Exercise 6

Generalized Stochastic Petri Nets (GSPNS) Introduction to Laboratory Class 2 Problems 3.10, 3.4

Fault-Tolerant Computer Systems

Elements of GSPNs

Places – Hold tokens.

Place Place marked with 2 tokens

- Timed transitions Fires at a random point in time when enabled.
- ► Immediate transitions Fires immediate when enabled.
- ▶ Input and output arcs Connect places with transitions
- ► *Inhibitor arcs* Blocks the firing of a transition.

A fault-tolerant computer system consists of two modules working in active redundancy. The failure rate of the computer modules is λ and the repair rate is μ . The coverage for reconfigurations is c.

Define a Petri net model of the system.

 $\begin{array}{ccc} & \textbf{Marking} & \textbf{Comment} \\ \Rightarrow & \{2,0,0\} & \textbf{Initial marking} \end{array}$

	Marking	Comment
	$\{2,0,0\}$	Initial marking
\Rightarrow	$\{1, 1, 0\}$	One module failed (vanishing marking)

	Marking	Comment
	$\{2,0,0\}$	Initial marking
	$\{1, 1, 0\}$	One module failed (vanishing marking)
\Rightarrow	$\{1, 0, 1\}$	One module failed

Marking	Comment
$\{2,0,0\}$	Initial marking
$\{1, 1, 0\}$	One module failed (vanishing marking)
$\{1, 0, 1\}$	One module failed
$\{0, 1, 1\}$	Two modules failed (vanishing marking)

Marking	Comment
$\{2,0,0\}$	Initial marking
$\{1, 1, 0\}$	One module failed (vanishing marking)
$\{1, 0, 1\}$	One module failed
$\{0, 1, 1\}$	Two modules failed (vanishing marking)
$\{0, 0, 2\}$	Two modules failed

trepair fired

	Marking	Comment
	$\{2,0,0\}$	Initial marking
	$\{1, 1, 0\}$	One module failed (vanishing marking)
\Rightarrow	$\{1, 0, 1\}$	One module failed
	$\{0, 1, 1\}$	Two modules failed (vanishing marking
	$\{0, 0, 2\}$	Two modules failed

trepair fired

Marking	Comment
$\{2,0,0\}$	Initial marking
$\{1, 1, 0\}$	One module failed (vanishing marking)
$\{1, 0, 1\}$	One module failed
$\{0, 1, 1\}$	Two modules failed (vanishing marking
$\{0, 0, 2\}$	Two modules failed
	$\{2,0,0\}$ $\{1,1,0\}$ $\{1,0,1\}$ $\{0,1,1\}$

Marking	Comment
$\{2,0,0\}$	Initial marking
$\{1, 1, 0\}$	One module failed (vanishing marking)
$\{1, 0, 1\}$	One module failed
$\{0, 1, 1\}$	Two modules failed (vanishing marking)
$\{0, 0, 2\}$	Two modules failed
	$\{2,0,0\}$ $\{1,1,0\}$ $\{1,0,1\}$ $\{0,1,1\}$

Marking	Comment
{2,0,0}	Initial marking
$\{1, 1, 0\}$	One module failed (vanishing marking)
$\{1, 0, 1\}$	One module failed
$\{0, 1, 1\}$	Two modules failed (vanishing marking)
$\{0,0,2\}$	Two modules failed

GSPN Analysis

- Reachability graphs show possible firing sequences of GSPNs.
- An extended reachability graph contains
 - ► Tangible markings Only timed transitions are enabled.
 - Vanishing markings At least one immediate transition is enabled.
- A reduced reachability graph is created by transforming the extended reachability graph.
 - Transition rates are modified so that they account for the effects of tangible markings.

Marking	Comment
$\{2,0,0\}$	Initial marking
$\{1, 1, 0\}$	One module failed (vanishing marking)
$\{1, 0, 1\}$	One module failed
$\{0, 1, 1\}$	Two modules failed (vanishing marking)
$\{0, 0, 2\}$	Two modules failed

Extended reachability graph

1,1,0

1,0,1

0,1,1

0,0,2

Extended reachability graph:

Reduced reachability graph:

Cold stand-by system

A fault-tolerant computer system from start consists of N_A active modules and N_S spare modules. The failure rate for an active module is λ and the failure rate of the spare modules is negligible. The coverage for all reconfigurations is assumed to be ideal.

