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The screen consists of pixels
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3D-Rendering

e Objects are often made
of triangles

* X,y,z- coordinate for each
vertex

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

N

Display screen window
showing polygon’s

e projection Z
viewe eye
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4D Matrix Multiplication




Real-Time Rendering
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Textures

e One application of texturing is to "glue”
Images onto geometrical object
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Texturing: Glue 1images onto
geometrical objects

e Purpose: more realism, and this 1s a cheap way to do it
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Light computation per triangle

1 EDA 425 Demo
B

® light

{EDA 425 Demo 5



CHALMERS Department of Computer Engineering

projector function converts
reflection vector (x,),z)

vicwer to texture image (u,v)

environment
reflective texture image

surface
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Sphere map

e example

Sphere map (texture) Sphere map applied
on torus
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Bump mapping

by Blinn in 1978

e Inexpensive way of simulating wrinkles and bumps
on geometry

— Too expensive to model these geometrically

. M SN,

geometry Bump map Bump mapped geometry

Stores heights: can derive normals
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Bump mapping: example
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Particle System

>

Avg: 1897 Kp/sec 1L Peak: 4194l Kp/sec 1
tter (Flreeze (R)eset Be(N)lchmark +/-

1909 Kp/secl
(Blurst s(C)a

Particles




Shadows

 More realism and atmosphere
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Shadows play an important role for
realism
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Hard vs. soft shadows

Two different light source types:

point source area source

umbra ienumbra umbra



CHALMERS Department of Computer Engineering

Very brief explanation of the
Soft Shadow Volume Algorithm
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Mjuka skuggor

http://www.ce.chalmers.se/staff/tomasm/soft/

30.88 fps 59.31 fps
640, 480 640, 480
544 Wedges, 1842 Polys 544 Wedges, 1842 Polys
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What 1s vertex and fragment (pixel)
shaders?

. For each vertex, a vertex program (vertex shader) is executed

@® For cach fragment (pixel) a fragment program (fragment shader) is executed



Hardware design Vertex shader:
Lighting (colors)

*Screen space positions

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen

i ®light

Polygon in world

4" Geometry—|+

Display screen window
showing polygon’s
projection

Viewer's eye

Vertex Geometry
shader shader

Clipping
Screen mapping
Triangle Setup
Triangle Traversal




Hardware design Geometry shader:
*One 1nput primitive

*Many output primitives

Vertex ‘ Geometry | :
shader ‘ shader | :
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Triangle Setup
Triangle Traversal




/

Pixel Shader:
Compute color
using:

*Textures
Interpolated data
(e.g. Colors +

I Rasterizer I normals)

Vertex Geometry
shader shader

Clipping
Screen mapping
Triangle Setup
Triangle Traversal
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Cg - ”C for Graphics” (NVIDIA)

if |(slice >= 0.0h) {
half gradedEta = BallData.ETA:;
gradedEta =|1.0h/gradedEta; | // test hack
half3 faceColor = BgColor; // blown out - go to BG color
half cl = |dot (-Vn,NLf):
half cs2 = 1l.0h-gradedEta*gradedEta*(1.0h-cl*cl);

if (cs2 >= 0.0h) {
half3 refVector = gradedEta*Vn+|( (gradedEta*cl+sgrticsg) ) *NL) ;
// now let's intersect with the iris plane
half irisT = intersect plane(IN.OPosition,refVector, planeEquation)
half fadeT = irisT * BallData.LENS DENSITY!
fadeT = fadeT * fadeT;

faceColor = DiffPupil.xxx:; // temporary (7?)

if (irisT > 0) {
half3 irisPoint = [IN.OPosition|+ irisT*refVector:
half3 iris3T = (irisScale*irisPoint) + half3 (0.0h,0.5h,0.5h);
faceColor =|texZ2D(ColorMap,iris3T.vz) .xrgb)

¥

faceColor = |lerp(faceColor,LensColor, fadeT)|

hitColor = lerpimissColor, faceColor,smoothstep (0.0h, GRADE,slice) ) ;
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Application
PCI-E x16

Vertex Vertex Vertex
shader shader . o shader

Primitive assembly On NVIDI A -

Geo Geo Geo ” .
shader shader shader SCT1CS.
—> Vertex-, Geometry- and
Clipping Fragment shaders
allocated from a pool of
Fragment Generation 240 processors

Fragment Fragment Fragment
shader shader shader Input Assembler Setup / Rstr/ ZCull
o o
Vtx Thread Issue Geom Thread Issue Pixel Thread Issue
Fragment Fragment e o o [Fragment
Merge Merge Merge

Thread Processor

uuuuuuuuuuuuuuuu




NVIDIA Geforce 8800-architecture

Input Assembler Setup / Rstr/ ZCull

.~ Vitx Thread Issue Geom Thread Issue Pixel Thread Issue

Thread Processor

Logic layout
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ATl Radeon HD 3000

e 64 cores a 5-float Setup
SIMD - == I__J
— 320 stream proc.
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Shader Export
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Graphics Hardware History

e 80’s:
— linear interpolation of color over a scanline
— Vector graphics
91’ Super Nintendo, Neo Geo,
- Rasterization of 1 single 3D rectangle per frame (FZero)
95-96’: Playstation 1, 3dfx Voodoo 1

