
1 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Process-Process Synchronization

� The Coordinated Attack Problem

� Partial Ordering of Events in a Distributed System

� Vector Clocks

� Logical Clocks

� Total Ordering of Events in a Distributed System

� Physical Clock Synchronization

� Snapshot Algorithm

2 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Decentralized Control of Processes

� A distributed system without centralized control

� Distributed resource allocation

� Synchronization of processes

� Give a global order to the different events in the system

� To achieve a similar view of the system global state

3 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Synchronization of processes

The Coordinated Attack Problem

Presumption: Two processes communicate using messages on an unreliable medium where messages
can be corrupted or disappear.

Statement: It is impossible for the two processes to agree on a specific point of time when both
should change their states simultaneously.

Proof: here we will show that it is not possible even in a simplified case when the messages have
a constant network transmission time (if the message arrives).

If we can agree at time k then the last message can not be part of the decision since pro-
cess A does not know if it has arrived or not. Then the decision could as well be done at
time k-1. But then process B does not know if its last message has arrived or not so it can
not be part of the decision. Then the decision could as well be done at time k-2., and so
forth. We will find the no message can be part of the decision and then no decision can be
made.

A

B

M Ack Ack Ack Ack Ack

0 1 2 3 4 k-2 k

time

4 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Synchronization of processes

The Coordinated Attack Problem

Consequences

� It is impossible to keep a distributed database in a consistent state at any moment of time.

� Automatic Teller Machine (ATM)

• Can not deliver money at the same moment as it is drawn from the corresponding account.

� Bank account systems

• It is impossible to move money from an account in one bank to another momentarily.

� In a distributed computer system it is not possible to transfer a resource from one computer to another
momentarily.

� It is hard to control a distributed real time system.

� Y. Yemini, D. Cohen, 1979.

5 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Synchronization of processes

The Coordinated Attack Problem

What is possible

� It is possible for two processes to decide that they change their states some time in the future.

� The system “converges” to a consistent state.

A

B

M

Ack Ack

Ack

Ack Ack

0 1 2 3 4

M M

State: S2

State: S2

5 6 7 8 9

time

 S1

 S1

6 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

ATM

� ATM account withdrawal:

• First it sends a message to the bank system about card number and the withdrawal amount.

• The bank system checks that the withdrawal is OK and then draws the amount from the account.

• Then a message is sent back to the ATM that it can output the money.

• When the message reaches the ATM it outputs the money bills.

� Should there arise a communication breakdown during the transaction the system might remain in an
inconsistent state:

� The amount is drawn from the account but no money has been output.

� This will be corrected in due time when the communication is working again.

7 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Typical communication protocol

� Sender sends a message

• Now only the sender knows about the message.

� Receiver accepts message, sends an acknowledgement

• Now both sender and receiver knows about the message.

• Only the receiver knows that is has gone through.

� The sender get acknowledgement

• Now both sender and receiver knows about the message.

• Now both sender and receiver knows that is has gone through.

� Sender sends next message

8 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Synchronization of processes

Consequences 2

� It is impossible for the processes in a distributed system to know the global state of the system without
stopping it.

9 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Ordering the Events in a Distributed System

� Leslie Lamport, 1978.

� Presumptions:

� A number of processes are communicating using message passing in an unreliable network.

Each process is a sequence of events.

� These events (in the same process) are totally ordered in time.

� A message passing will have an unknown transmission time > 0.

� The sending and the receiving of messages will be seen as the events in a process.

10 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Partial Ordering of Events

 "→" (happens) before

Definition: "→" on the set of events in a distributed system is the least relation that fulfills:

(i) If a and b are two events in the same process and a happens before b, a → b holds.

(ii) If a is the sending of a message in one process and b is the receiving of the same message in
another process, then a → b holds.

(iii) If both a → b and b → c holds, then a → c holds.

(iv) If an event a “not happens before” an event b it is denoted as a b.