Define a GSPN model of the system.

Cold stand-by system

Hint: A hot stand-by system can be modelled with the following GSPN model:

Cold stand-by system

Study the impact of repair on the availability.

- Evaluate two different file server configurations: a simplex and a duplex server.
- Use Markov models and GPSN models to calculate the steady-state availability.

Simplex server

Repair policies:

- 1. Each unit has its own repair facility. The units fail independently of each other.
- The units share one repair facility. The units fail independently of each other. Repairs are made using a first-come first-served policy. (Repairs are not preempted.)

Duplex server

Duplex server - Repair policies

- 1. One repair facility handles one processor or disk at a time.
 - Processor/disk failures do not occur if the system is down.
 - Processor repairs always are given priority over disk repairs.
- 2. One repair facility handles one processor or disk at a time.
 - Processor/disk failures may occur when the system is down
 - Processor repairs are given priority over disk repairs except when both disks have failed and one processor is working.
 - In that case, one disk is repaired first.
- 3. One repair facility for the processors and one for the disks.

SHARPE Markov chains

SHARPE Markov chains

markov duplex_markov $2\lambda(1-c)$ $2\lambda c \qquad \lambda \qquad \qquad \lambda \qquad \qquad 0.2$

Markov chains

Markov chains

Markov chains

```
1 markov name { (param_list) }
2 * Transitions and transition rates
3 <name name expression >
4 end
5 * Initial state probabilities
6 <name expression >
7 end
```

Steady-state probability for Markov models

- ▶ Calculate $\lim_{t\to\infty} A(t)$ for a state in a Markov model with **prob** (system_name, state_eword {; arg_list})
- Example: steady-state availability for the duplex system
 func ss_avail_duplex_markov () \
 prob(duplex_markov, s20) + prob(duplex_markov, s11)
 expr ss_avail_duplex_markov ()

SHARPE GSPNs

GSPNs

1 **gspn** duplex_petri


```
gspn duplex_petri
2
3
4
   * places
   pup 2
   pdown 0
   pdownim 0
   end
                           \#\lambda
```

```
gspn duplex_petri
3
   * places
   pup 2
   pdown 0
   pdownim 0
7
8
9
   end
   * timed transitions
   tfail dep pup lambda
10
   trep ind mu
11
12
   end
```

```
gspn duplex_petri
3
   * places
   pup 2
   pdown 0
   pdownim 0
   end
8
   * timed transitions
10
   tfail dep pup lambda
11
   trep ind mu
12
   end
13
14
   * immediate transitions
15
   tcov ind c
16
   tuncov ind (1-c)
17
   end
```

```
18 * input arcs
19 pup tfail 1
20 pdownim tcov 1
21 pdownim tuncov 1
22 pup tuncov 1
23 pdown trep 1
24 end #\lambda 1-c
```

GSPNs

31

end

```
18
   * input arcs
19
   pup tfail 1
20
   pdownim tcov 1
21
   pdownim tuncov 1
22
   pup tuncov 1
23
   pdown trep 1
24
   end
25
26
   * output arcs
   tfail pdownim 1
27
28
   tcov pdown 1
29
   tuncov pdown 2
30
   trep pup 1
```

```
18
   * input arcs
19
   pup tfail 1
20
   pdownim tcov 1
21
   pdownim tuncov 1
22
   pup tuncov 1
23
   pdown trep 1
24
   end
25
26
   * output arcs
   tfail pdownim 1
27
28
   tcov pdown 1
29
   tuncov pdown 2
30
   trep pup 1
31
   end
32
33
   * inhibitor arcs
34
   end
```

```
gspn name (param_list)
2 * section 1: places and initial numbers of tokens
   <place_name expression>
4
   end
5 * section 2: timed transition names, types and rates
6 <transition_name ind expression>
   <transition_name dep place_name expression>
8
   end
9 * section 3: immediate transition names and weights
10 <transition_name ind expression>
11
   <transition_name dep place_name expression>
12
   end
13
   * section 4: place-to-transition arcs and multiplicity
14
   <place name_transition_name expression>
15
   end
16
   * section 5: transition-to-place arcs and multiplicity
17
   <transition_name place_name expression>
18
   end
19
   * section 6: inhibitor arcs and multiplicity
20
   <place_name transition_name expression >
21
   end
```

