
Georgios Georgiadis
Negin F.Nejad

1

We do notnotnotnot teach programming
◦ Take a course
We do notnotnotnot teach C
◦ Read a book
◦ The C Programming Language, Kernighan, Richie
This is a brief tutorial on C’s traps and pitfalls
◦ For those that already know C programming
◦ "C Traps and Pitfalls", Andrew Koenig, Addison-

Wesley 1989 (link at course’s webpage)

2

Declarations and Definitions
Memory Allocation
Pointers and Arrays
Lexical Pitfalls
Syntactic Pitfalls
Semantic Pitfalls

3

We can declare something without defining it
◦ But we cannot define it without declaring it.

The confusing part is that the definition will
repeat the declaration specifications.

4

A variable declaration specifies its name, and type.
extern int x;

A function declaration specifies its name, and the
types of its input parameters and its output parameter.

int foo(int x);
extern int foo(int x);

A data structure declaration specifies its type and
format.

struct LENGTH {
unsigned int yards;
unsigned int feet;
unsigned int inches;

};
typedef struct LENGTH len;

5

A function definition specifies the exact
sequence of operations to execute when it is
called.

int foo(int x) {return 1};

A data structure definition will reserve space in
memory for it.

len length;

6

Static/global allocationStatic/global allocationStatic/global allocationStatic/global allocation
◦ Each static or global variable defines one block of space, of

a fixed size.

◦ The space is allocated once, when your program is started
(part of the exec operation), and is never freed.

Automatic allocation Automatic allocation Automatic allocation Automatic allocation
◦ Such as a function argument or a local variable.
◦ The space for an automatic variable is allocated when the

compound statement containing the declaration is entered,
and is freed when that compound statement is exited.

◦ The size of the automatic storage should be a constant.

Dynamic Memory Allocation Dynamic Memory Allocation Dynamic Memory Allocation Dynamic Memory Allocation – not covered.

7

#include ...
int i;
/* i is static, and visible to the entire
program */

extern j;
/* j is static, and visible to the entire
program */

static int k;
/* k is static, and visible to the routines
in this source file */

8

void func (void) { /* no arguments, doesn't return value */
int m = 1; /* automatic, local, initialized each time */
auto int n = 2; /* automatic, local, initialized each time */
static int p = 3; /* static, local, initialized once when the

program is first started up */
extern int q; /* static, defined in external module */
for (i = 0; i < 10; i++) {

int m = 10; /* automatic, local to block, initialized
each time the block is entered */

printf ("m = %i\n", m);

}

}

9

int *func (void)
{

static int x;

...

return &x;

}

int *x;

x = func();

x[0]++;

int *func (void)
{

int x;

...

return &x;

}

int *x;

x = func();

x[0]++; Warning:
function returns
address of local
variable.

10

Declarations and Definitions
Memory Allocation
Pointer and ArraysPointer and ArraysPointer and ArraysPointer and Arrays
Lexical Pitfalls
Syntactic Pitfalls
Semantic Pitfalls

11

The C notions of pointers and arrays are
inseparably joined
C has only one dimensional arrays, and the
size of an array must be fixed as a constant
in compilation time.
However, an element of an array may be an
object of any type.

12

Arrays
int manyNumbers[3];
int manyNumbers[3]={1,2,3};
int mult[2][2] = { {1,2}, {3,4} };

Strings
char name[20];
char address[] = “a long”
strcpy(address, “Chalmers”);
if (strcmp(address, “Chalmers”) == 0)
{ … }

13

void swap(int *t1, int *t2) {

int tmp;

tmp = *t1;

*t1 = *t2;

*t2 = tmp;

}

14

Only 2 things can be done to an array:
◦ Determine size
◦ Obtain a pointer to element 0 of the array.
All other array operations are actually done
with pointers even if they are written with
what look like subscripts.

15

int a[3]; /* says that a is an array of three int elements*/
struct { /*says that b is an array of 17 elements of type struct*/
int p[4];

double x;

} b[17];
int calendar[12][31]; /*array of 12 arrays of 31 int
We note that sizeof(calendar) is 372 (=31*12) */
int *ip; /* a pointer to int */
int i; /* we can assign the address of i to ip by saying */
ip = &i;
and then we can change the value of i by assigning to *ip : */
/* *ip = 17;

16

If a pointer happens to point to an element of an array,
we can add/subtract an integer to that pointer to
obtain a pointer to the next element of that array.
But very different from integer arithmetic!
ip+1 does NOT point to the next memory location.
If we have written
int *q = p + i;

then we should be able to obtain i from writing q-p.
There is no way to guarantee even that the distance
between p and q is an integral multiple of an array
element!

