
CSE LAB-PM VT-10

CTH 2011-02-25 EDA092

Laboratory assignment 2 in Operating Systems

OSP: An Environment for Operating System Projects

Lab2 is based on OSP:An Environment for Operating System Projects. Before you start with
the lab, you need to read the paper: Introduction to OSP and answer the Questionnaire for
Laboratory assignment 2. After submitting the answers to the Fire system, you will get an
initialization command required for completion of this lab.

The lab is divided in two sub-projects. In each project you will program a module of an
operating system in the C language and test the code with a simulator that is included in the
OSP system. A demo version of OSP is available under the name:

/chalmers/groups/cab_ce_edu_2010_eda092_os_-/OSP/lab2.1.linux/OSP.demo

Observe that OSP gives different printouts in the different projects.

Sub-project 1 - CPU Scheduling

In this project you will implement the CPU module of OSP. Read chapter 1.6 (CPU Scheduling)
in the OSP paper before starting. Start by executing the initialization command you will
get after submitting the answers to the preparations questionnaire to the Fire-system. This
command will create the directory lab2.1. The directory contains the files Makefile, cpu.c,
dialog.c, par.debug.

In cpu.c you shall implement a preemptive Round Robin scheduler. The file cpu.c already
contains the needed external declarations. You may not change the given declarations but
you may add your own declarations as needed. Write the code for the subroutines cpu_init(),
dispatch() and insert_ready(pcb). You may add your own subroutines as needed. The file
dialog.c contains routines that may be useful for debugging your code. The program is compiled
and linked by the UNIX command: make. The result of the compilation is an executable file
named OSP. The parameter file par.debug can be used for a first test. This first sub-project is
intended as a rather simple introduction to OSP. Make the code as simple as possible. There is
no other performance requirements in this sub-project than that the code shall work correctly.

1



Submitting the project

The OSP system includes a hand_in command that shall be used to submit the projects. To
submit the project you execute the command:

/chalmers/groups/cab_ce_edu_2010_eda092_os_-/OSP/lab2.1.linux/hand_in

The hand_in command asks for the names of the students and which parameter files to use.
The hand_in command looks for the parameter files in the directory:

/chalmers/groups/cab_ce_edu_2010_eda092_os_-/OSP/lab2.1.linux

If the files are not found they will be looked for in current directory. The following parameter
files shall be used when submitting sub-project 1:

• par.trace

• par.low

• par.high

The first file makes a short simulation with the trace switch on. The second file tests your
program with a low frequency of new processes. In par.high the frequency of new processes
is high. A copy of the simulation is placed in the file simulation.run in the current directory.
Check that the content of simulation.run looks correct after you have done the submission.
An assignment can be submitted more than once, because hand_in will replace an earlier
submission. The source code file should include the names of the group members and the
group number.

Some Hints for Lab 2.1

• You will use a linked list to manage the ready queue. Students who have attended the
exercise lection “Discussion on 2nd prg-assignment” in course week 5 will have a linked
list they can adapt to the lab. Other students are free to use any linked list code from
elementary algorithm books (as long as they have a reference).

• Make sure the linked list works BEFORE inserting it into OSP (debugging inside OSP
is not straight-forward!). We will not help for linked list related problems (typically
segmentation faults)

• Read OSP manual carefully and MARK ACTIONS (e.g. change status field -> ready,
etc.)

• Insert the code directly into cpu.c

• You must set set_time(quantum) in dispatch().

• The ready queue constists of processes READY to run ONLY!

• No need to prepage!

• When submitting, you must use the order of the parameter files as specified in this lab
PM!!

• After submission according to this PM, also submit cpu.c to the fire-system (for admin-
istrative purposes)

2



Sub-project 2 - Memory Management

In this project you will implement the MEMORY and PAGEINT modules of OSP. Read chapter
1.4.3 (page fault handling) and chapter 1.5 (memory management) in the OSP paper before you
start. Start by executing the initialization command you will get after submitting the answers
to the preparations questionnaire to the Fire-system. This command will create the directory
lab2.2. The directory contains the files Makefile, memory.c, pageint.c, dialog.c and par.debug.

In the MEMORY module the goal should be to get as low page fault frequency as possible.
Other parameters that also should have as low value as possible are average waiting time and
average turnaround time.

You shall implement a clock algorithm similar to the one used in older UNIX systems. The
principle for the algorithm is described in the course book (called second-chance) and in the
4BSD article. Some additional details are given here. When the number of free page frames
falls below some small value min_free (for example 10% of all page frames, in our case 4 page
frames) a special page_daemon process starts. In OSP the get_page routine is the best place
to call the page_daemon routine. When the page_daemon is started it will scan a number of
frames in the frame table until it ran long enough so that a specified number of page frames
has been freed (lots_free). The page_daemon will reset the references bit in the page-table if
it is set. If the reference bit already was reset, the page will be set free. (Do not forget to write
the page to disk if it was modified).

Submitting the project

To submit the project you execute the command:

/chalmers/groups/cab_ce_edu_2010_eda092_os_-/OSP/lab2.2.linux/hand_in

The following parameter files shall be used when submitting sub-project 2:

• par.trace

• par.low

• par.high

The first file makes a short simulation with the trace switch on. The second file tests your
program with a low frequency of new processes. In par.high the frequency of new processes is
high.

The source code file shall include the names of the group members. Furthermore the source
code shall contain an explanation of your strategy and your statistics (max one page).

Your explanation should include at least the following points:

Strategy:

Based on the resulting statistics, motivate in a few sentences your (optimal) choice of:

1. Condition for start of page_daemon (value of min_free)

2. How many pages the page_daemon will set free each time (value of lots_free)

3



Statistics:

Investigate how the page fault frequency varies as a function of min_free and lots_free. (The
page_daemon is started when the number of free pages is less than min_free until lots_free
pages have been freed). Do this by running OSP serveral times with par.high while varying
the numbers of min_free and lots_free. Write down the results in a (ascii) table (no absolute
values!!! use normalized pagefault frequency = pagefaults/memory references) and add it to
the stratagy discussing at the beginning of your sourcecode.

Some hints for Lab2.2

• Familiarize yourself with the code (esp. structure of page table entry and frame table
entry)

– Write structures and fields (and how structures are connected) on a piece of paper
to have the easily available.

– Always give ALL fields a reasonable value in all functions you write. If you swap
out a page, set it that it is no longer valid.

– Never, never reset frame_id to -1 (set only in get_page)

– A reasonable value for page_id for an unused page is -1. This way, OSP will print
nice ~ in its output.

– A reasonable value for an unused pcb is NULL.

– Never modify lock_count in frames.

• There is an error routine to print contents of the page table. Use it to debug and learn:
print_page_tbl().

• If you create possilby infinite loops, have some error code that will warn for this as your
logic might fail.

• Some pages will ALWAYS be locked for I/O. Do not assume you can have all free.

• When submitting, you must use the order of the parameter files as specified in this lab
PM!!

• Make sure to remove ALL debugging code (like printfs) from your code when submitting!

• After submission according to this PM, also submit memory.c to the fire-system (for
administrative purposes)

4


