Operating Systems
Exercise 1

Georgios Georgiadis
Negin F.Nejad

Prelude

» We do not teach programming
> Take a course
» We do not teach C
> Read a book
o The C Programming Language, Kernighan, Richie
» This is a brief tutorial on C’s traps and pitfalls
> For those that already know C programming
o "C Traps and Pitfalls", Andrew Koenig, Addison-
Wesley 1989 (link at course’s webpage)

Overview

» Declarations and Definitions
» Memory Allocation

» Pointers and Arrays

» Lexical Pitfalls

» Syntactic Pitfalls

» Semantic Pitfalls

Declarations and Definitions

» We can declare something without defining it
> But we cannot define it without declaring it.

» The confusing part is that the definition will
repeat the declaration specifications.

Declarations and Definitions

» A variable declaration specifies its name, and type.
extern int x;

» A function declaration specifies its name, and the

int foo(int x);
extern int foo(int x);

» A data structure declaration specifies its type and
format.

struct LENGTH {
unsigned int yards;
unsigned int feet;
unsigned int inches;

i

typedef struct LENGTH len;

types of its input parameters and its output parameter.

Declarations and Definitions

» A function definition specifies the exact
sequence of operations to execute when it is
called.

int foo(int x) {return 1};

» A data structure definition will reserve space in
memory for it.

len length;

Memory Allocation

» Static/global allocation

> Each static or global variable defines one block of space, of
a fixed size.

> The space is allocated once, when your program is started
(part of the exec operation), and is never freed.

» Automatic allocation
> Such as a function argument or a local variable.
o The space for an automatic variable is allocated when the

compound statement containing the declaration is entered,
and is freed when that compound statement is exited.

o The size of the automatic storage should be a constant.

» Dynamic Memory Allocation - not covered.

Example

#include

int i;
/* 1 is static, and visible to the entire
program */

extern j;

/* j is static, and visible to the entire
program */

static int k;

/* k is static, and visible to the routines
in this source file */

Example

void func (void) { /* noarguments, doesn't return value */
int m = 1; /* automatic, local, initialized each time */
auto int n = 2; /* automatic, local, initialized each time */
static int p = 3; /* static, local, initialized once when the
program is first started up */

extern int q; /* static, defined in external module */
for (i = 0; i < 10; i++) {
int m = 10; /* automatic, local to block, initialized

each time the block is entered */
printf ("m = %i\n", m);

int *func (void) int *func (void)

{ {

static int x; int x;

return &x; return &x

} }

int *x; int *x;
x = func(); x = func();
x[0] ++; x[0]++; Warning:

function returns

address of local

variable. '

Overview

» Declarations and Definitions
» Memory Allocation
» Pointer and Arrays

» Lexical Pitfalls
» Syntactic Pitfalls
» Semantic Pitfalls

Pointers and Arrays

» The C notions of pointers and arrays are
inseparably joined

» C has only one dimensional arrays, and the
size of an array must be fixed as a constant
in compilation time.

» However, an element of an array may be an
object of any type.

Pointers and Arrays

» Arrays

int manyNumbers([3];

int manyNumbers([3]1={1,2,3};

int mult[2][2] = { {1,2}, {3.4} };

» Strings

char name[20];

char address[] = “a long”

strcpy (address, “Chalmers”) ;

if (strcmp(address, “Chalmers”) == 0)

Pointers Example

void swap(int *tl, int *t2) {

int tmp;

tmp = *tl;
*tl = *t2;
*t2 = tmp;

Pointers and Arrays

» Only 2 things can be done to an array:
o Determine size
= Obtain a pointer to element 0 of the array.

» All other array operations are actually done
with pointers even if they are written with
what look like subscripts.

