CHALMERS

3D Glja hics Hai:‘ ware

Vovve — 17 fps

CHALMERS Department of Computer Engineering

The screen consists of pixels

CHALMERS Department of Computer Engineering

3D-Rendering

e Objects are often made
of triangles

* X,y,z- coordinate for each
vertex

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

N

Display screen window
showing polygon’s

e projection Z
viewe eye

CHALMERS Department of Computer Engineering

4D Matrix Multiplication

Real-Time Rendering

7
e s’
"vv“\‘r

CHALMERS Department of Computer Engineering

Textures

e One application of texturing is to "glue”
Images onto geometrical object

CHALMERS Department of Computer Engineering

Texturing: Glue 1images onto
geometrical objects

e Purpose: more realism, and this 1s a cheap way to do it

CHALMERS

Departmentef Computer-Eggineering

Light computation per triangle

1 EDA 425 Demo
B

® light

{EDA 425 Demo 5

CHALMERS Department of Computer Engineering

projector function converts
reflection vector (x,),z)

vicwer to texture image (u,v)

environment
reflective texture image

surface

CHALMERS Department of Computer Engineering

Sphere map

e example

Sphere map (texture) Sphere map applied
on torus

CHALMERS

Bump mapping

by Blinn in 1978

e Inexpensive way of simulating wrinkles and bumps
on geometry

— Too expensive to model these geometrically

. M SN,

geometry Bump map Bump mapped geometry

Stores heights: can derive normals

CHALMERS Department of Computer Engineering

Bump mapping: example

CHALMERS Department of Computer Engineering

Particle System

>

Avg: 1897 Kp/sec 1L Peak: 4194l Kp/sec 1
tter (Flreeze (R)eset Be(N)lchmark +/-

1909 Kp/secl
(Blurst s(C)a

Particles

Shadows

 More realism and atmosphere

CHALMERS Department of Computer Engineering

Shadows play an important role for
realism

CHALMERS Department of Computer Engineering

Hard vs. soft shadows

Two different light source types:

point source area source

umbra ienumbra umbra

CHALMERS Department of Computer Engineering

Very brief explanation of the
Soft Shadow Volume Algorithm

CHALMERS Department of Computer Engineering

Mjuka skuggor

http://www.ce.chalmers.se/staff/tomasm/soft/

30.88 fps 59.31 fps
640, 480 640, 480
544 Wedges, 1842 Polys 544 Wedges, 1842 Polys

CHALMERS Department of Computer Engineering

What 1s vertex and fragment (pixel)
shaders?

. For each vertex, a vertex program (vertex shader) is executed

@® For cach fragment (pixel) a fragment program (fragment shader) is executed

Hardware design Vertex shader:
Lighting (colors)

*Screen space positions

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen

i ®light

Polygon in world

4" Geometry—|+

Display screen window
showing polygon’s
projection

Viewer's eye

Vertex Geometry
shader shader

Clipping
Screen mapping
Triangle Setup
Triangle Traversal

Hardware design Geometry shader:
*One 1nput primitive

*Many output primitives

Vertex ‘ Geometry | :
shader ‘ shader | :

(®))
g =
Q.
O Q&
A1
Q.
51
o
O
%))

Triangle Setup
Triangle Traversal

/

Pixel Shader:
Compute color
using:

*Textures
Interpolated data
(e.g. Colors +

I Rasterizer I normals)

Vertex Geometry
shader shader

Clipping
Screen mapping
Triangle Setup
Triangle Traversal

CHALMERS Department of Computer Engineering

Cg - ”C for Graphics” (NVIDIA)

if |(slice >= 0.0h) {
half gradedEta = BallData.ETA:;
gradedEta =|1.0h/gradedEta; | // test hack
half3 faceColor = BgColor; // blown out - go to BG color
half cl = |dot (-Vn,NLf):
half cs2 = 1l.0h-gradedEta*gradedEta*(1.0h-cl*cl);

if (cs2 >= 0.0h) {
half3 refVector = gradedEta*Vn+|((gradedEta*cl+sgrticsg)) *NL) ;
// now let's intersect with the iris plane
half irisT = intersect plane(IN.OPosition,refVector, planeEquation)
half fadeT = irisT * BallData.LENS DENSITY!
fadeT = fadeT * fadeT;

faceColor = DiffPupil.xxx:; // temporary (7?)

