
Georgios Georgiadis
Negin F.Nejad

1

We do notnotnotnot teach programming  
◦ Take a course 
We do notnotnotnot teach C
◦ Read a book
◦ The C Programming Language, Kernighan, Richie
This is a brief tutorial on C’s traps and pitfalls 
◦ For those that already know C programming
◦ "C Traps and Pitfalls", Andrew Koenig, Addison-

Wesley 1989 (link at course’s webpage)
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Declarations and Definitions 
Memory Allocation
Pointers and Arrays
Lexical Pitfalls
Syntactic Pitfalls
Semantic Pitfalls

3

We can declare something without defining it
◦ But we cannot define it without declaring it. 

The confusing part is that the definition will 
repeat the declaration specifications. 
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A variable declaration specifies its name, and type.
extern int x;

A function declaration specifies its name, and the 
types of its input parameters and its output parameter.

int foo(int x);
extern int foo(int x);

A data structure declaration specifies its type and 
format.

struct LENGTH {
unsigned int yards;
unsigned int feet;
unsigned int inches;

};
typedef struct LENGTH len;
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A function definition specifies the exact 
sequence of operations to execute when it is 
called. 

int foo(int x) {return 1};

A data structure definition will reserve space in 
memory for it. 

len length; 
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Static/global allocationStatic/global allocationStatic/global allocationStatic/global allocation
◦ Each static or global variable defines one block of space, of 

a fixed size. 

◦ The space is allocated once, when your program is started 
(part of the exec operation), and is never freed.

Automatic allocation Automatic allocation Automatic allocation Automatic allocation 
◦ Such as a function argument or a local variable.
◦ The space for an automatic variable is allocated when the 

compound statement containing the declaration is entered, 
and is freed when that compound statement is exited. 

◦ The size of the automatic storage should be a constant.

Dynamic Memory Allocation Dynamic Memory Allocation Dynamic Memory Allocation Dynamic Memory Allocation – not covered. 
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#include ... 
int i;
/* i is static, and visible to the entire 
program */ 

extern j;
/* j is static, and visible to the entire 
program */ 

static int k;
/* k is static, and visible to the routines 
in this source file */
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void func (void) {  /* no arguments, doesn't return value */ 
int m = 1;        /* automatic, local, initialized each time */
auto int n = 2;   /* automatic, local, initialized each time */ 
static int p = 3; /* static, local, initialized once when the 

program is first started up */ 
extern int q;     /* static, defined in external module */ 
for (i = 0; i < 10; i++) {

int m = 10;     /* automatic, local to block, initialized 
each time the block is entered */

printf ("m = %i\n", m); 

} 

}

9

int *func (void) 
{ 

static int x;

...

return &x; 

}

int *x;

x = func();

x[0]++;

int *func (void) 
{ 

int x;

...

return &x; 

}

int *x;

x = func();

x[0]++; Warning: 
function returns 
address of local 
variable.
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The C notions of pointers and arrays are 
inseparably joined
C has only one dimensional arrays, and the 
size of an array must be fixed as a constant 
in compilation time.
However, an element of an array may be an 
object of any type.
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Arrays
int manyNumbers[3];
int manyNumbers[3]={1,2,3};
int mult[2][2] = { {1,2}, {3,4} };

Strings
char name[20];
char address[] = “a long”
strcpy(address, “Chalmers”);
if (strcmp(address, “Chalmers”) == 0) 
{ … }
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void swap(int *t1, int *t2) {

int tmp;

tmp = *t1;

*t1 = *t2; 

*t2 = tmp;

}
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Only 2 things can be done to an array:
◦ Determine size
◦ Obtain a pointer to element 0 of the array.
All other array operations are actually done 
with pointers even if they are written with 
what look like subscripts.
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int a[3]; /* says that a is an array of three int elements*/
struct { /*says that b is an array of 17 elements of type struct*/
int p[4];

double x;

} b[17]; 
int calendar[12][31]; /*array of 12 arrays of 31 int
We note that sizeof(calendar) is 372 (=31*12) */
int *ip; /* a pointer to int */
int i; /* we can assign the address of i to ip by saying */
ip = &i;
and then we can change the value of i by assigning to *ip : */
/* *ip = 17; 
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If a pointer happens to point to an element of an array, 
we can add/subtract an integer to that pointer to 
obtain a pointer to the next element of that array.
But very different from integer arithmetic!
ip+1 does NOT point to the next memory location. 
If we have written 
int *q = p + i; 

then we should be able to obtain i from writing q-p.
There is no way to guarantee even that the distance 
between p and q is an integral multiple of an array 
element! 
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int a[3];
p=a;
// a pointer to the first element of the array 
p=&a;
// wrong! A pointer to an array assign to a pointer to int
Does sizeof(p) equal to the sizeof(a)?
*a = 84; sets the element 0 to 84
*(a+i) is no different a[i]
Since a+i equals i+a then a[i] and [i]a is the same. 
Also, calendar[4][7] <=> *(calendar[4]+7) <=> 
*(*(calendar+4) +7)
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& and | are not && or ||
= is not ==
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if (x = y)
foo();

while (c == ’ ’ || c = ’\t’ || c == ’\n’)
c = getc (f);