PO'nterS and Al‘l’ayS some examples

» int al[3]; /*saysthatais an array of three int elements*/

v

struct { /*says that b is an array of 17 elements of type struct*/
int pl4];
double x;
} bl17]1;
int calendar[12] [31]; /*arrayof 12 arrays of 31 int
We note that sizeof(calendar) is 372 (=31*12) */
int *ip; /*a pointertoint*/

v

v

int i; /*we can assign the address of i to ip by saying */
ip = &i;

and then we can change the value of i by assigning to *ip : */
[* *ip = 17;

Pointers Arithmetic

If a pointer happens to point to an element of an array,
we can add/subtract an integer to that pointer to
obtain a pointer to the next element of that array.

But very different from integer arithmetic!

ip+1 does NOT point to the next memory location.

If we have written

v

v

v

int *q = p + i;

then we should be able to obtain i from writing q-p.
There is no way to guarantee even that the distance
between p and q is an integral multiple of an array
element!

v

Pointers Arithmetic

int al[3];

p=aj;

// a pointer to the first element of the array

p=&a;

// wrong! A pointer to an array assign to a pointer to int

Does sizeof (p) equal to the sizeof (a)?

*a = 84; sets the element 0 to 84

* (a+1i) is no different a[i]

Since a+i equals i+a then a[i] and [i]a is the same.
Also, calendar[4] [7] <=> * (calendar[4]+7) <=>
* (* (calendar+4) +7)

v

v v v v

Overview

» Declarations and Definitions
» Memory Allocation

» Pointer and Arrays

» Lexical Pitfalls

» Syntactic Pitfalls

» Semantic Pitfalls

Lexical Pitfalls

» & and | are not && or | |

» =is not ==
if (x = y)
foo () ;
while (¢ == * * || ¢ = '\t’ || ¢ == "\n’)

c = gete (f);

Lexical Pitfalls

Instead of:
if (x = y)
foo();
write:
if ((x = y) != 0)
foo();

Avoiding C compiler’s warning messages:
Assignment of y to x first and then checking its
value, whether equals to 0 or not.

Lexical Pitfalls

Multi-character Tokens
» The next token of the input stream is taken to be
the longest string of characters.

o If a / is the first character of a token, and the / is immediately
followed by a *, the two characters begin a comment, regardless
of any other context.

Note: A token is a sequence of one or more characters that have a

(relatively) uniform meaning in the language being compiled.

Lexical Pitfalls

y = x/*p /* p is a pointer to the divisor */;

Rewriting this statement as

y = x / *p /*pisa pointer to the divisor */;
or even

y = x/ (*p) /*pisa pointer to the divisor */;

Lexical Pitfalls

» Older versions of C use =+ to mean what present
versions mean by +=.

» Programmer intend to assign -1 to a:

as meaning the same thing

as
a =- 1;
or

Strings and Characters are
Different!

- Single and double quotes mean very things in
C language.
« A character enclosed in single quotes is just another
way of writing an integer.
» The integer that corresponds to the given character in
the implementation’s collating sequence.

e Thus, in an ASCIl implementation, "a’ means exactly
the same thing as 0141 or 97.

Strings and Characters are
Different!

« A string enclosed in double quotes, is a short-hand
way of writing a pointer to a nameless array.

« This array will be initialized with the characters
between the quotes and an extra character whose
binary value is zero.

printf ("Hello world\n");

Same as

char hello[] =

{'H', :e:’ '1:’ '1" 101’ 2 :’

W', tor, 'xv, r17, vd’, ‘\n’, 0};

printf (hello);

Strings and Characters are
Different!

Saying
printf(’\n’);
instead of
printf ("\n");
Is not the same

» Using a pointer instead of an integer (or vice versa) will
often cause a warning message.

Strings and Characters are
Different!

» Writing ' yes’ instead of "yes" is not the same!

. "yes" means ‘‘the address of the first of four
consecutive memory locations containing y, e, s, and a
null character, respectively.”

. 'yes’ means ‘‘an integer that is composed of the
values of the characters y, e, and s.”

Strings and Characters are
Different!

What are the following in C?
» 20’

» N0

» 0

» NULL

» *\0’

Strings and Characters are
Different!

What are the following in C?

