3 Byzantine Agreement

The most thoroughly studied problem in distributed computing is Byzantine Agree-
ment. also known as the consensus problem.

We assume a system of n processors, p;, .. -y Pn, some number ¢ of which may fail
in an arbitrary fashion (Byzantine failures). Each processor p; has an initial vote
v; € {0,1}. At some point in the computation each processor must irreversibly decide
on a value (formally, enter one of two possible decision sates do, dy). We require:

e agreement: all non-faulty processors decide on the same value;

e validity: if all non-faulty processors begin with the same value., say, v, then all
non-faulty processors must decide v.

We will assume the processors operate in lock-step synchrony, with all messages taking
exactly one time unit to be delivered. Thus, a message sent at one step will be received
at the next step.

Theorem 3.1 Any t-resilient protocol for By:zantine agreement, for t > 1, requires
at least 3t + 1 processors.

Proof: For the case n = 2 there is clearly no solution (either party could be faulty;
then consider the case in which the two parties start with different values).

The proof for n > 2 is in two parts. In one part, we show there is no 3-processor
agreement protocol that tolerates a single faulty processor. In the other part we show
that if for some t > 1 there exists a t-resilient agreement protocol requiring at most

n


tsigas
Text Box


C" \/C:'O

) ’
A: VAI:I

Figure 2: Impossibility of 1-resilient 3-processor Agreement

3t processors, then there is 1-resilient, 3-processor protocol. Thus. there can be no
t-resilient protocol requiring at most 3¢ processors.

For the first part, assume for the sake of contradiction that there exists a 1-
resilient 3-processor protocol. Let the three processors be A, B,C. Let us make
two copies of each processor, and call the second copies A’, B/, C’, respectively. Let
va =vg =vc =0, and vy = v = vor = 1, and arrange the copies as shown in
Figure 2. Note that to each processor it looks as if it is in the original 3-processor
system.

Consider the scenario in which A and B are non-faulty, with initial values 0, and in
which C'is faulty and behaves towards A as if its input were 1, while behaving toward
B as if its input were 0. Formally, this is captured (see Figure 2) by connecting the
processors C' — A — B —~C. To A and B it appears as if they are in a three-processor
system in which C is faulty. Thus, the Byzantine agreement protocol will eventually
yield decisions of 0 for both B and C. Let us call this scenario S.

Next, consider the processors A'— B’ —C’ — A, To B’ and C’ it appears that they
are running in a 3-processor system in which A is faulty, behaving toward B’ as if its



input were 1, while behaving toward ¢’ as if its input were 0. Thus, in this system
B’ and C' must decide on the value 1. We call this scenario S1.

Finally, consider processors B’ — C' — A — B. Since A cannot distinguish this
scenario from o, A will decide 0. Since C’ cannot distinguish this scenario from Sy,
¢’ will decide 1. This violates the agreement condition. Thus, there is no 1-resilient
3-processor protocol for Byzantine agreement. '

Now, suppose there were a t-resilient agreement protocol requiring m < 3t pro-
cessors, for ¢ > 2. Split the processors into three sets, A, B, and C', of size at least 1
and at most ¢ each. Define a 3-processor agreement protocol as follows: p, simulates
all the transitions and transmissions of processors in A, pp does the same for B, and
pc for C'. In particular, they simulate the execution in which every processor in A
has the same initial value as p4, and similarly for B and C. Messages within a subset
are simulated, and messages between subsets are sent explicitly.

The simulation is a 3-processor protocol. The failure of any one processor cor-
responds to a failure of at most ¢ processors in the original system, because each
set contains at most ¢ processors. By the assumed t-resilience of the original pro-
tocol, the simulation works correctly in the presence of any single processor failure,
contradicting the result in the first part of the proof. | o


tsigas
Text Box




