Lecture 2
Domain Specific Embedded
Languages

Patrik Jansson

2011
(slides by Norell and Bernardy)

01/18/11 1

Primitive and Derived
operations

« A primitive operation is defined
exploiting the definitions of the
involved types

- A derived operation can be defined
puré?ln terms p/other operations

Try to keep the set

of primitive > b) -> Signal a -> Signal b

operations as small
as possible! (Why?)

mapS fs=constSf $$ s

01/18/11

Implementation of a DSEL
» Shallow embedding

— Represent elements by their semantics (what
observations they support)

— Constructor functions and combinators do 1
the work, run functions for free

Is the signal
library a deep
or shallow

. ing?
+ Deep embedding SIS
— Represent elements by how they are constructed
— Most of the work done by the run functions,
constructor functions and combinators for free

« Or something in between...

01/18/11 5

Anatomy of a DSEL

newtype Signal a = Signal (Time -> a)
+ A set of types mode
the domain constsS :: a -> Signal a

timeS :: Signal Time
 Constructor functions constructing
elements of these types

« Combinators combining and

= ($%$) :: Signal (a -> b) -> Signal a -> Signal b
mapsS :: (a -> b) -> Signal a -> Signal b

of the elements

= sample :: Signal a -> (Time -> a)

01/18/11 2

Answer: Awkwardly!

addS x y = mapS (\t -> sample x t + sample y t) timeS

— Combining elements into more complex
/
ones should be easy and natural /

\ Suppose we didn’t have ($$) in our

Signal language. How would you define

« Abstraction addS x y = constS (+) $$ x $$ y

—The user shouldn’t have to know (or be
allowed to exploit) the underlylng
implementatior.o G

0
Changlng
implementation
shouldn’t break user

code!

01/18/11

A deep embeddlng of Signals

- B Generalized Algebraic
Datatype (GADT). More on

data Signal a where

ConstS ::a-> Signal a these in another lecture.
TimeS :: Signal Time
(:$%) :: Signal (a -> b) -> Signal a -> Signal b

constS = ConstS Simple constructors

timeS = TimeS and combinators.

($%) = (:$$)

All the work
sample :: Signal a -> (Time -> a) happens in the run
sample (ConstS x) = const x function.
sample TimeS =id
sample (f :$$ x) =\t->sampleft $ samplext

-- Start of derived operations Derived operations
maps :: (a -> b) -> Signal a -> Signal b _ are unaffected by
mapS f x = constsS f $$ x implementation style.

01/18/11

Case Study: A language for

Deep vs. Shallow Shapes

example
+ A shallow embedding (when it works out) » Step 1: Design the interface
is often more elegant = -~
— icc @ Worklng out N type Shape
Whgndtgere Isan ﬁbVIOUE semantlﬁs the type might B - Constructor functions = Z scale to get more
- embeddings usually wor out nice be very) empty :: Shape interesting circles and
< Mostof the time you get a mix R <2 Jdifficult..., ;irﬁ;ere gﬂgpz/ e
T between deep and shaIIow| T /\ > --q Combinators P
- o N translate ::Vec -> Shape -> Shape
Y scale ::Vec-> Shape -> Shape
* A deep embeddmg is eaSIer t Deep embeddlng N rotate i Angle -> Shape -> Shape
— Adding new operations __ maygive Vt"Lr'ta" 4 Union :: Shape -> Shape -> Shape
— Adding new run functions 5 easier sta : intersect :: Shape -> Shape -> Shape

S g difference :: Shape -> Shape -> Shape

— Adding optimizations a -- Run functions

B e inside :: Point -> Shape -> Bool
01/18/11 anOther leCture 7 01/18/11

Interface, continued Side track: A matrix library
+ Think about primitive/derived operations type Matrix
_ . . . type Vector
No ob\{lous eerlved eperatlen.s o type Point
— Sometimes introducing additional primitives c .
1 -- Constructor functions
makes the Ianguage nicer point :: Double -> Double -> Point
— vec :: Double -> Double -> Vec
invert Shape -> Shape ¥ language for matrix :: Double -> Double -> Double -> Double -> Matrix
transform : Matrix -> Shape -> Shape working with -- Combinators
matrices! mulPt :: Matrix -> Point -> Point
scale :: Vec -> Shape -> Shape mulVec :: Matrix -> Vec -> Vec
scale v = transform (matrix (vecX v) 0 0 (vecY v)) inv :: Matrix -> Matrix
subtract :: Point -> Vec -> Point

rotate :: Angle -> Shape -> Shape -- Run functions
rotate a = transform (matrix (cos a) (-sin a) (sin a) (cos a)) ptX, ptY :: Point -> Double

T mem vecX, vecY :: Vec -> Double do for our
difference :: Shape -> Shape -> Shape your linear algebra purposes.
difference a b = a “intersect’ invert b ourse?