» ‘0’ an integer value of a character

» “0” a string the encodes zero

» 0 the integer 0

» NULL (#define NULL ((void *)0))

» *\0’ the first character of ASCII table, NULL

Overview

» Declarations and Definitions
» Memory Allocation

» Pointer and Arrays

» Lexical Pitfalls

» Syntactic Pitfalls
» Semantic Pitfalls

Syntactic Pitfalls - Type Cast

Is the following piece of code correct?
float minus(float a, float b){return a-b;}

int p,q;
float m;

p=1;
2;
minus (p,q);

j=Je}
o

Syntactic Pitfalls - Type Cast

» All variables and expressions in one statement should
be of the same type.

m = minus(p,q);

SIS

» Although it may work, but the results may be unexpected.
» So, we need a type cast:

m = minus({(float)p, (float)q);

Syntactic Pitfalls - Declarations

» A C program is going to run stand-alone in a small
microprocessor.

» When this machine was switched on, the hardware
would call the subroutine whose address was stored in
location 0.

» To simulate turning power on, a C statement is devised
that would call this subroutine explicitly:

(* (void(*) ())0) ()

What does this mean???

Syntactic Pitfalls — Declarations

» Using a typedef declaration, we could have
solved the problem more clearly:

typedef void (*funcptr) () ;
(* (funcptr) 0) ();

» But imagine we couldn’t use typedef

Syntactic Pitfalls - Declarations

» float £, g:
The expressions £ and g, when evaluated, will be of
type float.

Parentheses may be used freely:
float ((£f));

means that ((£)) evaluates toa float and
therefore, by inference, that £ is also a £loat.

v

Similar logic applies to function and pointer types.
float ££();

means that the expression ££() is a £loat, and
therefore that ££ is a function that returns a £loat.

v

Syntactic Pitfalls - Declarations

» float *pf;
*pf is a float and therefore pf is a pointer to a £loat.
» float *g() (*h) ();
Says *g() and (*h) () are float expressions.
note:
() binds more tightly than *, *g () means the same thing as
*(g()):
o g is a function that returns a pointer to a float.
o his a pointer to a function that returns a float.

Syntactic Pitfalls - Declarations

» Knowing variable declaration allows us to write a
cast for that type

» Remove the variable name and the semicolon
from the declaration and enclose the whole thing
in parentheses.

» float *g(); declares g to be a function
returning a pointer to a float

» (fEloat *()) is a cast to this type.

Syntactic Pitfalls — Declarations

v

Suppose that we have a variable fp that contains a
function pointer and we want to call the function to
which fp points.

(*£p) () ;

If fp is a pointer to a function, *fp is the function itself,
so (*fp) () is the way to invoke it.

The parentheses in (*fp) are essential

> The expression would otherwise be interpreted as * (fp ()).

We have now reduced the problem to that of finding an
appropriate expression to replace fp.

v

v

v

Syntactic Pitfalls - Declarations

» If C could read our mind about types, we could
write:
(*0) () ;

» This doesn’t work because the * operator
insists on having a pointer as its operand.

» Furthermore, the operand must be a pointer to
a function so that the result of * can be called.

» Thus, we need to cast 0 into a type described
as “pointer to function returning void.”’

Syntactic Pitfalls - Declarations

» If £p is a pointer to a function returning void, then
(*fp) () is a void value, and its declaration would look
like this:
void (*fp) ();

» Thus, we could write:
void (*£fp) ();

(*£p) () ;
» at the cost of declaring a dummy variable. But once we
know how to declare the variable, we know how to cast
a constant to that type: just drop the name from the
variable declaration.

Syntactic Pitfalls - Declarations

» Thus, we cast 0 to a ‘‘pointer to function
returning void’’ by saying:
(void(*) ())0

» and we can now replace fp by (void(*) ())0:

(* (void(*) ())0) ();
» The semicolon on the end turns the expression
into a statement.