17

int a[3];
p=a;
// a pointer to the first element of the array
p=&a;
// wrong! A pointer to an array assign to a pointer to int
Does sizeof(p) equal to the sizeof(a)?
*a = 84; sets the element 0 to 84
*(a+i) is no different a[i]
Since a+i equals i+a then a[i] and [i]a is the same.
Also, calendar[4][7] <=> *(calendar[4]+7) <=>
((calendar+4) +7)

18

Declarations and Definitions
Memory Allocation
Pointer and Arrays
Lexical PitfallsLexical PitfallsLexical PitfallsLexical Pitfalls
Syntactic Pitfalls
Semantic Pitfalls

19

& and | are not && or ||
= is not ==

20

if (x = y)
foo();

while (c == ’ ’ || c = ’\t’ || c == ’\n’)
c = getc (f);

Instead of:

write:

Avoiding C compiler’s warning messages:
Assignment of y to x first and then checking its
value, whether equals to 0 or not.

21

if (x = y)
foo();

if ((x = y) != 0)
foo();

MultiMultiMultiMulti----character Tokenscharacter Tokenscharacter Tokenscharacter Tokens
The next token of the input stream is taken to be
the longest string of characters.
◦ If a / is the first character of a token, and the / is immediately

followed by a *, the two characters begin a comment, regardless
of any other context.

Note: A token is a sequence of one or more characters that have a
(relatively) uniform meaning in the language being compiled.

22

y = x/*p /* p is a pointer to the divisor */;

Rewriting this statement as
y = x / *p /* p is a pointer to the divisor */;
or even
y = x/(*p) /* p is a pointer to the divisor */;

23

Older versions of C use =+ to mean what present
versions mean by +=.
Programmer intend to assign -1 to a:

24

as meaning the same thing
as

a =- 1;
or

a = a - 1;

a=-1;

• SingleSingleSingleSingle and double quotes double quotes double quotes double quotes mean very things in
C language.
• A character enclosed in single quotes is just another

way of writing an integer.
• The integer that corresponds to the given character in

the implementation’s collating sequence.
• Thus, in an ASCII implementation, ’a’ means exactly

the same thing as 0141 or 97.

25

• A string enclosed in double quotes, is a short-hand
way of writing a pointer to a nameless array.

• This array will be initialized with the characters
between the quotes and an extra character whose
binary value is zero.
printf ("Hello world\n");
Same as
char hello[] =
{’H’, ’e’, ’l’, ’l’, ’o’, ’ ’,
’w’, ’o’, ’r’, ’l’, ’d’, ’\n’, 0};
printf (hello);

26

Saying
printf(’\n’);
instead of
printf ("\n");
Is not the same

Using a pointer instead of an integer (or vice versa) will
often cause a warning message.

27

Writing ’yes’ instead of "yes" is not the same!

• "yes" means ‘‘the address of the first of four
consecutive memory locations containing y, e, s, and a
null character, respectively.’’

• ’yes’ means ‘‘an integer that is composed of the
values of the characters y, e, and s.’’

28

What are the following in C?
‘0’

“0”

0

NULL

‘\0’

29

What are the following in C?
‘0’ an integer value of a character
“0” a string the encodes zero
0 the integer 0
NULL (#define NULL ((void *)0))
‘\0’ the first character of ASCII table, NULL

30

Declarations and Definitions
Memory Allocation
Pointer and Arrays
Lexical Pitfalls
Syntactic PitfallsSyntactic PitfallsSyntactic PitfallsSyntactic Pitfalls
Semantic Pitfalls

31

Is the following piece of code correct?
…

float minus(float a, float b){return a-b;}

…

int p,q;

float m;

…

p = 1;

q = 2;

m = minus(p,q);

32

float float
int int

33

A C program is going to run stand-alone in a small
microprocessor.
When this machine was switched on, the hardware
would call the subroutine whose address was stored in
location 0.
To simulate turning power on, a C statement is devised
that would call this subroutine explicitly:

(*(void(*)())0)()

What does this mean???What does this mean???What does this mean???What does this mean???

Using a typedef declaration, we could have
solved the problem more clearly:
typedef void (*funcptr)();
(* (funcptr) 0)();

But imagine we couldn’t use typedef

float f, g;
The expressions f and g, when evaluated, will be of
type float.

Parentheses may be used freely:
float ((f));
means that ((f)) evaluates to a float and
therefore, by inference, that f is also a float.

Similar logic applies to function and pointer types.
float ff();
means that the expression ff() is a float, and
therefore that ff is a function that returns a float.

float *pf;
*pf is a float and therefore pf is a pointer to a float....
float *g() (*h)();

Says *g() and (*h)() are float expressions.
note:

() binds more tightly than *, *g() means the same thing as
*(g()):
◦ g is a function that returns a pointer to a float.
◦ h is a pointer to a function that returns a float.

Knowing variable declaration allows us to write a
cast for that type
Remove the variable name and the semicolon
from the declaration and enclose the whole thing
in parentheses.
float *g(); declares g to be a function
returning a pointer to a float
(float *()) is a cast to this type.

Suppose that we have a variable fp that contains a
function pointer and we want to call the function to
which fp points.
(*fp)();
If fp is a pointer to a function, *fp is the function itself,
so (*fp)() is the way to invoke it.
The parentheses in (*fp) are essential
◦ The expression would otherwise be interpreted as *(fp()).
We have now reduced the problem to that of finding an
appropriate expression to replace fp.

