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Overview of today’s lecture:

• Central Concepts of Automata Theory

• Deterministic Finite Automata

Deterministic Finite Automata

Some Concepts in Set Theory

Empty set: ∅ is the set with no elements. We have that ∅ ⊆ S for all sets S.

Singleton sets: Sets with only one element: {p0}, {p1}

Finite sets: Set with a finite number n of elements:

{p1, . . . , pn} = {p1}
⋃

. . .
⋃

{pn}

Union: S1 ∪ S2 = {x | x ∈ S1 or x ∈ S2}

Intersection: S1 ∩ S2 = {x | x ∈ S1 and x ∈ S2}

Complement: S − A is the set of all elements in set S not in set A.

When the set S is known, S − A is sometimes written A.

Power sets: Pow(S) the set of all subsets of the set S.

Observe that ∅ ∈ Pow(S).

Lecture 3 March 24th 2011 – TMV026/DIT321 Slide 1



Deterministic Finite Automata

Central Concepts of Automata Theory

Alphabets

Definition: An alphabet is a finite non-empty set of symbols, usually

denoted by Σ.

The number of symbols in Σ is denoted as |Σ|.

Note: Alphabets will represent the observable events of the automata.

Example: Some alphabets:

• on/off-switch Σ = {Push}

• simple vending machine Σ = {5 kr, choc}

• complex vending machine Σ = {5 kr, 10 kr, choc, big choc}

• parity counter Σ = {p0, p1}

Type convention: We will use a, b, c, . . . to denote symbols.
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Deterministic Finite Automata

Strings or Words

Definition: Strings/Words are finite sequence of symbols from some

alphabet.

A word will represent the behaviour of an automaton.

Example: Some behaviours:

• on/off-switch Push Push Push Push . . .

• simple vending machine 5 kr choc 5 kr choc 5 kr choc . . .

• parity counter p0p1 or p0p0p0p1p1p0 or . . .

Type convention: We will use w, x, y, z, . . . to denote words.
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Deterministic Finite Automata

Inductive Definition of Σ
∗

Definition: Σ∗ is the set of all words for a given alphabet Σ.

This can be described inductively in at least 2 different ways:

1. Basis case: the empty word ǫ is in Σ∗ (notation: ǫ ∈ Σ∗)

Inductive step: if a ∈ Σ and x ∈ Σ∗ then ax ∈ Σ∗

2. Basis case: ǫ ∈ Σ∗

Inductive step: if a ∈ Σ and x ∈ Σ∗ then xa ∈ Σ∗

We can (recursively) define functions over Σ∗ and (inductively) prove

properties about those functions.
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Deterministic Finite Automata

Length

Definition: The length function | | : Σ∗ → N is defined as:

|ǫ| = 0

|ax| = 1 + |x|

Example: |p0p1p1p0p0| = 5
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Deterministic Finite Automata

Concatenation

Definition: Given the strings x and y, the concatenation xy is defined as:

ǫy = y

(ax)y = a(xy)

Example: Observe that in general xy 6= yx.

If x = p0p1p1 and y = p0p0 then xy = p0p1p1p0p0 and yx = p0p0p0p1p1.

Lemma: If Σ has more than one symbol then concatenation is not

commutative.
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Deterministic Finite Automata

Power

Of a string: We define xn as follows:

x0 = ǫ

xn+1 = xxn

Example: (p0p1p0)
3 = p0p1p0p0p1p0p0p1p0

Of an alphabet: We define Σn, the set of words over Σ with length n, as

follows:

Σ0 = {ǫ}

Σn+1 = {ax | a ∈ Σ, x ∈ Σn}

Example: {0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}.

Observe: Σ∗ = Σ0
⋃

Σ1
⋃

Σ2 . . . and Σ+ = Σ1
⋃

Σ2
⋃

Σ3 . . .
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Deterministic Finite Automata

Reverse Function

Intuitively, rev(a1 . . . an) = an . . . a1.

Definition: Formally we can define rev(x) as:

rev(ǫ) = ǫ

rev(ax) = rev(x)a
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Deterministic Finite Automata

Some Properties

Lemma: Concatenation is associative: ∀x, y, z. x(yz) = (xy)z.

We shall simply write xyz.

Lemma: ∀x, y. |xy| = |x| + |y|.

Lemma: ∀x, y. xǫ = ǫx = x.