Steady-state probability for GSPNs

 Calculate the steady-state probability that a given state is empty using

```
prempty (system_name, place_eword {; arg_list})
```

► Example: steady-state availability for the duplex system

```
func ss_avail_duplex () \
1 - prempty(duplex_petri, pup)
expr ss_avail_duplex ()
```

Laboratory class 2

Preparations for the lab

- Read the lab pm.
- Draw Markov models and GSPN models for the different repair policies.

3.10

Consider a hot stand-by system that from system start has one active and two spare modules. The system is shut down when one module remains operational. Assume that the shut-down time is exponentially distributed with the expected value $1/\mu$. A catastrophic failure occurs if the last remaining module fails before the shut-down is completed. The fault coverage is c (c < 1) for an active module and ideal for a spare module. The occurrence of a non-covered fault in the active module leads to a catastrophic failure.

Draw a state diagram for a Markov model of the system and derive an expression for the steady-state safety of the system. Hint: the steady-state safety can be directly derived from the transition intensities in the Markov model.

Solution

Failure rates are missing! Assume that the failure rate for active and spare modules are λ .

Figure 4: Markov chain

Steady-state safety is obtained directly from the figure:

$$A(\infty) = \frac{(2+c)\lambda}{3\lambda} \cdot \frac{(1+c)\lambda}{2\lambda} \cdot \frac{\mu}{\lambda + \mu}$$

Solution

3.4

Figure 1: Markov chain

		State	Description
		0 1 2 3	M1 and M2 working M2 working M1 working Failure
Q	=	$\begin{bmatrix} -(\lambda_1 - 0) \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} +\lambda_{2} & \lambda_{1}c & \lambda_{2} & \lambda_{1}(1-c) \\ -\lambda_{2} & 0 & \lambda_{2} \\ 0 & -\lambda_{1} & \lambda_{1} \\ 0 & 0 & 0 \end{bmatrix}$
		P'(t) $P(0)$	$= P(t)Q$ $= \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$

Laplace transform:

$$\mathcal{L}\left\{P'(t) = P(t)Q\right\} \Rightarrow sP(s) - P(0) = P(s)Q$$

$$\begin{cases}
sP_0 - 1 &= -(\lambda_1 + \lambda_2)P_0 \\
sP_1 &= \lambda_1 cP_0 - \lambda_2 P_1 \\
sP_2 &= \lambda_2 P_0 - \lambda_1 P_2 \\
sP_3 &= \dots
\end{cases}$$

$$P_{0} = \frac{1}{s + (\lambda_{1} + \lambda_{2})}$$

$$P_{1} = \frac{\lambda_{1}c}{s + \lambda_{2}} P_{0} = \frac{\lambda_{1}c}{s + \lambda_{2}} \frac{1}{s + (\lambda_{1} + \lambda_{2})} = c \left(\frac{1}{s + \lambda_{2}} - \frac{1}{s + (\lambda_{1} + \lambda_{2})}\right)$$

$$P_{2} = \frac{\lambda_{2}}{s + \lambda_{1}} P_{0} = \frac{\lambda_{2}}{s + \lambda_{1}} \frac{1}{s + (\lambda_{1} + \lambda_{2})} = \frac{1}{s + \lambda_{1}} - \frac{1}{s + (\lambda_{1} + \lambda_{2})}$$

$$\begin{split} P_0(t) &= e^{-(\lambda_1 + \lambda_2)t} \\ P_1(t) &= c \left(e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2)t} \right) \\ P_2(t) &= e^{-\lambda_1 t} - e^{-(\lambda_1 + \lambda_2)t} \\ R(t) &= P_0(t) + P_1(t) + P_2(t) \\ &= e^{-(\lambda_1 + \lambda_2)t} + c \left(e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2)t} \right) + e^{-\lambda_1 t} - e^{-(\lambda_1 + \lambda_2)t} \\ &= e^{-\lambda_1 t} + c \left(e^{-\lambda_2 t} + e^{-(\lambda_1 + \lambda_2)t} \right) \end{split}$$