Instead of:

write:

Avoiding C compiler’s warning messages:
Assignment of y to x first and then checking its 
value, whether equals to 0 or not.
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if (x = y)
foo();

if ((x = y) != 0)
foo();

MultiMultiMultiMulti----character Tokenscharacter Tokenscharacter Tokenscharacter Tokens
The next token of the input stream is taken to be 
the longest string of characters.
◦ If a / is the first character of a token, and the / is immediately 

followed by a *, the two characters begin a comment, regardless 
of any other context.

Note: A token is a sequence of one or more characters that have a 
(relatively) uniform meaning in the language being compiled.
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y = x/*p   /* p is a pointer to the divisor */;

Rewriting this statement as
y = x / *p /* p is a pointer to the divisor */;
or even
y = x/(*p) /* p is a pointer to the divisor */;
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Older versions of C use =+ to mean what present 
versions mean by +=. 
Programmer intend to assign -1 to a: 
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as meaning the same thing 
as

a =- 1;
or

a = a - 1;

a=-1;



• SingleSingleSingleSingle and double quotes double quotes double quotes double quotes mean very things in 
C language.
• A character enclosed in single quotes is just another 

way of writing an integer. 
• The integer that corresponds to the given character in 

the implementation’s collating sequence.
• Thus, in an ASCII implementation, ’a’ means exactly 

the same thing as 0141 or 97. 
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• A string enclosed in double quotes, is a short-hand 
way of writing a pointer to a nameless array.

• This array will be initialized with the characters 
between the quotes and an extra character whose 
binary value is zero. 
printf ("Hello world\n");
Same as
char hello[] = 
{’H’, ’e’, ’l’, ’l’, ’o’, ’ ’,
’w’, ’o’, ’r’, ’l’, ’d’, ’\n’, 0};
printf (hello);
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Saying
printf(’\n’);
instead of
printf ("\n");
Is not the same

Using a pointer instead of an integer (or vice versa) will 
often cause a warning message.
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Writing ’yes’ instead of "yes" is not the same!

• "yes" means ‘‘the address of the first of four 
consecutive memory locations containing y, e, s, and a 
null character, respectively.’’

• ’yes’ means ‘‘an integer that is composed of the 
values of the characters y, e, and s.’’
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What are the following in C?
‘0’

“0”

0  

NULL 

‘\0’
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What are the following in C?
‘0’ an integer value of a character
“0” a string the encodes zero 
0 the integer 0
NULL (#define NULL ((void *)0))
‘\0’ the first character of ASCII table, NULL
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Is the following piece of code correct?
…

float minus(float a, float b){return a-b;}

…

int p,q;

float m;

…

p = 1;

q = 2;

m = minus(p,q);
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float float
int int
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A C program is going to run stand-alone in a small 
microprocessor. 
When this machine was switched on, the hardware 
would call the  subroutine whose address was stored in 
location 0. 
To simulate turning power on, a C statement is devised 
that would call this subroutine explicitly:

(*(void(*)())0)()

What does this mean???What does this mean???What does this mean???What does this mean???

Using a typedef declaration, we could have 
solved the problem more clearly:
typedef void (*funcptr)();
(* (funcptr) 0)();

But imagine we couldn’t use typedef

float f, g;
The expressions f and g, when evaluated, will be of 
type float. 

Parentheses may be used freely:
float ((f));
means that ((f)) evaluates to a float and 
therefore, by inference, that f is also a float.

Similar logic applies to function and pointer types. 
float ff();
means that the expression ff() is a float, and 
therefore that ff is a function that returns a float.



float *pf; 
*pf is a float and therefore pf is a pointer to a float....
float *g() (*h)();

Says *g() and (*h)() are float expressions. 
note:

() binds more tightly than *,  *g() means the same thing as 
*(g()): 
◦ g is a function that returns a pointer to a float.
◦ h is a pointer to a function that returns a float.

Knowing variable declaration allows us to write a 
cast for that type 
Remove the variable name and the semicolon
from the declaration and enclose the whole thing 
in parentheses.
float *g(); declares g to be a function 
returning a pointer to a float
(float *()) is a cast to this type.

Suppose that we have a variable fp that contains a 
function pointer and we want to call the function to 
which fp points. 
(*fp)();
If fp is a pointer to a function, *fp is the function itself, 
so (*fp)() is the way to invoke it. 
The parentheses in (*fp) are essential 
◦ The expression would otherwise be interpreted as *(fp()). 
We have now reduced the problem to that of finding an 
appropriate expression to replace fp.