Lemma: ∀x. |xn| = n|x|.

Lemma: ∀Σ. |Σn| = |Σ|n.

Lemma: ∀x, rev(rev(x)) = x.

Lemma: ∀x, y. rev(xy) = rev(y)rev(x).

All these properties can be proved by induction.
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Deterministic Finite Automata

Some Terminology

Definition: Given x and y words over a certain alphabet Σ:

• x is a prefix of y iff there exists z such that y = xz

• x is a suffix of y iff there exists z such that y = zx

• x is a palindrome iff x = rev(x)
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Deterministic Finite Automata

Languages

Definition: Given an alphabet Σ, a language L is a subset of Σ∗, that is,

L ⊆ Σ∗.

Note: If L ⊆ Σ∗ and Σ ⊆ ∆ then L ⊆ ∆∗.

Note: A language can be either finite or infinite.

Example: Some languages:

• Swedish, English, Spanish, French, . . .

• Any programming language

• ∅, {ǫ} and Σ∗ are languages over any Σ

• The set of prime natural numbers {1, 3, 5, 7, 11, . . .}
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Deterministic Finite Automata

Some Operations on Languages

Definition: Given L, L1 and L2 languages, we define the following

languages:

Union, Intersection, ... : As for any set

Concatenation: L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}

Closure: L∗ =
⋃

n∈N Ln

where L0 = {ǫ}, Ln+1 = LnL.

Note: We have then that ∅∗ = {ǫ} and

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . = {ǫ} ∪ {x1 . . . xn | n > 0, xi ∈ L}

Notation: L+ = L1 ∪ L2 ∪ L3 ∪ . . . and L? = L ∪ {ǫ}.
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Deterministic Finite Automata

How to Prove the Equality of Languages?

Given the languages L and M, how can we prove that L = M?

A few possibilities:

• Languages are sets so we prove that L ⊆ M and M ⊆ L

• We can reason about the elements in the language:

Example: {a(ba)n | n > 0} = {(ab)na | n > 0} can be proved by

induction on n.

• Transitivity of equality: L = L1 = . . . = Lm = M
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Deterministic Finite Automata

Algebraic Laws for Languages

The following equalities hold for any languages L, M and N .

• Associativity: L ∪ (M∪N ) = (L ∪M) ∪N .

L ∩ (M∩N ) = (L ∩M) ∩N and L(MN ) = (LM)N

• Commutative: L ∪M = M∪L and L ∩M = M∩L

• In general, concatenation is not commutative: LM 6= ML

• Distributivity: L(M∪N ) = LM∪LN and (M∪N )L = ML∪NL

• Identity (or neutral): L ∪ ∅ = ∅ ∪ L = L and L{ǫ} = {ǫ}L = L

• Annihilator: L∅ = ∅L = ∅

• Idempotent: L ∪ L = L,L ∩ L = L

• ∅∗ = {ǫ}∗ = {ǫ}

• L+ = LL∗ = L∗L

• (L∗)∗ = L∗
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Deterministic Finite Automata

Algebraic Laws for Languages (Cont.)

Note: While

L(M∩N ) ⊆ LM∩LN and (M∩N )L ⊆ ML∩NL

both hold, in general

LM∩LN ⊆ L(M∩N ) and ML∩NL ⊆ (M∩N )L

don’t.

Consider for example the case where

L = {ǫ, a}, M = {a}, N = {aa}

Then LM∩LN = {aa} but L(M∩N ) = L∅ = ∅.
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Deterministic Finite Automata

Functions between Languages

Definition: A function f : Σ∗ → ∆∗ between 2 languages should be such

that it satisfies

f(ǫ) = ǫ

f(xy) = f(x)f(y)

Intuitively, f(a1 . . . an) = f(a1) . . . f(an).

Notice that f(a) ∈ ∆∗ if a ∈ Σ.

Definition: f is called coding iff f is injective.

Definition: f(L) = {f(x) | x ∈ L}.
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Deterministic Finite Automata

Some Terminology

Definition: A problem is the question of deciding if a given string is a

member of some particular language.

A “problem” can be expressed as membership in a language.

