
 Department of Computer Engineering

Ulf Assarsson

Vovve – 17 fps

 Department of Computer Engineering

The screen consists of pixels

 Department of Computer Engineering

3D-Rendering

•  Objects are often made

of triangles

•  x,y,z- coordinate for each

vertex

Z

X

Y
Why only triangles?

 Department of Computer Engineering

4D Matrix Multiplication

 Department of Computer Engineering

Real-Time Rendering�

 Department of Computer Engineering

+ =

 One application of texturing is to ”glue”
images onto geometrical object

Textures

 Department of Computer Engineering

Texturing: Glue images onto
geometrical objects

•  Purpose: more realism, and this is a cheap way to do it

+ =

 Department of Computer Engineering

Light computation per triangle

light

 Department of Computer Engineering

Environment mapping

 Department of Computer Engineering

Sphere map

•  example

Sphere map (texture) Sphere map applied
on torus

 Department of Computer Engineering

Bump mapping

•  by Blinn in 1978

•  Inexpensive way of simulating wrinkles and bumps

on geometry

– Too expensive to model these geometrically

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=

 Department of Computer Engineering

Bump mapping: example

 Department of Computer Engineering

Particle System

Particles

 Department of Computer Engineering

Shadows

•  More realism and atmosphere

Image courtesy of BioWare

Neverwinter Nights

 Department of Computer Engineering

Shadows play an important role for
realism�

 Department of Computer Engineering

Hard vs. soft shadows

point source

umbra

area source

umbra penumbra

Two different light source types:

 Department of Computer Engineering

Very brief explanation of the �
Soft Shadow Volume Algorithm

 Department of Computer Engineering

Mjuka skuggor

http://www.ce.chalmers.se/staff/tomasm/soft/

 Department of Computer Engineering

What is vertex and fragment (pixel)
shaders?

•  Memory: Texture memory (read +
write) typically 256 Mb – 1GB

•  Program size: unlimited
instructions (but smaller is faster)

•  Instructions: mul, rcp, mov,dp, rsq, exp,
log, cmp, jnz…

Tomas Akenine-Mőller © 2003 21

light

Geometry

blue

red green

Vertex shader:

• Lighting (colors)

• Screen space positions

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Tomas Akenine-Mőller © 2003 22

Geometry shader:

• One input primitive

• Many output primitives

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

or

blue

red green
Rasterizer

Pixel Shader:
Compute color
using:
• Textures
• Interpolated data
(e.g. Colors +
normals)

Tomas Akenine-Mőller © 2003 23

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

 Department of Computer Engineering

Cg - ”C for Graphics” (NVIDIA)

 Department of Computer Engineering

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader
…

Primitive assembly

Clipping

Fragment Generation

Fragment
shader

Fragment
shader

Fragment
shader
…

Fragment
Merge

Fragment
Merge

Fragment
Merge

…

Geo
shader

Geo
shader

Geo
shader

On NVIDIA -
series:
Vertex-, Geometry- and
Fragment shaders
allocated from a pool of
240 processors

Application

26 Logic layout

27 Logic layout

  64 cores à 5-float
SIMD
→ 320 stream proc.

28

29

  80’s:
–  linear interpolation of color over a scanline
–  Vector graphics

  91’ Super Nintendo, Neo Geo,
–  Rasterization of 1 single 3D rectangle per frame (FZero)

  95-96’: Playstation 1, 3dfx Voodoo 1
–  Rasterization of whole triangles (triangle setup by Voodoo 2, 1998)

  99’ Geforce (256)
–  Transforms and Lighting (geometry stage)

  02’ 3DLabs WildCat Viper, P10
–  Pixel shaders, integers,

  02’ ATI Radion 9700, GeforceFX
–  Vertex shaders and Pixel shaders with floats

  06’ Geforce 8800
–  Geometry shaders, integers and floats, logical operations

30

  In GeForce3: 600-800 pipeline stages!
–  57 million transistors
–  First Pentium IV: 20 stages, 42 million transistors,
–  Core2 Duo, 271 Mtrans, Intel Core 2 Extreme QX9770 – 820Mtrans.
–  Intel Pentium D 900, 376M trans