(v) If a b and b a holds, then a and b in a way are “concurrent”,
this is denoted as a // b:

� “→” is an irreflexive partial order on the set of events in a system.

→|

→| →|

11 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Events in a system from a global viewpoint

a1 → a2 a1 → b2 a1 → c3 since a1 → b2,b2 → b3, b3 → c2 and c2 → c3

a2 b3 and b3 a2 gives a2 // b3

a2 b2 and b2 a2 gives a2 // b2

but b2 → b3

A

B time

C •

•

• •

• •

• •

•

•

•

•

•

•

a1 a2 a3 a4 a5

b1 b2

b3 b4

b5 b6

c1 c2 c3

→| →|

→| →|

12 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Vector Clocks

� A vector (array) is used to represent the partial ordering "→".

� Each process holds a clock vector Ci [1..n]
n is the number of processes in the system.

It is defined as:

• Ci [i] describes the time in process Pi.

• Ci [j] describes process Pi’s knowledge about the time in process Pj.
Updated each time Pi gets a message from Pj.

• Each event in Pi is time stamped with the entire vector Ci [1.n].
This represents Pi’s global view of the event.

� This leads to the following rules for each process Pi:

(i) Each process Pi increments its local register Ci [i] for each event.

(ii) Each message is stamped with the actual full clock vector Ci [1..n].

(iii)When receiving a message a process should adjust its local clock value, Ci [1..n], comparing
it to the message timestamp T [1..n] according to:

1 ≤ k ≤ n: Ci [k] := max (Ci [k],T [k]),
then Ci [i] is incriminated.

13 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Vector Clock Example

A

B time

C •

•

• •

• •

• •

•

•

•

•

•

•

a1 a2 a3 a4 a5

b1 b2

b3 b4

b5 b6

c1 c2 c3

(1,0,0)

(0,1,0)

(0,0,1)

(2,0,0) (3,1,0) (4,1,0)

(1,2,0)

(1,3,0)
(1,4,3)

(1,3,2) (1,3,3)

(1,5,3) (4,6,3)

(5,5,3)

14 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Implementing Partial Order using Vector Clocks

� The partial ordering, "→", can be calculated by comparing the vector clock values.

� Definitions:

(i) If Ci ≤ Cj ⇔ ∀x: Ci [x]≤ Cj [x]
vector Cj is said to dominate vector Ci.

(ii) If Ci < Cj ⇔ Ci ≤ Cj ∧ ∃x: Ci [x] < Cj [x]
vector Cj is said to strictly dominate vector Ci.

(iii)If Ci // Cj ⇔ ¬(Ci < Cj) ∧ ¬(Cj < Ci)
vector Ci and vector Cj is said to be “parallel”.

� Then it holds for two events a and b with vector timestamps Ca and Cb:

a → b ⇔ Ca < Cb

a // b ⇔ Ca // Cb

� Note that this is a partial ordering, there will be events a and b with vectors like (iii) above.
Sometimes we say we have a conflict when this happens.

15 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Use of Vector Clocks

� Distributed debugging.

� In distributed memory.

� Definition of global breakpoints.

� Keep a consistent distributed file system with multiple copies at network partitions.

� Measure of distributed algorithms amount of parallelism.

16 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Logical Clocks

� Leslie Lamport, 1978.

A Logical Clock is a function that assigns an ordering number C(a) to an event a in the system.

Clock condition: ∀ a,b: a and b are events in the system:
 a → b ⇒ C(a) < C(b).

(N.B.! We don’t require the reverse)

� Each process Pi has an en instance Ci of the logical clock

� If a is an event in process Pi ⇒ C(a) = Ci(a)

� If a and b are events in process Pi and a → b ⇒ Ci(a) < Ci(b)

• the clock must step forward (tick) at least by 1 between two events in the same process.