If L is a language over Σ then the problem L is:

given w ∈ Σ∗ decide whether or not w is in L.
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Deterministic Finite Automata

Deterministic Finite Automata

Definition: A deterministic finite automaton (DFA) is a 5-tuple

(Q,Σ, δ, q0, F ) consisting of:

1. A finite set Q of states

2. A finite set Σ of symbols (alphabet)

3. A transition function δ : Q × Σ → Q

(total function that takes as argument a state and a symbol and returns a

state)

4. A start state q0 ∈ Q

5. A set F ⊆ Q of final or accepting states
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Deterministic Finite Automata

Example: DFA

Let the DFA (Q,Σ, δ, q0, F ) be given by:

Q = {q0, q1, q2}

Σ = {0, 1}

F = {q2}

δ : Q × Σ → Q

δ(q0, 0) = q1 δ(q1, 0) = q1 δ(q2, 0) = q2

δ(q0, 1) = q0 δ(q1, 1) = q2 δ(q2, 1) = q2

What does it do?
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Deterministic Finite Automata

How to Represent a DFA?

Transition Diagram: As we have seen before.

q0 q1 q2
0 1

1 0

0, 1

Transition Table:

δ 0 1

→ q0 q1 q0

q1 q1 q2

∗q2 q2 q2

The start state is indicated with →.

The final states are indicated with ∗.
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Deterministic Finite Automata

When Does a DFA Accept a Word?

When reading the word the automaton moves according to δ.

Definition: If after reading the input it stops in a final state, it accepts the

word.

Example:

q0 q1 q2 q3 q4

q5

t h e n

6= t 6= h 6= e 6= n a

a

Only the word then is accepted.

We have a (non-accepting) stop or dead state q5.
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Deterministic Finite Automata

Example: DFA

Let us build an automaton that accepts the words that contain 010 as a

subword.

That is, given Σ = {0, 1} we want to accept words in L = {x010y | x, y ∈ Σ∗}.

Solution: ({q0, q1, q2, q3}, {0, 1}, δ, q0, {q3}) given by

q0 q1 q2 q3

1

0

0

1 0

1

0, 1

δ 0 1

→ q0 q1 q0

q1 q1 q2

q2 q3 q0

∗q3 q3 q3

Lecture 3 March 24th 2011 – TMV026/DIT321 Slide 22

Deterministic Finite Automata

Extending the Transition Function to Strings

How can we compute what happens when we read a certain word?

Definition: We extend δ to strings as δ̂ : Q × Σ∗ → Q.

We define δ̂(q, x) by recursion on x.

δ̂(q, ǫ) = q

δ̂(q, ax) = δ̂(δ(q, a), x)

Note: δ̂(q, a) = δ(q, a) since the string a = aǫ.

δ̂(q, a) = δ̂(q, aǫ) = δ̂(δ(q, a), ǫ) = δ(q, a)

Example: In the previous example, what are δ̂(q0, 10101) and δ̂(q0, 00110)?
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Deterministic Finite Automata

Some Properties

Proposition: For any words x and y, and for any state q we have that

δ̂(q, xy) = δ̂(δ̂(q, x), y).

Proof: We prove the result by induction on x.

Basis case: δ̂(q, ǫy) = δ̂(q, y) = δ̂(δ̂(q, ǫ), y).

Inductive step: Given δ̂(q, xy) = δ̂(δ̂(q, x), y) for any word y and any state q,

we should prove that δ̂(q, (ax)y) = δ̂(δ̂(q, ax), y).

δ̂(q, (ax)y) = δ̂(q, a(xy)) = δ̂(δ(q, a), xy) = IH = δ̂(δ̂(δ(q, a), x), y) =

δ̂(δ̂(q, ax), y)
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Deterministic Finite Automata

Another Definition of δ̂

Recall that we have 2 descriptions of words: a(b(cd)) = ((ab)c)d.

We can define δ̂′ as follows:

δ̂′(q, ǫ) = q

δ̂′(q, xa) = δ(δ̂′(q, x), a)

Proposition: ∀x.∀q. δ̂(q, x) = δ̂′(q, x).

Proof: Observe that xa is a special case of xy where y = a.

Basis case is trivial.

The inductive step goes as follows:

δ̂(q, xa) = δ̂(δ̂(q, x), a) = δ(δ̂(q, x), a) = IH = δ(δ̂′(q, x), a) = δ̂′(q, xa).
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Deterministic Finite Automata

Language Accepted by a DFA

Definition: The language accepted by the DFA (Q,Σ, δ, q0, F ) is the set

L = {x | x ∈ Σ∗, δ̂(q0, x) ∈ F}.