Syntactic Pitfalls — Declarations

We are now ready to think what does the following
expression means

*voiaf®))oY

Overview

» Declarations and Definitions
» Memory Allocation

» Pointer and Arrays

» Lexical Pitfalls

» Syntactic Pitfalls

» Semantic Pitfalls

Operators Precedence

» Constant FLAG is an integer with exactly one bit turned on in its

binary representation (in other words, a power of two),

We want to test whether the integer variable flags has that bit

turned on.

if (flags & FLAG) ..

/* if statement tests whether the expression in the parentheses
evaluates to O or not. */

More explicit 1f statement:
if (flags & FLAG != 0) ..

-

The statement is now easier to understand, however it is wrong!!
because != binds more tightly than &, so the interpretation is now:

if (flags & (FLAG != 0)) ..

Operators Precedence

» We have two integer variables, h and 1, whose values
are between 0 and 15,

» We want to set r to an 8-bit value whose low-order
bits are those of 1 and whose high-order bits are those
of h.

r = h<<4 + 1;
» Unfortunately, this is wrong.

» Addition binds more tightly than shifting
r =h<< (4 +1);

» Here are two ways to get it right:
r = (h << 4) + 1;
r=h<<4 | 1;

Operators Precedence

» To avoid these problems

> Parenthesize everything
- Problem! expressions with too many parentheses are hard
to understand.

> Try to remember the precedence levels in C!
> Unfortunately, there are fifteen of them, so this is not
always easy to do.
« Classify operators into groups; subscripting, function calls,
unary operators, etc.
- The C Programming Language, Kernighan, Richie

Watch Those Semicolons!

if (x[i] > big);
big = x[i];

The semicolon on the first line will not upset the
compiler, but the code fragment means something
quite different from:

if (x[i] > big)

big = x[i];

The first one is equivalent to:

if (x[i] > big) { }
big = x[i];

which is, of course, equivalent to:

big = x[i];

(unless x, i, or big is a macro with side effects).

Watch Those Semicolons!

»Forgotten semicolons!
struct foo {
int x;

£()

{

L. o .

»Semicolon missing between the first } and £

»The effect of this is to declare that the function £
returns a struct foo, which is defined as part of this
declaration.

»If the semicolon were present, £ would be defined by
default as returning an integer.

The Switch Statement

switch (color) {

case 1l: printf ("red");
case 2: printf ("yellow");
case 3: printf ("blue");

}

Labels in C behave as true labels. Control can flow
through a case label.

redyellowblue, yellowblue, blue

The Switch Statement

switch (color) {

case 1l: printf ("red");
break;

case 2: printf ("yellow");
break;

case 3: printf ("blue");

break;

}

red, yellow, blue

The Dangling else Problem

if (x == 0) {

if (y == 0) error();
else {
zZ = X +Yi
£ (&2);
}

}
» The programmer’s intention:
> There should be two main cases: x = 0 and x<>0.
°x = 0 : the fragment should do nothing at all
unless y = 0, in which case it should call error.
> x<>0 : the program should set z = x + y and then
_call £ with the address of z as its argument.

The Dangling else Problem

» However, the program fragment actually does
something quite different. Nothing at aﬁ will
happen if (x 1= 0).

» The reason is the rule that an else is always
associated with the closest unmatched if.

if (x == 0) {

if (y == 0)
error () ;
else {

Z =X + Y;
f (&2);

The Dangling else Problem

» To get the effect implied by the indentation of
the original example, we need to write:
if (x == 0) {
if (y == 0)
error () ;

Conclusion

» We discussed:
> Declarations and Definitions
o Memory Allocation
> Pointer and Arrays
o Lexical Pitfalls
o Syntactic Pitfalls
> Semantic Pitfalls
» Only some of C’s pitfalls were discussed here
due to time constraints.

» Now it’s your turn!

Conclusion

» Study "C Traps and Pitfalls", Andrew Koenig,
Addison-Wesley 1989 (link at course’s
webpage)
> Contains many more pitfalls!

v

If still uncertain, study “7he C Programming
Language’, Dennis M. Richie, Brian W.
Kernighan

> In conjunction with some C code.

> Google Code Search is a nice tool.

» Look for more tutorial at course’s webpage.