� If a is the sending of a message by process Pi and b is the receiving of the same message

by process Pj ⇒ Ci(a) < Cj(b)

• a message must be received at a clock value that is higher than the sending clock value

17 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Implementing Logical Clocks

� Each process Pi increments its local register Ci after each event in the process.

� Each message contains a timestamp Tm.

• If a is the event that process Pi sends a message m, then m will contain the timestamp Tm = Ci(a).

� When a process receives a message it first compares its timestamp to the local logical clock register.

• Before a process Pj registers the reception of a message m, Pj will set its local logical clock register
Cj := max(Cj,Tm+1) which will be the logical clock value for the message receiving event.

18 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Logical Clock example as seen globally

� This diagrams shows the events when they really happen in the “real” physical time.
This can not be known by the processes.
Red lines indicate messages with time stamps that are sent among the processes.

� The green lines shows the “ticks” of the Logical Clock.
This means that a2 and b2 have the same Logical Clock value.
Also a4 and c2 have the same Logical Clock value.

A

B
physical time

C •

•

• •

• •

• •

•

•

•

•

•

•

a1 a2 a3 a4 a5

b1 b2

b3 b4

b5 b6

c1 c2 c3

Logical Clock example as seen by the processes

� Since the processes do not know the physical time they have to use the Logical Clock values,
i.e. they will have to follow the green lines.

� For the processes the green lines will be thought of as vertical.

� The events might be in different order than according to real time,

but if for two events, a and b, that a → b holds then the logical clock value for a must be lower than

for b.

A

B
logical time

C •

•

• •

• •

• •

•

•

•

•

•

•

a1 a2 a3 a4 a5

b1 b2

b3 b4

b5 b6

c1 c2 c3

20 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Total ordering of events

Introduce an ordering relation "" on the processes:

Pi  Pj, means Pi is before Pj

Definition: "→T"
Let a be an event in process Pi and b be an event in process Pj:

(i) if Ci(a) < Cj(b) then a →T b.

(ii) if Ci(a) = Cj(b) and Pi  Pj then a →T b.

� "→T" is a total ordering of the events in a system where processes communicate using message passing in
a computer network:

— ¬(a →T b) ⇒ (b →T a)

— a → b ⇒ a →T b

� "" will introduce priorities on the processes

21 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Total ordering example

Assume A  B  C.

Then the following holds:

a1 →T b1 →T c1 →T a2 →T b2 →T a3 →T b3 →T a4 →T c2 →T c3 →T b4 →T →T b5 →T a5 →T b6

A

B
logical time

C •

•

• •

• •

• •

•

•

•

•

•

•

a1 a2 a3 a4 a5

b1 b2

b3 b4

b5 b6

c1 c2 c3

22 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Distributed Resource Allocation Algorithm using Logical Clock

� Algorithm conditions:

� The algorithm uses

• Distributed Request Queue (empty at start)

• Logical Clock

� each process administers:

• a local copy of the Request Queue

• a local copy of the Logical Clock

• a table containing the latest received timestamp from each of the other processes in the system
(TS-table)

� When placing a request at process Pi, it is associated with the current local logical clock value Ci in Pi.

� all messages between two processes is delivered in the same order as they were sent and no message

will disappear (FIFO).

This will be the case when using a communication protocol such as TCP/IP.

23 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Algorithm

� The different events:

� Pi REQUEST:

• <Ti;Pi;REQUEST> is sent to all other processes, Ti is the timestamp taken from Ci

• <Ti;Pi;REQUEST> is also put in Pi’s local copy of the Request Queue sorted according to "→T"

• Pi increments its local Logical Clock value

� Pj receives REQUEST <Ti;Pi;REQUEST>:

• Pj adjusts its local copy of the Logical Clock according to the Logical Clock definition

• <Ti;Pi;REQUEST> is put in Pj’s local copy of the Request Queue sorted according to "→T"

• Pj updates its TS-table

• Pj increments its local Logical Clock value

• Pj sends an acknowledgement <Tj;Pj;ACK> to Pi

• Pj increments its local Logical Clock value

� Pi receives an acknowledgement <Tj;Pj;ACK> from Pj:

24 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

• Pi adjusts its local copy of the Logical Clock according to the Logical Clock definition.