If C could read our mind about types, we could
write:
(*0)();
This doesn’t work because the * operator
insists on having a pointer as its operand.
Furthermore, the operand must be a pointer to
a function so that the result of * can be called.
Thus, we need to cast 0 into a type described
as ‘‘pointer to function returning void.’’

If fp is a pointer to a function returning void, then
(*fp)() is a void value, and its declaration would look
like this:
void (*fp)();
Thus, we could write:
void (*fp)();
(*fp)();
at the cost of declaring a dummy variable. But once we
know how to declare the variable, we know how to cast
a constant to that type: just drop the name from the
variable declaration.

Thus, we cast 0 to a ‘‘pointer to function
returning void’’ by saying:
(void(*)())0
and we can now replace fp by (void(*)())0:
(*(void(*)())0)();
The semicolon on the end turns the expression
into a statement.

We are now ready to think what does the following
expression means

(*)()
(void(*)())0

fp

Declarations and Definitions
Memory Allocation
Pointer and Arrays
Lexical Pitfalls
Syntactic Pitfalls
Semantic PitfallsSemantic PitfallsSemantic PitfallsSemantic Pitfalls

44

Constant FLAG is an integer with exactly one bit turned on in its
binary representation (in other words, a power of two),
We want to test whether the integer variable flags has that bit
turned on.
if (flags & FLAG) …
/* if statement tests whether the expression in the parentheses

evaluates to 0 or not. */

More explicit if statement:
if (flags & FLAG != 0) …

The statement is now easier to understand, however it is wrong!!
because != binds more tightly than &, so the interpretation is now:
if (flags & (FLAG != 0)) …

45

We have two integer variables, h and l, whose values
are between 0 and 15,
We want to set r to an 8-bit value whose low-order
bits are those of l and whose high-order bits are those
of h.

r = h<<4 + l;
Unfortunately, this is wrong.

Addition binds more tightly than shifting
r = h << (4 + l);

Here are two ways to get it right:
r = (h << 4) + l;
r = h << 4 | l;

46

To avoid these problems

◦ Parenthesize everything
Problem! expressions with too many parentheses are hard
to understand.

◦ Try to remember the precedence levels in C!
◦ Unfortunately, there are fifteen of them, so this is not

always easy to do.
Classify operators into groups; subscripting, function calls,
unary operators, etc.
The C Programming Language, Kernighan, Richie

47

if (x[i] > big);
big = x[i];

The semicolon on the first line will not upset the
compiler, but the code fragment means something
quite different from:

if (x[i] > big)
big = x[i];

The first one is equivalent to:
if (x[i] > big) { }

big = x[i];
which is, of course, equivalent to:
big = x[i];
(unless x, i, or big is a macro with side effects).

48

Forgotten semicolons!
struct foo {

int x;
}
f()
{
...
}
Semicolon missing between the first } and f
The effect of this is to declare that the function f

returns a struct foo, which is defined as part of this
declaration.
If the semicolon were present, f would be defined by

default as returning an integer.

49

switch (color) {

case 1: printf ("red");

case 2: printf ("yellow");

case 3: printf ("blue");

}
Labels in C behave as true labels. Control can flow

through a case label.
redyellowblue, yellowblue, blue

50

switch (color) {

case 1: printf ("red");

break;

case 2: printf ("yellow");

break;

case 3: printf ("blue");

break;

}

red, yellow, blue

51

if (x == 0) {
if (y == 0) error();

else {
z = x + y;
f (&z);

}
}

The programmer’s intention:
◦ There should be two main cases: x = 0 and x<>0.
◦ x = 0 : the fragment should do nothing at all

unless y = 0, in which case it should call error.
◦ x<>0 : the program should set z = x + y and then

call f with the address of z as its argument.

52

However, the program fragment actually does
something quite different. Nothing at all will
happen if (x != 0).
The reason is the rule that an else is always
associated with the closest unmatched if.

if (x == 0) {
if (y == 0)

error();
else {

z = x + y;
f (&z);

}
}

53

To get the effect implied by the indentation of
the original example, we need to write:

if (x == 0) {
if (y == 0)

error();
}

else
{

z = x + y;
f (&z);

}

54

We discussed:
◦ Declarations and Definitions
◦ Memory Allocation
◦ Pointer and Arrays
◦ Lexical Pitfalls
◦ Syntactic Pitfalls
◦ Semantic Pitfalls
Only some of C’s pitfalls were discussed here
due to time constraints.
Now it’s your turn!

55

Study "C Traps and Pitfalls", Andrew Koenig,
Addison-Wesley 1989 (link at course’s
webpage)
◦ Contains many more pitfalls!

If still uncertain, study “The C Programming
Language”, Dennis M. Richie, Brian W.
Kernighan
◦ In conjunction with some C code.
◦ Google Code Search is a nice tool.

Look for more tutorial at course’s webpage.

56

