
Computer Science and Engineering Distributes Systems CTH HT11

Chalmers and Göteborg University TDA596

Göteborg GU-INN240

SAA

Election using Echo Algorithm

The Election Algorithm algorithm using Echo Algorithm should be implemented within the
Netsim program.

General

When giving a public void trigg() to a node it should start a version of the algorithm.

When a node gets a request that is sent further it should also call setWaken(); on the node interface.

This will change the color of the node on the screen.

When a node has got all echoes and sends an echo back on its first link it should also call

 setReady(); on the node interface.

The messages should have a tag with its starting sender identification and type of message

(Explorer/Echo).

For each event a node should write to public void writeLogg(String row); on the node interface

in order to trace the events. Then the real physical order of events can be viewed by selecting view -

> system log on the menu bar.

N.B. The Echo Algorithm requires a network that is safe and FIFO but not that it will be fully con-

nected.

The following holds.

- Each node has a unique identification.

- The identification can be ordered totally.

- each node has a variable Superior having the value of the largest known identity.

From the beginning it has the node’s own identity.

- The algorithm is a multi-source echo algorithm. When a node starts its version of

the algorithm it puts its own identity in the explorer messages.

- One (or several) node starts the algorithm. When a node with a higher identity get

its explorer messages it starts its own version of the algorithm and ignores the echo

algorithms with lower identity. Only the node with the highest identity will see its

echo algorithm terminate normally. Then it is elected!

- Any node can start the algorithm and then becomes Initiator Node, IN, in an echo

algorithm which will be identified with the nodes Name.

Description of the algorithm

1. One node starts the algorithm by sending out EM to all its neighbors. These messages con-
tains the node’s identity. The node sets its Superior variable to its own identity.

-2-

2. If an inactive node gets an EM that has a value lower than the node’s own identity, this mes-
sage is ignored. Instead it starts a new echo algorithm as described in 1.

3. If an active node gets an EM that has a value lower than the node’s Superior variable, this
message is ignored.

4. If an active or an inactive node gets an EM that has a value higher than the node’s Superior
variable, the node updates its Superior variable. The incoming link is marked as FL and any
former existing FL is unmarked. Then the node sends out EM on all links except the FL.
These messages contains the value of the Superior variable.

5. If an active node gets an EM that has a value equal to its Superior variable it sends an ECHO
message back on the corresponding link. This message contains the value of the Superior
variable.

6. If a node gets an ECHO message that has a value lower than the node’s Superior variable,
this message is ignored.

7. If a node gets an ECHO message that has a value same as the node’s Superior variable, it is
book-kept.
When a node has got a ECHO message with the same value as the Superior variable on each
link except the FL it sends a corresponding ECHO message on its FL.
If the node’s identity is the same as the Superior variable the algorithm terminates and the
node is elected.

8. If a node gets an ECHO message that has a value higher than the node’s Superior variable,
indicates that there is a programming error!

Please note that a leaf node (that only has one neighbor) does not send EM messages but instead
will send an ECHO reply at once!

