice to the Next Slice



 

f 

of each PE writing special rendezvous registers in the 
voter logic. After all the writes complete, the voter 
reflects the data from the rendezvous registers back to 
a specific block of memory in each PE. Rendezvous 
code in each PE then reads the block of data to see 
what the other PEs wrote. 

The PEs use the block of data to propose where in 
the instruction stream they intend to execute the 
interrupt handler code for a specific interrupt. The 
proposal consists of an interrupt identification and a 
VRO sequence number in the near future. Each PE 
compares its proposal with that of the other PEs and 
selects the highest proposed VRO sequence number. 
When each PE reaches that VRO it can symmetrically 
schedule the interrupt handler for execution. 

The VRO is a small section of code inserted into 
the code stream. At a minimum, the VRO code will be 
inserted into every privilege level transition.  The 
highly optimized VRO code takes only a handful of 
instructions to execute in the typical case where there 
is no synchronization action required. The VRO code 
increments an identifying sequence number and 
checks to see if any interrupt handlers are pending 
execution at this particular VRO.  

The intent is to execute VRO code periodically. 
The VRO serves as a landmark that identifies a 
particular point in the symmetric instruction stream 
that is the same in each of the PEs in the logical 
processor. This landmark can then be used to process 
interrupts or dispatch new processes all the while 
maintaining symmetric memory state among the PEs 
of the logical processor. 

3.5 Uncooperative Processes  

When a process executes for a long time without 
encountering a VRO, it is referred to as 
“uncooperative” and must be interrupted.  
Uncooperative processes are undesirable in that they 
increase the latency to handle interrupts and delay the 
dispatching of higher priority processes.  Due to 
automatic embedding of VROs, the typical transaction 
processing workload run on NonStop systems is 
expected to be cooperative. 

The interval timer interrupt used to detect long 
inter-VRO intervals does not occur at the same point 
in the instruction stream of each processor element of 
the logical processor.  In order to ensure a symmetric 
memory state, each PE must be brought to the same 
point in its execution before the uncooperative process 
can be suspended and another process dispatched.  The 
NSAA can use any one of several solutions to do this. 

For our Itanium-based implementation, pure 

instruction counting based on the retired user-level 
instruction count alone may not be sufficient to 
synchronize the PEs, as its function is to monitor 
performance, not to count perfectly in every 
circumstance.  So, we don't trust it to be perfect -- we 
assume only that its error is bounded and reasonably 
small over a short time interval.  After first 
synchronizing based on the count of retired user-level 
instructions, we assume all PEs are within a bounded 
number of (actual) instructions, N.  By counting only 
user-level instructions we allow low-level system code 
to do soft-error fixups on one PE without affecting the 
instruction count.  

We define two algorithms to bring the PEs to the 
exact same point in the instruction stream, called 
UNCP-Store and UNCP-Trace.  

The UNCP-Store algorithm identifies process 
state that could be different in the PEs.  It then chooses 
one PE (the source PE) and copies its values for that 
state to the other (target) PEs, putting the target PEs at 
the same execution point as the source PE. 

To identify process state that differs among the 
PEs, breakpoints are set in each PE so that all user 
stores are trapped.  Each PE is executed for at least N 
instructions, trapping on every store.  The trap handler 
simply saves the address that is being stored and 
resumes the process.  After this step each PE has a set 
of locations they have modified.  The union of these 
sets represents all the memory locations that may 
differ.  One PE is chosen, and its values for those 
locations are copied to the other PEs.  Finally, the 
register state is copied from the chosen PE to the other 
PEs.  All copies of the uncooperative process are now 
synchronized. 

Due to copying some state from the source to the 
target PE(s), the UNCP-Store algorithm is vulnerable 
to error propagation.  We expect this risk to be quite 
small, both because the algorithm should be executed 
infrequently and the amount of state that is copied 
should be small.  The UNCP-Trace algorithm, 
described next, addresses this vulnerability. 

The second algorithm, UNCP-Trace, does not 
copy state from one PE to the others.  Instead, it 
determines which PE is ahead, and by how far, and 
executes instructions in the trailing PEs until they are 
synchronized with the leader. 

Once the PEs are all at the same retired instruction 
count, each PE does single-step execution for N to 3N 
instructions.  As a PE executes the instructions, it 
records the instruction pointer (IP) and the inputs of 
each instruction.  For an add instruction at IP 200, with 
addends 5 and 9, it would record 200:5,9. The PEs 
exchange and correlate their instruction traces to 
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determine where they are relative to one another.  The 
matching algorithm (not described here) determines 
the length of trace necessary to determine the leader, 
which PE is the leader, and how far the trailing PEs 
must execute to catch up. 

Once the PEs are synchronized, by either of these 
methods, one final step is taken.  A VRO is inserted 
into the code at the point of synchronization.  This 
change prevents the process from becoming 
uncooperative again, at least at this point in its 
execution.  

3.6 Asymmetric Memory Dump 

The unique capabilities of the NSAA provide 
additional benefits.  As an example, they are exploited 
in a method that allows for a post-failure dump of 
processor memory while still immediately reloading 
the logical processor. In previous systems, preserving 
the memory state of a failed processor for later 
analysis of software faults meant delaying the return of 
that processor to full availability. With redundant 
processor and memory state available in the NSAA, 
one of the dual or triple redundant processor/memories 
is preserved for the memory dump while the other one 
or two processor/memories are immediately 
reinitialized to run the operating system. After the 
memory dump completes, a reintegration operation 
loads the “preserved” processor element with the 
currently running state of the other one or two 
processor elements, thus returning the logical 
processor to its fully redundant state. 

