EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #15
Updated February 27, 2011

CHALMERS

Real-Time Systems

Specification

* Dynamic scheduling
Implementation - Earliest-deadline-first

scheduling
* Processor-demand analysis

Verification

CHALMERS

Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure
below. The timing properties of the tasks are given in the table.

Investigate the schedulability of the tasks when EDF is used.
(Note that D, < T, for all tasks)

Task C | b | T
® 6@ 6 SRR
7, 1|2 |4

T, 1 3 8

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 27, 2011

CHALMERS

Example: scheduling using EDF

Simulate an execution of the tasks:

4

. i
N '
\ 1
\ 1
h '
!

’

\
| S [|
T < 154 1

|
N T
0 2 4 6 g t

T, S

The tasks are not schedulable even though
U :1+E+E:Z:O.875<1
2 4 8 8

T, i 1‘ i . T, misses its deadline!

CHALMERS

Feasibility analysis for EDF

e Utilization-based analysis?
Not suitable! Not general enough or exact enough
— Does not work well for the case of D, < T;

e Response-time analysis?
Not suitable! Analysis much more complex than for DM

at the same time for the first time.

time of that task can be calculated.

What analysis methods are suitable for general EDF:

— Critical instant does not necessarily occur when all tasks arrive

— Instead, response time of a task is maximized at some scenario
where all other tasks arrive at the same time; the worst such
scenario has to be identified for each task before the response

Lecture #15

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #15
Updated February 27, 2011

CHALMERS

Processor-demand analysis

Processor demand:

e The processor demand for a task 7, in a given time
interval [0, L] is the amount of processor time that the
task needs in the interval in order to meet the deadlines
that fall within the interval.

* Let N/ represent the number of instances of 7, that must
complete execution before L .

* The total processor demand up to L is

C.(0,L) = 2 NLC,

i=1

CHALMERS

Processor-demand analysis

Processor demand:

e We can calculate N/ by counting how many times task 7,
has arrived during the interval[o, L— Di].

* We can ignore instances of the task that arrived during
the intervaI[L— D., L] since D, > L for these instances.

Instance with D, > L

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #15
Updated February 27, 2011

CHALMERS

Processor-demand analysis

Processor-demand analysis:
e We can express N/ as

N.L:[L_D‘J+1

1 T

* The total processor demand is thus

C,(O0,L) :2; Q@Ju) C,

Exact feasibility test for EDF

(Sufficient and necessary condition)

A sufficient and necessary condition for earliest-
deadline-first scheduling, for which D, < T, , is

VL:C,(0,L)<L

where C,(0, L) is the total processor demand in [0, L].

The processor-demand analysis and associated feasibility test
was presented by S. Baruah, L. Rosier and R. Howell in 1990.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #15
Updated February 27, 2011

Exact feasibility test for EDF

(Sufficient and necessary condition)

How large interval must be examined?

e Largest interval is LCM of the task’s periods
e This interval can be further shortened (see course book)

How many time points must be examined?
¢ Only absolute deadlines need to be examined
¢ The set of deadlines can be further reduced (see course book)

The test can consequently be improved as follows:

VLeK:C,(0,L)<L

K ={D¥|Df =kT, + D,, D < LCM{T,,....T,} , 1<i<n k 20}

Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure below.
The timing properties of the tasks are given in the table.
a) Determine, by analyzing the processor demand, whether the
tasks are schedulable or not using EDF.
b) Determine, by using simulation, whether the tasks are
schedulable or not using EDF.

Task | c [Dp [T

® ® ® N R
% 2 7|8

T, 3 |12 16

We solve this on the blackboard!

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #15
Updated February 27, 2011

CHALMERS

Extended processor-demand analysis

The test can be extended to handle:

e Blocking
o Start-time variations ("release jitter”)
e Time offsets

In this course, we only study blocking.