If C could read our mind about types, we could 
write:
(*0)();
This doesn’t work because the * operator 
insists on having a pointer as its operand. 
Furthermore, the operand must be a pointer to 
a function so that the result of * can be called. 
Thus, we need to cast 0 into a type described 
as ‘‘pointer to function returning void.’’



If fp is a pointer to a function returning void, then 
(*fp)() is a void value, and its declaration would look 
like this:
void (*fp)();
Thus, we could write:
void (*fp)();
(*fp)();
at the cost of declaring a dummy variable. But once we 
know how to declare the variable, we know how to cast 
a constant to that type: just drop the name from the 
variable declaration. 

Thus, we cast 0 to a ‘‘pointer to function 
returning void’’ by saying:
(void(*)())0
and we can now replace fp by (void(*)())0:
(*(void(*)())0)();
The semicolon on the end turns the expression 
into a statement.

We are now ready to think what does the following 
expression means

(*            )()
(void(*)())0

fp
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Constant FLAG is an integer with exactly one bit turned on in its 
binary representation (in other words, a power of two), 
We want to test whether the integer variable flags has that bit 
turned on.
if (flags & FLAG) …
/* if statement tests whether the expression in the parentheses 

evaluates to 0 or not. */

More explicit if statement:
if (flags & FLAG != 0) …

The statement is now easier to understand, however it is wrong!!
because != binds more tightly than &, so the interpretation is now:
if (flags & (FLAG != 0)) …
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We have two integer variables, h and l, whose values 
are between 0 and 15,
We want to set r to an 8-bit value whose low-order 
bits are those of l and whose high-order bits are those 
of h. 

r = h<<4 + l;
Unfortunately, this is wrong. 

Addition binds more tightly than shifting
r = h << (4 + l);

Here are two ways to get it right:
r = (h << 4) + l;
r = h << 4 | l;
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To avoid these problems

◦ Parenthesize everything
Problem! expressions with too many parentheses are hard 
to understand.

◦ Try to remember the precedence levels in C!
◦ Unfortunately, there are fifteen of them, so this is not 

always easy to do.
Classify operators into groups; subscripting, function calls, 
unary operators, etc.
The C Programming Language, Kernighan, Richie
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if (x[i] > big);
big = x[i];

The semicolon on the first line will not upset the 
compiler, but the code fragment means something 
quite different from:

if (x[i] > big)
big = x[i];

The first one is equivalent to:
if (x[i] > big) { }

big = x[i];
which is, of course, equivalent to:
big = x[i];
(unless x, i, or big is a macro with side effects).
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Forgotten semicolons!
struct foo {

int x;
}
f()
{
...
}
Semicolon missing between the first } and f
The effect of this is to declare that the function f

returns a struct foo, which is defined as part of this 
declaration. 
If the semicolon were present, f would be defined by 

default as returning an integer.
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switch (color) {

case 1: printf ("red");

case 2: printf ("yellow");

case 3: printf ("blue");

}
Labels in C behave as true labels. Control can flow 

through a case label.
redyellowblue, yellowblue, blue
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switch (color) {

case 1: printf ("red");

break;

case 2: printf ("yellow");

break;

case 3: printf ("blue");

break;

}

red, yellow, blue
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if (x == 0) {
if (y == 0) error();

else {
z = x + y;
f (&z);

}
} 

The programmer’s intention:
◦ There should be two main cases: x = 0 and x<>0.
◦ x = 0 : the fragment should do nothing at all 

unless y = 0, in which case it should call error. 
◦ x<>0 : the program should set z = x + y and then 

call f with the address of z as its argument.
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However, the program fragment actually does 
something quite different. Nothing at all will 
happen if (x != 0).
The reason is the rule that an else is always 
associated with the closest unmatched if.

if (x == 0) {
if (y == 0)

error();
else {

z = x + y;
f (&z);

}
} 
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To get the effect implied by the indentation of 
the original example, we need to write:

if (x == 0) {
if (y == 0)

error();
} 

else 
{

z = x + y;
f (&z);

}
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We discussed:
◦ Declarations and Definitions 
◦ Memory Allocation
◦ Pointer and Arrays
◦ Lexical Pitfalls
◦ Syntactic Pitfalls
◦ Semantic Pitfalls
Only some of C’s pitfalls were discussed here 
due to time constraints.
Now it’s your turn!
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Study "C Traps and Pitfalls", Andrew Koenig, 
Addison-Wesley 1989 (link at course’s 
webpage)
◦ Contains many more pitfalls!

If still uncertain, study “The C Programming 
Language”, Dennis M. Richie, Brian W. 
Kernighan
◦ In conjunction with some C code.
◦ Google Code Search is a nice tool.

Look for more tutorial at course’s webpage.
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