Example: In the previous example, 10101 is accepted but 00110 is not.

Note. We could write a program that simulates a DFA and let the program

tell us whether a certain string is accepted or not.
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Deterministic Finite Automata

Functional Representation of a DFA Accepting x010y

data Q = Q0 | Q1 | Q2 | Q3

data S = O | I

final :: Q -> Bool

final Q3 = True

final _ = False

delta :: Q -> S -> Q

delta Q0 O = Q1

delta Q0 I = Q0

delta Q1 O = Q1

delta Q1 I = Q2

delta Q2 O = Q3

delta Q2 I = Q0

delta Q3 _ = Q3
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Deterministic Finite Automata

Functional Representation of a DFA Accepting x010y

run :: Q -> [S] -> Q

run q [] = q

run q (a:xs) = run (delta q a) xs

accepts :: [S] -> Bool

accepts xs = final (run Q0 xs)

%% Alternatively, given that

%% run q [x1,...,xn] = delta (... (delta Q0 x1) ...) xn

run :: Q -> [S] -> Q

run = foldl delta

accepts :: [S] -> Bool

accepts = final . run Q0
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Deterministic Finite Automata

Accepting by End of String

Sometimes we use an automaton to identify properties of a certain string.

In these cases, the important thing is the state the automaton is in when we

finish reading the input.

Here, the the set of final states is actually not needed and can be omitted.

Example: The following automaton determines whether a binary number

is even or odd.

even odd

0
1

0

1
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Deterministic Finite Automata

Accessible Part of a DFA

Consider the DFA ({q0, . . . , q3}, {0, 1}, δ, q0, {q1}) given by

q0 q1 q2 q3

1

0

0

1

1

0

0

1

This is clearly equivalent to the DFA

q0 q1

1

0

0

1

which is the accessible part of the DFA. The states q2 and q3 are not

accessible from the start state and can be removed.
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Deterministic Finite Automata

Accessible States

Definition: The set Acc = {δ̂(q0, x) | x ∈ Σ∗} is the set of accessible states

(from the state q0).

Proposition: If D = (Q,Σ, δ, q0, F ) is a DFA, then

D′ = (Q ∩ Acc,Σ, δ′, q0, F ∩ Acc), where δ′ is the function δ restricted to the

states in Q ∩ Acc, is a DFA such that L(D) = L(D′).

Proof: Notice that D′ is well defined and that L(D′) ⊆ L(D).

If x ∈ L(D) then δ̂(q0, x) ∈ F . Observe that by definition δ̂(q0, x) ∈ Acc.

Hence δ̂(q0, x) ∈ F ∩ Acc and then x ∈ L(D′).
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Deterministic Finite Automata

Automatic Theorem Proving

Recall the example f, g, h : N→ {0, 1} such that:

f(0) = 0 g(0) = 1 h(0) = 0

f(n + 1) = g(n) g(n + 1) = f(n) h(n + 1) = 1 − h(n)

We can prove ∀n. h(n) = f(n) automatically using a DFA.

• Q = {0, 1} × {0, 1} × {0, 1}

• Σ = {1} (The number n is represented by 1n and 0 by 10 = ǫ)

• q0 = (f(0), g(0), h(0)) = (0, 1, 0).

• δ̂((0, 1, 0), 1n) = (f(n), g(n), h(n))

A transition goes from (f(n), g(n), h(n)) to (f(n + 1), g(n + 1), h(n + 1))

and then δ((a, b, c), s) = (b, a, 1 − c)

We check that all accessible states (a, b, c) satisfy a = c, that is, the property

a = c is an invariant for each transition of the automata
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Deterministic Finite Automata

Automatic Theorem Proving

A more complex example:

f(0) = 0 f(1) = 1 f(n + 2) = f(n) + f(n + 1) − 2f(n)f(n + 1)

We have

f(0) = 0 f(1) = 1 f(2) = 1 f(3) = 0 f(4) = 1 f(5) = 1 . . .

Show that f(n + 3) = f(n) by using

• Q = {0, 1} × {0, 1} × {0, 1}

• Σ = {1}

• q0 = (f(0), f(1), f(2)) = (0, 1, 1)

• δ((a, , b, c), s) = (b, c, b + c − 2bc)
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