  Evolution of cards:
–  X800 – 165M transistors
–  X1800 – 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
–  GeForce 6800: 222 M transistors, 400 MHz, 400 MHz core/550 MHz mem
–  GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, 430 MHz core,mem 650MHz(1.3GHz)
–  GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bandwidth 103.7 GB/s, 612 MHz core (1500 for

shaders), 1080 MHz mem (effective 2160 GHz)
–  Geforce 280 GTX: 1.4G trans, 65nm, 602/1296 MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s

  Ghw speed doubles~6 months, CPU speed doubles ~18 months
  Ideally: n stages  n times throughput

–  But latency is high (may also increase)!
–  However, not a problem here

  Chip runs at about 500 MHz (2ns per clock)
  2ns*700=1.4 µs
  We got about 20 ms per frame (50 frames per second)

  Graphics hardware is simpler to pipeline because:
–  Pixels are (most often) independent of each other
–  Few branches and much fixed functionality
–  Don’t need high clock freq: bandwidth to memory is bottleneck

  This is changing with increased programmability
–  Simpler to predict memory access pattern (do prefecthing!)

2008
2006

2004
2005

2001

2004
2005

31

  ”Simple” idea: compute n results in parallel, then
combine results

  GeForce 280 GTX: ≤ 240 pixels/clock
–  Many pixels are processed simultaneously

  Not always simple!
–  Try to parallelize a sorting algorithm…
–  But pixels are independent of each other, so simpler for

graphics hardware

  Can parallellize both geometry and rasterizer:

 Department of Computer Engineering

Current and Future Graphics Processors

•  Cell – 2005

–  8 cores à 4-float SIMD

–  256KB L2 cache

–  128 entry register file

–  3.2 GHz

•  NVIDIA 8800 GTX – Nov 2006

–  16 cores à 8-float SIMD (GTX 280 – 30 cores à 8-float SIMD, june ´08

–  16 KB L1 cache, 64KB L2 cache (rumour)

–  1.2-1.625 GHz

•  Larrabee - 2009

–  16-24 cores à 16-float SIMD

–  Core = 16-float SIMD (=512bit FPU) + x86 proc with loops, branches + scalar ops, 4 threads/core

–  32KB L1cache, 256KB L2-cache

–  1.7-2.4 GHz

PowerXCell 8i Processor – 2008
–  8 cores à 4-float SIMD

–  256KB L2 cache

–  128 entry register file

–  but has better double precission

support

33

FILTERING:
  For magnification: Nearest or Linear (box vs Tent filter)

  For minification:
–  Bilinear – using mipmapping
–  Trilinear – using mipmapping
–  Anisotropic – some mipmap lookups along line of anisotropy

34

Minification

Magnification

35

36

Wish list:

1 sample = 32 bytes (or
512 for 16x ani. filter.)

240 proc * 500MHz *
32 bytes = 3840 GB/s
per texture (60K GB/s)

And we haven’t
even used float-
textures yet...

nor 3D textures…

37

  Assume GDDR3 (2x faster than DDRAM) at 2214
MHz, 512 bits per access: => 141.7 Gb/s

  On top of that bandwith usage is never 100%, and
Multiple textures, anti-aliasing (supersampling), will
use up alot more bandwidth

  However, there are many techniques to reduce
bandwith usage:
–  Texture caching with prefetching
–  Texture compression
–  Z-compression
–  Z-occlusion testing (HyperZ)

38 Logic layout

Shared memory

Global Memory

•  Coalesced reads and
writes

 Department of Computer Engineering

W
ith

 c
ou

rte
sy

 o
f D

IC
E:

 R
al

liS
po

rt
C

ha
lle

ng
e

2

 Department of Computer Engineering

Va e de för bra me
datorgrafik då ?

With courtesy of Malin Grön

 Department of Computer Engineering

Image from Surgical Science

 Department of Computer Engineering

Image from Surgical Science

 Department of Computer Engineering