• Pi updates its TS-table with Tj from Pj

• Pi increments its local Logical Clock value

� Pi is allowed access to the resource when:

• <Ti;Pi;REQUEST> is number one in the (local) Request Queue

• Ti →T Tj for all Tj in the (local) TS-table

� Pi want to RELEASE:

• <Ti
’;Pi;RELEASE> is sent to all other processes, Ti

’ is the timestamp taken from actual Ci

• <Ti;Pi;REQUEST> is erased from the (local) Request Queue

• Pi increments its local Logical Clock value

� Pj receives <Ti
’;Pi;RELEASE>:

• Pj adjusts its local copy of the Logical Clock according to the Logical Clock definition.

• <Ti;Pi;REQUEST> is erased from the (local) Request Queue

• Pj updates its TS-table with Ti
’ from Pi

• Pj increments its local Logical Clock value

25 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Totally ordered Multicast

� The algorithm can be used for sending totally ordered Multicast Messages.

� Instead of sending Requirement messages, Multicast messages with logical clock values can be sent and
ordered according to the total order in a message queue.

� The messages are delivered to the receiving process following the total order definition.

26 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Physical Clocks

Why?

� Let S stand for all events in the system,
not only messages in the network but also other interactions

� "→a" is defined as happens before in S

� How avoid abnormal behavior?

(i) require that all interaction should involve exchange of timestamps

(ii) use synchronized physical clocks

Strong clock condition: ∀ a,b ∈ S: a →a b ⇒ C(a) < C(b)

27 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Clock Conditions

� Each clock must have high precision, i.e. have correct speed:

∃ κ << 1: ∀ i: < κ

Typical value for a modern clock might be κ < 10-6.

� The value difference between two clocks should not be too large,

i.e. the clocks should be synchronized:

∀ i,j: |Ci(t) - Cj(t)| < ε where ε is the maximal difference between any two clocks.

The clocks must show the “same” time.

� Let µ denote the shortest time for a process to influence another process

For a correct behavior of the system it is required that
 , since then Ci(t+ µ) - Cj(t) > 0

This requirement will assure that every message will experience that time is moving forward

• consequently ε ≤ µ(1-κ) must hold

� One solution would be to send clock values between the processes to set clock values as close as possible

td

d
C

i
t() 1–

ε 1 κ–()⁄ µ≤

28 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Setting clock values using messages between nearby processes

� We use the following notation:

µ: the minimum time to send a message between two processes

νm: the real time to send a message m

ξm: the den unpredictable delay of a message m

then

ξm = νm - µ. for message m

29 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Clock adjusting algorithm

� Leslie Lamport, 1978.

� If process Pi doesn’t get a message at time t it lets its local clock Ci step forward using its internal time

keeper.

� If process Pi sends a message m at time t, this message will contain a timestamp Tm = Ci (t)

� If process Pi receives a message m at time t containing a timestamp Tm Pi should set its local clock

according to:

 Ci := max(Ci,Tm + µm)

� A network with diameter D (the maximal number of the minimum number of node jumps between any two
nodes in the network).

� Each node sends a message to each neighbor at least every τ time units.

� Then the clock difference will be maximized by

ε ≈ D(2κτ + ξ)

• The problem here is that theoretically this is unlimited since ξ is unlimited.

� The fastest clock will push the other clocks forward.

30 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Physical Clocks Example 1

� At times t1 and t2 the clocks, C1, C2 and C3 compare their values.
Since no clock is allowed to be changed backwards they all change to the highest value.