if (irisT > 0) {
half3 irisPoint = [IN.OPosition|+ irisT*refVector:
half3 iris3T = (irisScale*irisPoint) + half3 (0.0h,0.5h,0.5h);
faceColor =|texZ2D(ColorMap,iris3T.vz) .xrgb)

¥

faceColor = |lerp(faceColor,LensColor, fadeT)|

hitColor = lerpimissColor, faceColor,smoothstep (0.0h, GRADE,slice)) ;

CHALMERS Department of Computer Engineering

Application
PCI-E x16

Vertex Vertex Vertex
shader shader . o shader

Primitive assembly On NVIDI A -

Geo Geo Geo ” .
shader shader shader SCT1CS.
—> Vertex-, Geometry- and
Clipping Fragment shaders
allocated from a pool of
Fragment Generation 240 processors

Fragment Fragment Fragment
shader shader shader Input Assembler Setup / Rstr/ ZCull
o o
Vtx Thread Issue Geom Thread Issue Pixel Thread Issue
Fragment Fragment e o o [Fragment
Merge Merge Merge

Thread Processor

uuuuuuuuuuuuuuuu

NVIDIA Geforce 8800-architecture

Input Assembler Setup / Rstr/ ZCull

.~ Vitx Thread Issue Geom Thread Issue Pixel Thread Issue

Thread Processor

Logic layout

i

L L L B B

|

Q
-
-
)
@)
Q
kL —
H o=
O
| -
<
Q0
£
%))
v
QL
@)
@)
| -
Q.
%))
=
-
Q.
1Y)
—
)
o
o0
N
x
_.l
O
Q
O
—
O
(W
()
O

’

ATl Radeon HD 3000

e 64 cores a 5-float Setup
SIMD - == I__J
— 320 stream proc.

I[g'rv

Mierarchical Z
! OJ XODUI xolle

Intwpo(amfs

Ultra-Threaded Dispatch Processor

R

= Stream

Processing
Units

IR REIN HINERsine nnsgesnn
“ " e W
’® 11
PEREREEIREE DINER R ey

Shader Export

L L I Exd I L L I L.
or L e »,A

Render Back-Ends

i

oD Nxal 21

ayIen aInxa) 1

SHUfy aunxaf U *

ZIStencd Cache

s s fiE o0
uZ e 88 o

Cotor Cache

Graphics Hardware History

e 80’s:
— linear interpolation of color over a scanline
— Vector graphics
91’ Super Nintendo, Neo Geo,
- Rasterization of 1 single 3D rectangle per frame (FZero)
95-96’: Playstation 1, 3dfx Voodoo 1

- Rasterization of whole triangles (triangle setup by Voodoo 2, 1998)
99’ Geforce (256)
- Transforms and Lighting (geometry stage)

02’ 3DLabs WildCat Viper, P10
— Pixel shaders, integers,

02’ ATl Radion 9700, GeforceFX
-~ Vertex shaders and Pixel shaders with floats

06’ Geforce 8800

- Geometry shaders, integers and floats, logical operations

Briefly about Graphics HW pipelining

2001 @ In GeForce3: 600-800 pipeline stages!
57 million transistors
First Pentium IV: 20 stages, 42 million transistors,
Core2 Duo, 271 Mtrans, Intel Core 2 Extreme QX9770 — 820Mtrans.
Intel Pentium D 900, 376M trans

e Evolution of cards:
2004 - X800 - 165M transistors
2005 - X1800 — 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
2004 - GeForce 6800: 222 M transistors, 400 MHz, MHz core/550 MHz mem
2005 - GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, MHz core,mem 650MHz(1.3GHz)

2006 - GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bandwidth 103.7 GB/s, MHz core (for
shaders), 1080 MHz mem (effective 2160 GHz)

2008 - Geforce 280 GTX: 1.4G trans, 65nm, MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
e Ghw speed doubles~6 months, CPU speed doubles ~18 months

e Ideally: n stages - n times throughput

— But latency is high (may also increase)!

- However, not a problem here
e Chip runs at about 500 MHz (2ns per clock)
e 2ns*700=1.4 us
e We got about 20 ms per frame (50 frames per second)

e Graphics hardware is simpler to pipeline because:
- Pixels are (most often) independent of each other
Few branches and much fixed functionality

Don’t need high clock freq: bandwidth to memory is bottleneck
e This is changing with increased programmability

Simpler to predict memory access pattern (do prefecthing!)