- Rasterization of whole triangles (triangle setup by Voodoo 2, 1998)
99’ Geforce (256)
- Transforms and Lighting (geometry stage)

02’ 3DLabs WildCat Viper, P10
— Pixel shaders, integers,

02’ ATl Radion 9700, GeforceFX
-~ Vertex shaders and Pixel shaders with floats

06’ Geforce 8800

- Geometry shaders, integers and floats, logical operations




Briefly about Graphics HW pipelining

2001 @ In GeForce3: 600-800 pipeline stages!
57 million transistors
First Pentium IV: 20 stages, 42 million transistors,
Core2 Duo, 271 Mtrans, Intel Core 2 Extreme QX9770 — 820Mtrans.
Intel Pentium D 900, 376M trans

e Evolution of cards:
2004 - X800 - 165M transistors
2005 - X1800 — 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
2004 - GeForce 6800: 222 M transistors, 400 MHz, MHz core/550 MHz mem
2005 - GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, MHz core,mem 650MHz(1.3GHz)

2006 - GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bandwidth 103.7 GB/s, MHz core ( for
shaders), 1080 MHz mem (effective 2160 GHz)

2008 - Geforce 280 GTX: 1.4G trans, 65nm, MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
e Ghw speed doubles~6 months, CPU speed doubles ~18 months

e Ideally: n stages - n times throughput

— But latency is high (may also increase)!

- However, not a problem here
e Chip runs at about 500 MHz (2ns per clock)
e 2ns*700=1.4 us
e We got about 20 ms per frame (50 frames per second)

e Graphics hardware is simpler to pipeline because:
- Pixels are (most often) independent of each other
Few branches and much fixed functionality

Don’t need high clock freq: bandwidth to memory is bottleneck
e This is changing with increased programmability

Simpler to predict memory access pattern (do prefecthing!)




Parallellism
e "Simple” idea: compute n results in parallel, then

combine results

e GeForce 280 GTX: < 240 pixels/clock
- Many pixels are processed simultaneously

e Not always simple!

— Try to parallelize a sorting algorithm...
— But pixels are independent of each other, so simpler for

graphics hardware
e Can parallellize both geometry and rasterizer:

Rasterizer
stage
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Current and Future Graphics Processors

e Cell — 2005 PowerXCell 81 Processor — 2008

— 8 cores a 4-float SIMD — 8 cores a 4-float SIMD

— 256KB L2 cache — 256KB L2 cache

— 128 entry register file — 128 entry register file

— 32 GHz — but has better double precission
« NVIDIA 8800 GTX — Nov 2006 support

— 16 cores a 8-float SIMD (GTX 280 — 30 cores a 8-float SIMD, june “08
— 16 KB L1 cache, 64KB L2 cache (rumour)
- 1.2-1.625 GHz

e Larrabee - 2009
— 16-24 cores a 16-float SIMD
— Core = 16-float SIMD (=512bit FPU) + x86 proc with loops, branches + scalar ops, 4 threads/core
— 32KB Llcache, 256KB L2-cache

1.7-2.4 GHz




Memory bandwith usage is huge!!

Mainly. due to. texture reads

FILTERING:
e For magnification: Nearest or Linear (box vs Tent filter)

e For minification:
— Bilinear — using mipmapping
— Trilinear — using mipmapping
— Anisotropic — some mipmap lookups along line of anisotropy




Interpolation

Magnification
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pixel' s
cell

mipmap e

samples

texture space

Wish list:

1 sample = 32 bytes (or
512 for 16x ani. filter.)

240 proc * 500MHz *
32 bytes = 3840 GB/s
per texture (60K GB/s)



Memory bandwidth usage is huge!!

e Assume GDDR3 (2x faster than DDRAM) at 2214
MHz, 512 bits per access: => 141.7 Gb/s

e On top of that bandwith usage is never 100%, and
Multiple textures, anti-aliasing (supersampling), will

use up alot more bandwidth

e However, there are many techniques to reduce
bandwith usage:
— Texture caching with prefetching
- Texture compression
- Z-compression
— Z-occlusion testing (HyperZ)




Shared memory
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Global Memory

 Coalesced reads and
writes

+ Address 188

L Address 128 Thread 0
L Address 132 Thread 1
L Address 136 Thread 2
L Address 140 Thread 3
L Address 144 Thread 4
L Address 148 Thread 5
L Address 152 Thread 6
L Address 156 Thread 7
L Address 160 Thread 8
L Address 164 Thread 9
L Address 168 Thread 10
L Address 172 Thread 11
L Address 176 Thread 12
L Address 180 Thread 13
Lo Thread 14

Thread 15
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Va e de for bra me
datorgrafik da ?

With courtesy of Malin Gron
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Image from Surgical Science




CHALMERS Department of Computer Engineering

Image from Surgical Science
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