� This means that the fastest clock will decide the time

Clock value

time

accurate clock value

C3

C2

C1

C1

C1

C2

C2

C3

C3

t1 t2

31 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Physical Clocks Example 2

� Instead of taking the highest value as the new value, the mean value of the clocks is chosen..
Since no clock is allowed to be changed backwards they change their speeds in order to reach the next
calculated value, the aiming value.
The blue line shows what is supposed to be the accurate time of the system.

Clock value

time

accurate clock value

C1

C2

C3

aiming values

clock mean value

t1 t2 t3

32 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Probabilistic Clock Synchronizing

Characteristics to take into consideration when constructing a better algorithm

� Most messages have short transmission time.

� but at least a minimal time, µ

transmission timeµ

% of messages

33 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Probabilistic Clock Synchronizing

� Flaviu Cristian, 1989.

� To set the clients clock a time request message is sent to the clock server.

� Total waiting time from sending request until receiving reply is 2 ∗ U

� The received time value is T.

It is assumed that this time was read by the server after half the waiting time U.

Then the estimated time when receiving the reply will be T + U.

� Calculaing the error:

� The server can only have read this time between the sending of the request and the receiving of the

reply. Thus the error can be estimated to be ± U.

� Since there is a minimum transmission time, µ, for the messages this error estimation can be refined

to ± (U − µ)

� But we have to read our own clock to get U. Since the clock might have a speed error κ we have to add

κ ∗ U to the error estimathion

Thus the time can be estimated as T + U ± (U − µ + κ ∗ U)

34 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Probabilistic Clock Synchronizing

Clock Server“general” processor











2 ∗ U
Tr + U

T

Tr

Tr + 2 ∗ U





error Tf

The actual error is Tf + the error in the general processor’s clock

request message

answer(T) message

precision clockordinary clock

35 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Snapshot Algorithm

Chandy and Lamport, 1985.

� Calculates a “useful” approximate global state of a distributed system, although it might never have
existed.

� Algorithm conditions:

� the nodes are part of a directed graph, real or virtual

� the graph is strongly connected, i.e. there is a path from any node to any other node

� the algorithm messages are only sent according to the directed graph

� FIFO secure transmissions on the communication links (e.g. TCP/IP)

� the process can continue working and change their states while the snapshot takes place

� Calculates an estimated global state of the system consistent with the real state.

� this might never have existed

� but this state is a possible state that doesn’t conflict with the real states and might be used for system

control.

36 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Consistent State

� Assume that S1 is the real global state when the algorithm starts and S2 is the real state when the algorithm
terminates.

� A calculated state Sc is consistent with the real state if

� Sc = S1, or

� Sc = S2, or

� S1 → Sc → S2 is a possible state sequence.

37 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Snapshot-algorithm

� uses Marker Messages (MM)

� Local Calculated State (LS)

� A node initiates the algorithm

• records its local state, LS

• puts itself in recording state

• sends an MM-message on each out-going link

� When a node gets its first MM-message on an in-going link

• records its local state, LS

• puts itself in recording state

• marks the in-going link as ready

• sends an MM-message on each out-going link

� When a node in recording state gets an MM-message on an in-going link

• marks the in-going link as ready

38 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� When a node in recording state gets another message on an in-going link

• if the in-going link is not marked as ready the recorded state, LS, will be recalculated according to
the message

• if the in-going link is marked as ready the message will not affect the calculated state

� When a node in recording state has got an MM-message on all in-going links

• its part of the global calculated state, LS, is ready.

• its recorded state is
- sent to one node for assembling the global calculated state
- or sent to all other nodes so all can calculate the global state

• it leaves recording state

� A calculating node that has got the local calculated states, LS, from all other nodes can put them

together to the Calculated Global State

� The Calculated Global State might not have been existing for the system.

39 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

Example: Counting Capabilities

� A Capability is a permission (grant) ticket to be used in a system for access to different resources.

� the CORBA ior-string

� the right to use a certain program (license)

� the right to read/change a file

� a Control Token

� In a distributed system a capability can be sent in a message between processes.