Parallellism
e "Simple” idea: compute n results in parallel, then

combine results

e GeForce 280 GTX: < 240 pixels/clock
- Many pixels are processed simultaneously

e Not always simple!

— Try to parallelize a sorting algorithm...
— But pixels are independent of each other, so simpler for

graphics hardware
e Can parallellize both geometry and rasterizer:

Rasterizer
stage

CHALMERS Department of Computer Engineering

Current and Future Graphics Processors

e Cell — 2005 PowerXCell 81 Processor — 2008

— 8 cores a 4-float SIMD — 8 cores a 4-float SIMD

— 256KB L2 cache — 256KB L2 cache

— 128 entry register file — 128 entry register file

— 32 GHz — but has better double precission
« NVIDIA 8800 GTX — Nov 2006 support

— 16 cores a 8-float SIMD (GTX 280 — 30 cores a 8-float SIMD, june “08
— 16 KB L1 cache, 64KB L2 cache (rumour)
- 1.2-1.625 GHz

e Larrabee - 2009
— 16-24 cores a 16-float SIMD
— Core = 16-float SIMD (=512bit FPU) + x86 proc with loops, branches + scalar ops, 4 threads/core
— 32KB Llcache, 256KB L2-cache

1.7-2.4 GHz

Memory bandwith usage is huge!!

Mainly. due to. texture reads

FILTERING:
e For magnification: Nearest or Linear (box vs Tent filter)

e For minification:
— Bilinear — using mipmapping
— Trilinear — using mipmapping
— Anisotropic — some mipmap lookups along line of anisotropy

Interpolation

Magnification

ing

.
?

I

A
A
by, VA

il
I I
[/

IPMapp

]

|

| 3
D
,,,.W‘ﬂ .% Q

ing using

Ay
i

___Z
o
o

,VW” A...%g /

Bilinear filter

,
A

pixel' s
cell

mipmap e

samples

texture space

Wish list:

1 sample = 32 bytes (or
512 for 16x ani. filter.)

240 proc * 500MHz *
32 bytes = 3840 GB/s
per texture (60K GB/s)

Memory bandwidth usage is huge!!

e Assume GDDR3 (2x faster than DDRAM) at 2214
MHz, 512 bits per access: => 141.7 Gb/s

e On top of that bandwith usage is never 100%, and
Multiple textures, anti-aliasing (supersampling), will

use up alot more bandwidth

e However, there are many techniques to reduce
bandwith usage:
— Texture caching with prefetching
- Texture compression
- Z-compression
— Z-occlusion testing (HyperZ)

Shared memory

d 11

g
r

d 12

g
4

d 13

g
:

g
k

d 15

g
X

Thread 0 Bank 0 Thread 0 Bank 0 (
\ Geforce 88 Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
m Thread 3 Bank 3 Thread 3 Bank 3
» I Thread 4 Bank Thread Bank 4
: ‘—_ Thread 5 Bank Thread 5 Bank 5
Vtx Thread Issue Geom Thre \
. . i Thread 6 Bank Thread 6 , Bank 6
 A—— S — - p— e —— pa— s — Thread 7 Bank Thread 7 Bank 7
Thread 8 Bank Thread 8 ' Bank 8
Bank Bank 9
nk 10 Bank 10
1
2
3
4
5
A

-
w

Logic layout

Global Memory

 Coalesced reads and
writes

+ Address 188

L Address 128 Thread 0
L Address 132 Thread 1
L Address 136 Thread 2
L Address 140 Thread 3
L Address 144 Thread 4
L Address 148 Thread 5
L Address 152 Thread 6
L Address 156 Thread 7
L Address 160 Thread 8
L Address 164 Thread 9
L Address 168 Thread 10
L Address 172 Thread 11
L Address 176 Thread 12
L Address 180 Thread 13
Lo Thread 14

Thread 15

CHALMERS Department of Computer Engineering

"f"-
- ! .. «
- .~ u“.

(@\|
O
1))
c

i

=

-

O

j=
@)
Q.

2

=

a7
aa

O

e

-

€
@)
>
7o)

£
)
o
Q
<=
=

CHALMERS Department of Computer Engineering

Va e de for bra me
datorgrafik da ?

With courtesy of Malin Gron

CHALMERS Department of Computer Engineering

Image from Surgical Science

CHALMERS Department of Computer Engineering

Image from Surgical Science

CHALMERS

Vill du&t_g_l__r_l_éf?{

\ Computer"Graphlcs

\' /ERI 2009