CHALMERS

Deadline inversion

|:| normal execution H and L share resource R
//77) critical region

lt
M h N

it
. _ww w Y -

t

H blocked l

=+
A A

\
\
\
\
\

—
)
—

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #15
Updated February 27, 2011

Stack Resource Policy (SRP)

The tasks are assigned preemption levels, the properties of
which are:
— The preemption level of task 7;is denoted 7,
— Task 7, is not allowed to preempt another task T, unless 7; > 7,

— If T, has higher priority than 7; and arrives later, then T; must
have a higher preemption levél than 7.

Note:

- The preemption levels are static values, even though the tasks
priorities may be dynamic.

- For EDF scheduling, suitable levels can be derived if tasks with
shorter relative deadlines get higher preemption levels, that is:

T, & Di<Dj

Stack Resource Policy (SRP)

Deadline inversion can be reduced with resource ceilings:

1. Each shared resource is assigned a ceiling that is always
equal to the maximum preemption level among all tasks that
may be blocked when requesting the resource.

2. The protocol keeps a system-wide ceiling that is equal to the
maximum of the current ceilings of all resources.

3. A task with the earliest deadline is allowed to preempt only if
its preemption level is higher than the system-wide ceiling.

The original priority of the task is not changed at run-time.

— The resource ceiling is a dynamic value calculated at run-time
as a function of current resource availability.

— Otherwise, the behavior of the SRP protocol is very similar to

the ICPP, and SRP also exhibits identical properties regarding
maximum blocking time and freedom from deadlock.

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #15
Updated February 27, 2011

Stack Resource Policy (SRP)

preemption level (H) > preemption level (M) > preemption level (L)
[normal execution H and L share resource R

/777) critical region

H blocked l

Again: note the similarity to the behavior of ICPP

Extended processor-demand analysis

Blocking can be accounted for in the following way:

e Blocking factor B, represents the length of critical / non-
preemptive regions that are executed by tasks with
lower preemption levels than 7,

e Tasks are indexed in the order of increasing preemption
levels, thatis: 7, >7;, < (<]

VLeK,Vie[Ln]:CL(O,L)<L

e [N L

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated February 27, 2011

Extended processor-demand analysis

Determining the blocking factor for task 7.:

1. Determine the worst-case resource ceiling for each critical
region, that is, assume the run-time situation where the
corresponding resource is unavailable.

2. Identify the tasks that have a preemption level lower than 7.
and that calls critical regions with a worst-case resource
ceiling equal to or higher than the preemption level of 7..

3. Consider the times that these tasks lock the actual critical

regions. The longest of those times constitutes the blocking
factor B..

Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure below.
The timing properties of the tasks are given in the table.
Three resources R1, R2 and R3 have three, one, and three units
available, respectively.

The parameters Hy,, Hg, and H, represent the longest time a task
may use the corresponding resource.

The parameters g, Mg, and pg, represent the number of units a task
requests from the corresponding resource.

Task | C, D, | T, | Hgi|Hgro |Hgs | Mri | Hr2 | Mrs
7 6 | 10|50 2]|-]2]1 1
7, 7 17|50 1|22]2 3
75 10| 25| 50| 2 | 3 3 1

Lecture #15

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011

Updated February 27, 2011

Example: scheduling using EDF

Problem: (cont’d)
Task 7, first requests R3 and then, while using R3, requests R1

Task 7, first requests R3 and then, while using R3, requests Rz;
then,-after releasing the two resources, 7, requests R1

Task 7, first requests Rz and then, while using R2, requests R1;
then, after releasing the two resources, t, requests R3

We solve this on the blackboard!

Examine the schedulability of the tasks when the SRP (Stack
Resource Policy) protocol is used.
a) Derive the ceilings (dynamic and worst-case) of the resources.
b) Derive the blocking factors for the tasks.
c) Show whether the tasks are schedulable or not.

CHALMERS

Static
priority

(RM/DM)

Dynamic
priority

(EDF)

Feasibility tests

Summary
D, =T, D, <T,
1/n g R
U <n(2'"-1) Vi:R =C +) {_ﬂc.go.
i [1T j i
Viehp(i)| " j

10

Lecture #15