� In this example we assume that the number of capabilities in the system should be constant (e.g. we have
paid a license for a program that allows n users in the same time.

� A capability might get lost or one process might not delete its own copy when sending it to another process.

� We need an algorithm to count the capabilities in the system at one moment

� We don’t want to stop the system to do this

� Then we can use the Snapshot Algorithm

40 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� Nodes N1, N2, N3, N4, N5 and N6

� Capabilities K1, K2 and K3.

� Node N1 starts the algorithm by recording K1 and then sending out MM on outgoing links.

� Capabilities K2 and K2 are being transferred among nodes.

N1

N2 N3

N4

N5N6

K1

<K3>

<K2>

<MM>

<MM>T:K1

41 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� When node N3 and node N4 received the MM-messages they had no capabilities. They both record empty.

� Capability K3 has reached node N6.

N1

N2 N3

N4

N5N6

K1

<K2>

T:K1

T:-

T:-

MM

MM

K3

42 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� The nodes N3 and N4 sends MM-messages on their outgoing links.

� Capability K2 then reached N4 and is recorded since N4 has not got an MM-message on the corresponding
link yet.

� Also node N1 has sent capability K1 in a message in its way to N3

N1

N2 N3

N4

N5N6

<K1>

<MM><MM>

T:K1

<MM>

K3

K2

T:-

T:K2

43 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� The MM-messages have now reached nodes N2, N4 and N5.

� Since node N4 now has got MM-messages on all in links it is ready with its part of the algorithm.
For the global state N4 contributes with K2.
Nodes N2 and N5 record empty

� Nodes N2 and N5 have not got an MM before so they send an MM-message on each outgoing link.
Node N5 has got MM-message on all in links and is ready.

� Capability K1 has reached node N3. Since N3 already has got an MM-message on the corresponding link
it does not record K1 as a part of its contribution to the algorithm.

N1

N2 N3

N4

N5N6

<K3>

T:K1

K1

T:-

T:K2|

<K2>MM

MM

MM
T:-|

T:-

44 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� Capabilities K3 and K2 have been sent.

� Since the nodes N2 and N5 have not got an MM-message before they send MM-messages on all their
outgoing links.

� K2 and K3 have reached N5 and N3
Since N5 has already got an MM-message on the corresponding link K2 is not recorded by N5.
K3 is on the other side recorded by node N3 since N3 has not got an MM-message on the corresponding
link.

N1

N2 N3

N4

N5N6

T:K1

K1

T:K3

T:K2|

<MM>

T:-|

T:-

<MM>

K3

K2

45 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� The MM-message from N2 has reached N1 and the MM-message from N5 has reached N6.

� Node N1 then is ready with its part of the algorithm.

� Node N6 gets its first MM-message and records its state which is empty.

N1

N2 N3

N4

N5N6

T:K1|

K1

T:K3

T:K2|

<K3>

T:-|

T:-

K2MM

MM

T:-|

46 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� N6 then sends MM-messages on its outgoing links.

� K3 has arrived to N4.

N1

N2 N3

N4

N5N6

T:K1|

K1

T:K3

T:K2|

<MM>

T:-|

T:-

K2
T:-|

<MM>

K3

47 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� K2 has been sent from N5 to N6.

� The MM-messages have reached N2 and N3.
Now all nodes have got MM-messages on all in links and the local calculations are ready.

N1

N2 N3

N4

N5N6

T:K1|

K1

T:K3|

T:K2|

T:-|

T:-|

T:-|
<K2>

K3

MM

MM

48 (48) - DISTRIBUTED SYSTEMS Process-Process Synchronization - Sven Arne Andreasson - Computer Science and Engineering

� By letting one or all nodes combine the local recorded states a global state will be calculated.

� This state might never existed in reality but can still be used for the distributed control.

� In our example it gives the correct number of capabilities in the system although it does not tell where

they actually are.

� The calculated state:

N1

N2 N3

N4

N5N6

K1
K2

K3

