CHALMERS

Example: scheduling using DM

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

- a) Calculate the task response times.
- b) Show that the tasks are schedulable using DM
- c) What is the outcome of Liu & Layland's feasibility test for RM?

Task	C,	D _i	T _i
$ au_{_{1}}$	12	52	52
$ au_2$	10	40	40
$ au_{3}$	10	30	30

CHALMERS

Example: scheduling using DM

$$\begin{split} R_{\mathrm{l}} &= C_{\mathrm{l}} + \left\lceil \frac{R_{\mathrm{l}}}{T_{2}} \right\rceil C_{2} + \left\lceil \frac{R_{\mathrm{l}}}{T_{3}} \right\rceil C_{3} \\ &= \left[\text{Assume } R_{\mathrm{l}}^{0} = C_{\mathrm{l}} + C_{2} + C_{3} = 12 + 10 + 10 = 32 \right] \\ R_{\mathrm{l}}^{1} &= 12 + \left\lceil \frac{32}{40} \right\rceil \cdot 10 + \left\lceil \frac{32}{30} \right\rceil \cdot 10 = 12 + 1 \cdot 10 + 2 \cdot 10 = 42 \\ R_{\mathrm{l}}^{2} &= 12 + \left\lceil \frac{42}{40} \right\rceil \cdot 10 + \left\lceil \frac{42}{30} \right\rceil \cdot 10 = 12 + 2 \cdot 10 + 2 \cdot 10 = 52 \\ R_{\mathrm{l}}^{3} &= 12 + \left\lceil \frac{52}{40} \right\rceil \cdot 10 + \left\lceil \frac{52}{30} \right\rceil \cdot 10 = 12 + 2 \cdot 10 + 2 \cdot 10 = 52 \\ &= \left[\text{Convergence because } R_{\mathrm{l}}^{3} = R_{\mathrm{l}}^{2} \right] \end{split}$$

CHALMERS

Example: scheduling using DM

a) Calculation of response times:

(Also see solution in Tindell pp. 22-23)

$$R_3 = C_3 = 10$$

 $[\tau_3$ has the highest priority w r t DM]

$$R_2 = C_2 + \left[\frac{R_2}{T_3} \right] C_3$$

 $R_2 = C_2 + \left[\frac{R_2}{T_3} \right] C_3$ [Assume $R_2^0 = C_2 + C_3 = 10 + 10 = 20$]

$$R_2^1 = 10 + \left\lceil \frac{20}{30} \right\rceil \cdot 10 = 10 + 1 \cdot 10 = 20 \quad \text{[Convergence because } R_2^1 = R_2^0\text{]}$$

CHALMERS

Example: scheduling using DM

b) Compare response times with corresponding deadline:

Task	R,	D,	Result
$ au_{ m l}$	52	52	OK
$ au_2$	20	40	OK
τ_{2}	10	30	OK

CHALMERS

Example: scheduling using DM

c) The utilization U in the system is

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} = \frac{12}{52} + \frac{10}{40} + \frac{10}{30} \approx 0.81$$

The least upper bound U_{bub} for the test is

$$U_{lub} = n(2^{1/n} - 1) = 3(2^{1/3} - 1) \approx 0.780$$

Since $U>U_{\it lub}$ and the test is only a sufficient one, we cannot decide whether the task are schedulable or not.

CHALMERS

Example: scheduling using DM

Problem: (cont'd)

Examine the schedulability of the tasks when ICPP (Immediate Ceiling Priority Protocol) is used.

- a) Derive the ceiling priorities of the semaphores.
- b) Derive the blocking factors for the tasks.
- c) Show whether the tasks are schedulable or not.

CHALMERS

Example: scheduling using DM

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

Two semaphores S₁ and S₂ are used for synchronizing the tasks.

The parameters H_{S1} and H_{S2} represent the longest time a task may lock semaphore S_1 and S_2 , respectively.

Task	Ci	Di	T _i	H _{S1}	H _{S2}
$ au_{_{1}}$	2	4	5	1	1
$ au_2$	3	12	12	1	-
τ_3	8	24	25	-	2

CHALMERS

Example: scheduling using DM

a) Ceiling priorities for the semaphores:

$$S_1 = \max\{H, M\} = H$$

$$S_2 = \max\{H, L\} = H$$

b) Since both semaphores have highest ceiling priority (H), tasks τ_1 och τ_2 may always be blocked by another task with lower priority regardless of which semaphore it uses.

$$B_1 = \max\{1,2\} = 2$$
 τ_2 and τ_3 may use semaphores S_1 and S_2

$$B_2 = \max\{2\} = 2$$
 τ_3 may use semaphore S_2

$$B_3 = 0$$

CHALMERS

Example: scheduling using DM

c) Calculate response times:

$$\begin{split} R_1 &= C_1 + B_1 = 2 + 2 = 4 & \leq D_1 = 4 & \Rightarrow \text{OK!} \\ R_2 &= C_2 + B_2 + \left\lceil \frac{R_2}{T_1} \right\rceil C_1 & \text{Assume } R_2^0 = C_2 = 3 \\ R_2^1 &= 3 + 2 + \left\lceil \frac{3}{5} \right\rceil \cdot 2 = 3 + 2 + 1 \cdot 2 = 7 \\ R_2^2 &= 3 + 2 + \left\lceil \frac{7}{5} \right\rceil \cdot 2 = 3 + 2 + 2 \cdot 2 = 9 \\ R_2^3 &= 3 + 2 + \left\lceil \frac{9}{5} \right\rceil \cdot 2 = 3 + 2 + 2 \cdot 2 = 9 & \leq D_2 = 12 & \Rightarrow \text{OK!} \end{split}$$

Example: scheduling using DM

$$\begin{split} R_3 &= C_3 + \left\lceil \frac{R_3}{T_2} \right\rceil C_2 + \left\lceil \frac{R_3}{T_1} \right\rceil C_1 \qquad \text{Assume } R_3^0 = C_3 = 8 \\ R_3^1 &= 8 + \left\lceil \frac{8}{12} \right\rceil \cdot 3 + \left\lceil \frac{8}{5} \right\rceil \cdot 2 = 8 + 1 \cdot 3 + 2 \cdot 2 = 15 \\ R_3^2 &= 8 + \left\lceil \frac{15}{12} \right\rceil \cdot 3 + \left\lceil \frac{15}{5} \right\rceil \cdot 2 = 8 + 2 \cdot 3 + 3 \cdot 2 = 20 \\ R_3^3 &= 8 + \left\lceil \frac{20}{12} \right\rceil \cdot 3 + \left\lceil \frac{20}{5} \right\rceil \cdot 2 = 8 + 2 \cdot 3 + 4 \cdot 2 = 22 \\ R_3^4 &= 8 + \left\lceil \frac{22}{12} \right\rceil \cdot 3 + \left\lceil \frac{22}{5} \right\rceil \cdot 2 = 8 + 2 \cdot 3 + 5 \cdot 2 = 24 \\ R_3^5 &= 8 + \left\lceil \frac{24}{12} \right\rceil \cdot 3 + \left\lceil \frac{24}{5} \right\rceil \cdot 2 = 8 + 2 \cdot 3 + 5 \cdot 2 = 24 \quad \Rightarrow \text{OK!} \end{split}$$