01/18/11 9 01/18/11 10

Shallow embedding Shallow embedding, cont.
* What are the observations we can « If we picked the right implementation
make of a shape? the operations should now be easy to
—inside :: Point -> Shape -> Bool implement
-So, let's go for shape
empty = Shape $ \p -> False R R
newtype Shape = Shape (Point -> Bool) ggﬁfre - 3?:32 : tg i ';’E,’é ‘(thXZpT:EYlp&&za;s (;tY p)<=1
inside :: Point -> Shape -> Bool _ ; o oty =0
inside p (Shape f) = i@eyﬁ Henslate = Shabe &9+ subtract b nside) &
5 : - union a b = Shape $ \p -> inside p a || inside p b
intersectab = Shape $ \p -> inside p a && inside p b
need to generallze the type of the run functlon a invert a = Shape $ \p -> not (inside p a)

little to get a shallow embedding.

01/18/11 12

Deep embedding

« Representation is easy, just make a
datatype of the primitive operations

data Shape where
-- Constructor functions
Empty :: Shape
Circle :: Shape
Square :: Shape
-- Combinators
Translate :: Vec -> Shape -> Shape
Transform :: Matrix -> Shape -> Shape

Union :: Shape -> Shape -> Shape
Intersect :: Shape -> Shape -> Shape
Invert :: Shape -> Shape

empty = Empty; circle = Circle; ...

01/18/11 13

Deep embedding, cont.

+ All the work happens in the run function:

inside :: Point -> Shape -> Bool
‘inside’ Empty False
“inside” Circle ptXp~2+ptYp~2 <=1
‘inside’ Square abs (ptX p) <=1 && abs (ptY p) <=1
‘inside’ Translate v a subtract p v “inside’ a
‘inside’ Transform m a mulPt (inv m) p ‘inside’ a
‘inside’ Union a b insidepa || insidepb
‘inside’ Intersect a b inside p a && inside p b
‘inside’ Invert a not (inside p a)

T TTTTTTT

01/18/11 15

More interesting run function:
render to ASCII-art

module Render where

import Shape

data Window = Window
{bottomLeft :: Point
, topRight :: Point
, resolution :: (Int, Int)

defaultWindow :: Window
pixels :: Window -> [[Point]]

render :: Window -> Shape -> String
render win a = unlines $ map (concatMap putPixel) (pixels win)
where
putPixel p | p ‘inside’ a = “[]"
| otherwise =
0I/18/11 17

Deep embedding

« ... the same datatype without GADT
notation:

data Shape = Empty | Circle | Square
| Translate Vec Shape
| Transform Matrix Shape
| Union Shape Shape | Intersect Shape Shape
|

Invert Shape
empty = Empty
circle = Circle

translate = Translate
transform = Transform

union = Union
intersect = Intersect
invert = Invert

01/18/11 14

Abstraction!

module Shape = S
(module Matrix export the matrix library

, Shape —
, empty, circle, square

. transiate, transform, scale, rotate | 0 e
, union, intersect, difference, invert the Shape datatype
, inside

) where _

import Matrix —

embedding
difference to the user!

01/18/11 16

Some action

module Animate where
import Shape

import Render

import Signal

animate :: Window -> Time -> Time -> Signal Shape -> 10 ()

* Go live!

01/18/11 18

Discussion Summary
- Different kinds of operations

» Adding coloured shapes - constructor functions / combinators / run functions
- Go back and discuss what changes - primitive / derived
would need to be made + Implementation styles
- Bad shallow implementations — Shallow - representation given by semantics
.) — Deep - representation given by operations
— Looking at the render run function we R b
might decide to go for emember
- - — Compositionality
newtype Shape = Shape (Window -> String) .
. . . — Abstraction
— Discuss the problems with this

implementation
+ Other questions/comments..?

01/18/11 01/18/11

