
1 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Distributed Transactions

� Synchronizing the updates and reads of data in a distributed system.

� Atomic Transactions

� Two Phase Commit

2 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Transactions

Example

� If we want to move $1 000 from one bank account A to another account B we can have the following code:

• a ← read(A)

• b ← read(B)

• a ← a − 1 000

• b ← b + 1 000

• write(a,A)

• write(b,B)

� There might arise several problems when this is executed:

� A crash might occur:

• before the write statements: nothing will be changed

• between the write statements: $1 000 will disappear into the abyss

• after the write statements: this is no problem

3 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Transactions (cont.)

� The transaction performer might change its mind and stops the transaction

abort or rollback:

• The accounts A and B must be set to the original values.

• Some other transaction might have read a new value and uses it for new calculations:
$1 000 might disappear or emerge from nowhere.
dirty read

� The solution is to use an atomic transaction.

4 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Atomic Transaction

Indivisible: is completely performed or not at all.

Isolation: the result of concurrent atomic transactions should be as if they were performed in a cer-
tain order, not necessarily known from the beginning.

time

time

T

T

P

P

Q

QC

T: transaction composed of several events
P: precondition, holds before T
Q: post condition, holds after T if T is correctly performed
QC: crash condition, holds after T if T is interrupted (crash)

5 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Atomic Transaction (cont.)

� Transaction T atomic ⇒ QC = (P ∨ Q).

⇒

� momentarily transition from P to Q

� commit

� abort (roll back) keeps P

� A crash before commit must leave the system in state P

� A crash after commit must leave the system in state Q

� commit is an acknowledgement to the client user that the transaction will hold “forever”.

� T restartable if it has not made commit

6 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Transaction

Definition

A sequence of

— read

— write

— end ≡ commit

— abort or rollback

that is sent by a Client program to a data storage system.

� all or none of the write commands should be performed

� no other transaction should see intermediary data (no dirty reads)

7 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

ACID properties

� Härder and Reuter, 1983

� A transaction must obey the following properties:

� Atomicity — all or nothing

� Consistency — take the system from one consistent state to another consistent state,

e.g. in a banking system it might be that the sum of all accounts is constant.

� Isolation — no illegitimate influence among different transactions.

� Durability — the write operations of a committed transaction must hold for the future.

8 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Nested Transactions

� Nested Transactions are transactions composed of other transactions, subtransactions.

� subtransactions at one level may run concurrently with other subtransactions at the same level.

This could be done on different servers.

� subtransactions can commit or abort independently.

� Commit rules:

� A transaction may commit or abort only after its child transactions have completed.

� When a subtransaction completes, it makes an independent decision either to commit provisionally or

to abort. A decision to abort is final.

� When a parent aborts, all of its subtransactions are aborted, even if they have committed provisionally.

� When a subtransaction aborts, the parent can decide whether to abort or not.

� If the top level transaction commits, then all of the subtransactions that have provisionally committed

can commit too, provided that none of their ancestors has aborted.

9 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Atomic Transactions - solutions

� Pessimistic

� Keep out other transactions from the involved data.

� Locks

� two-phase commit

� Optimistic

� Start transaction directly

� When changing the data first check that the involved data has not been changed.

• If changed the transaction must be restarted.

• Possibly there might have to be a cleanup.

� non-blocking solutions

� when there is low probability for concurrent access of the same data.

10 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Transactions in Distributed Systems

� There can be partial crashes

� Some clients/servers crashes while others continue to work.

� Traditional solutions for crash recovery does not work.

� use two-phase commit

A

B
C

D

E

F

G

H

S1

S2

C1

C3

C2

11 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Transactions in Distributed Systems

� There can be partial crashes

� Some clients/servers crashes while others continue to work.

� Traditional solutions for crash recovery does not work.

� use two-phase commit

A

B
C

D

E

F

G

H

S1

S2

C1

C3

C2

12 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Transactions in Distributed Systems

� There can be partial crashes

� Some clients/servers crashes while others continue to work.

� Traditional solutions for crash recovery does not work.

� use two-phase commit

A

B
C

D

E

F

G

H

S1

S2

C1

C3

C2

13 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

two-phase commit

� phase 1:

� Lock transaction data.

� perform reads and writes in normal order but

� write on an intention list instead of changing the corresponding memory addresses.

� The intention list should be stored on stable storage,

i.e. memory that survives a processor crash, e.g. a hard disk.

� commit - the intention list is made valid

� phase 2:

� write to the memory addresses according what has been stored on the intention list.

� Then the locks can be released.

14 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

two-phase commit (cont.)

� If after a crash the intention list

� is marked as valid the transaction was committed before the crash occurred.

• The write operations on the intention list are performed

• then the locks are released.

� is not marked as valid the transaction was not committed before the crash occurred.

• The locks are released.

• The transaction might be restarted.

15 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

Distributed two-phase commit Protocol

� phase 1 (voting phase):

� The coordinator sends a canCommit request to each of the transaction participants.

� When a participant receives a canCommit request it replies with its vote, Yes or No, to the coordinator.

If it answers No it aborts its part of the transaction.

If it answers Yes it puts its new data on an intention list on stable storage.

� phase 2 (completion phase):

� The coordinator collects the votes including its own:

• If all votes are Yes the coordinator decides to commit the transaction and sends a doCommit
message to all the participants.

• Otherwise the coordinator sends a doAbort message to all the participants that voted Yes.

� A participant that voted Yes is waiting for a doCommit or doAbort message.

• If it is a doCommit message it marks the intention list as valid and sends a haveCommited message
to the coordinator.
Then it copies the data on the intention list to the corresponding storage.

• If it is a doAbort message it removes the intention list.

16 (16) - DISTRIBUTED SYSTEMS Distributed Transactions - Sven Arne Andreasson - Computer Science and Engineering

three-phase commit

� Takes care of the problem that the coordinator might crash.