4. Performance Implications of the NSAA 

NSAA is designed to offer the highest levels of 
availability required by the most demanding 
customers.  How much does this architecture affect 
performance in comparison to conventional 
uniprocessors?  At this stage in the design, some of the 
answers are estimates, but confidence is high that the 
performance implications of NSAA are small. 
• I/O latency is slightly increased due to voting the 

results; we expect this impact to be negligible; 
• Memory latency is increased due to the memory 

copy hardware, which is in the path to memory 
even when reintegration operations are not active; 
based on modeling of processor caches and the 
memory subsystem, we expect this impact to be 
small, but not negligible, probably in the 5% 
percent range; 

• Interrupt-handling latency is slightly increased 

due to the voluntary rendezvous mechanism of 
handling interrupts at the same logical time in 
each processor element;  in most on-line 
applications, we expect this extra latency to have 
a very small impact; 

• We do not currently take advantage of the Itanium 
speculation features. At least for current Itanium 
processors, we expect only a few percent 
performance impact for most applications. 
Because future Itanium speculation features may 
be more effective, we are planning additional 
work to allow the use of these features in future 
generations of NSAA processors. 
In summary, we expect the negative impact of 

NSAA to be in the range of 5% to 10% compared to a 
more traditional uniprocessor approach.  However, 
balancing those performance decreases are several 
significant benefits that NSAA provides relative to our 
previous designs: 
• NSAA allows increased clock frequency relative 

to a more traditional tightly-lockstepped 
processor;  this may become an even larger 
benefit with the advent of power management 
techniques with variable clock frequencies; 

• NSAA allows NonStop processors to make use of 
cost effective chip multi-processors. The 
traditional NonStop architecture cannot otherwise 
run on SMP hardware;  

• NSAA allows the development of processors with 
significantly lower development costs, which is a 
significant benefit given the relatively low 
volumes in this market segment. 

5. Competitive Approaches 

Prior to the mid-1980’s, fault-tolerant computers 
for enterprise class data processing used custom-
designed processors with redundancy techniques such 
as parity predicting ALUs to ensure correct operation 
of the processor. With the advent of microprocessors, 
these techniques were dropped in favor of duplicating 
and comparing standard microprocessor parts. 
Standard microprocessors have significantly higher 
performance and lower cost than specially-designed 
self-checked processors. 

The most straightforward way to duplicate and 
compare a microprocessor is the technique of hard 
lockstepping, or running both microprocessors with 
the exact same clock. Each microprocessor is expected 
to produce the same outputs given the same inputs. 
Tandem Computers, IBM and Stratus Computers have 
all successfully used this technique. But hard lock-
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stepped microprocessors are susceptible to minor non-
determinisms and can have high failure rates due to 
otherwise correctable soft-errors. Furthermore, such a 
design can be unusable if a minor design error in the 
microprocessor renders the otherwise perfectly good 
part unusable for lock-stopped operation (this is a 
particularly troublesome problem, as a microprocessor 
vendor would be reluctant to undertake a costly design 
change for a problem that affects a relatively small 
market segment).  

The Tandem Integrity S2 system moved away 
from the hard lockstepping approach and allowed each 
microprocessor to run on its own clock. To ensure 
deterministic operation, the microprocessor’s 
performance counter is used to count retired 
instructions. Inputs to the microprocessors are 
carefully controlled. This technique allowed Tandem 
to use commodity microprocessors with only specially 
designed I/O interfaces. 

The NSAA extends the duplicate and compare 
technique to allow each of the microprocessors to run 
more independently of the others. This allows running 
slices with different clock rates and even different 
microprocessor versions. Furthermore, NSAA allows 
asymmetric TLB fixup code and error fixup routines 
and even limited non-deterministic operation. 

Current research in fault tolerant computing often 
discusses multiple threads doing serial execution of 
the same instruction stream [9]. This “replication in 
time” technique was first used in space-borne systems 
subject to high soft error rates. The technique is 
receiving renewed interest due to the high soft error 
rates in processors with sub 60nm features. These 
solutions have not been commercially viable in the 
fault tolerant data center for several reasons. 
Depending on how the checking is done, the approach 
might not be able to detect hard failures and can 
negatively impact performance. Furthermore, the 
checking covers processor execution units but not 
necessarily caches, memory controllers, and bus 
interconnects.    

6. Conclusion  

The NonStop Advanced Architecture avoids 
several roadblocks that would have affected new 
systems built with the prior NonStop architecture. The 
NSAA leverages existing 4-way Itanium2 servers, 
lowers development cost, and provides better customer 
value. And it does all this while increasing the 
fundamental deliverable of NonStop systems, better 
system availability for the customer’s application.  

The NonStop Advanced Architecture is the basis 

for all planned future NonStop systems. The MIPS®-
based product line will be phased out in favor of the 
Itanium-based NSAA systems. New NSAA system 
designs are ongoing and NSAA will first ship to 
customers in mid-2005. 
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