Compiling functional
languages

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Lecture 5
Haskell-style overloading

Johan Nordlander

Some terminology

e Parametric polymorphism: a term is defined
not to depend on (parts of) its type
length :: [a] -> Int = ...

e Ad hoc polymorphism: a term is defined
differently on basis of (parts of) its type
(+) it Int->Int->Int = ...
(+) :: Float->Float->Float = ...

e The latter is also known as overloading

Going ad hoc

Parametric polymorphism is neatly captured in
the Hindley/Milner system

Ad hoc polymorphism can be treated

separately (Standard ML), but that leads to

problems. E.g., consider the type of
fxy=x+y

Haskell addresses the ad hoc problem by the

infroduction of type classes. For example:
fiNuma=>a->a->a

Type classes

e The basic idea behind "making ad hoc
polymorphism less ad hoc" is to constrain
polymorphism by means of class predicates
like Num a, Eq a, etc

 The idea was suggested by Wadlerd&Blott in
1989, but its theory was primarily developed
by Jones (A Theory of Qualified Types, 1992)

Qualified types

e Compared to the Hindley/Milner system, the
basic difference is that judgements are
extended with qualifying predicates:

PIlAFe: oo

* Read: e has type o in scope A, provided all
predicates in P are true

* Qualifying predicates, a.k.a. the "context”
PriE QL g q = Ctitn
o= 1| va.o | q=>0

Qualified types

Pl|Ate:t" >t P|Ale PlAxt' Fe:t
App Abs
P|lAtee' it PlAF\x>e:t' >+

xX:oe A PlAte:o P|Axioke':t

Var Let
P|AFx:o0o P|AFletx=ecine':t \
/PIAI—a:Va.o P|Ate:o aegfv(AP)
merge — Inst Gen —merge
\P'AFZI[T/G]G P|A|‘61VG.O /
PlAFe:q=0 PII—qEnmil PglAte:o Qua

PlAte:o PlAFe:g=o0

Qualified types

PlAFe:t' >t P|lAFe i f PlAXxt Fe:t

App Abs
P|lAtee' it PlAF\x>e:t' >+

x:vas.qgs=>t € A P I~ [ts/as]gs Var
P|AF x:[ts/as]t

gs | Ake:t P|Axioke': 1
P|AFletx=ecine': 1

where o = gen(gs=>t,A)
=V fv(gs=>T)\fv(A) .qs => 1

Let

(Type schemes: ¢ :i= Vvas.(gs =>t)

Example

neg...e Ax:b NbIFND o xX:be Axb o
Nb|AxbkFneg:b->b Nb|AxbFx:b
Nb|AxbFnegx:b "
Nb | AF\x->neg x : b->b "~
_fieA' NI ficA' IENF
- |A'Ff:I->I P|A'FLI ApplA' Ff:F->F P|A'F1.1:F
JA'Ff1:T JA'Ff11:F

Con

|JA"F(f1,f11):(TF)
|JAbletf=\x->negxin(f1,f11):(IF)

Let

where A = neg:Va. N a=>a->a A' = A, fivb.N b =>b-sb

Entailment

Read each q as a truth statement on types
- Numa a is a humeric type

- Collectionca c and a are in the collection relation

Relation P I gs reads "P entails gs" or

"each g e gs is true if all ¢' < P are true"
Simplistic interpretation for now:

Pi-qgs if gscP,Po

where Po are the top-level instance "facts"
But what does it mean for a q to be true?

How do we compile overloaded code?

Withess translation

e Each class C as where x; :: 1 Translates into
dataCas=C 11 ... tn a witness type
X1 (Cy1...Yn) = V1 projection functions

Xn (C Y1 ... Yn) = Yn
e Each instance C ts where x; = e; translates into
wit :: C ts a witness term (fact)

wit = C €1 ... én (assuming ordered x)
where wit is a hew withess hame

Withess translation

e Contexts are extended with withess names:

P &= yi1:q1, .., ¥n:Qn
(note similarity with assumptions Al)

* Overloaded terms are translated according to
their type derivation:

PlAFe: Tt ~ €

e Read: e has type t in scope A and context P,
and has a non-overloaded equivalent e’

Withess translation

PlIAter:t' >t ~ei' PlAFez:it' ~ el

— App
PlIAFeier:t ~ei' e

PIAxit'Fe:t ~ ¢
PIAF \x->e: t'->t ~ \x->¢'

Abs

X:vVas.qs=>t € A I@[’rs/as]qs

PI|AF x: [ts/as]t «a‘
ysigs)Aker:t ~er PlAxiokes:t ~eo

Let
PIAllet x=erinez: t'~ let xin ez’

where o = gen(gs=>1,A)

Withess translation

e Translate qualified type schemes as

[Vas . q1,...,qn =>1] = vas.[q] - ..->[qgsd >t
[Cts] = Cts

[X1:01,...,Xn:0n] = Xp:[o, ..., xn : [onl

[y1:q1,¥Yn:qn] = yi:[qdl, ..., yn: [gnl

e We now have

If P|Ate:t~e' then [PoPl[AllLe" : 1

Qualified
type inference algorithm W

Input (an environment and an expression)

/ \

P|oAFe:t ~ e

NN/ /

Output (a type, a context, a scope substitution and a translation)

e Main ideas:
- Generate fresh witness context at Var leafs
- Accumulate contexts from all subexpressions

- Qualify with accumulated context at generalization

Qualified
type inference algorithm W

]]] e]
Pi/61AFY er:t ~ e’ P2|02(01A) W es:t'~ e’ 8ot ~1t'->a

App
B302P1,03P2|(636201)A W eie;: B3a ~ e1 ex’
where a is hew
X:Vas.qs=>t € A Pl[e(Ax:a)FWe:t ~ e
Var Abs

ys:0gs | [JAFY x: 8t ~ xys PI6A FV \x->e : Ba->t ~ \x->e’
where B8=[bs/as] and ys,bs are new where a is hew

ys:igs|01A FW e i t ~ e P|62(B1A x:0) W ezt t'~ en' Lot

e

P|(6261)A F% let x = ejinez : t'~ let x=\ys->e;' in e’
where o = gen(gs=>t,01A) = V fv(gs=>t)\fv(6:A) . gs => 1

The ususal properties

e (Soundness)

- If P|BAMe:t ~ e' succeeds then
P|6AFe:t ~ €'

e (Completeness)
- If P|BAFe:t ~e' thenP' |B8'Ave:t'~ e"
succeeds such that for some 6":
e 6=0"0
¢ t=0"t
e PI-B"P

Context reduction

e Qualifying with all accumulated predicates in the
Let-rule is semantically correct but may include

Duplicates va . (Num a, Num a) => a -> a
No point taking two identical arguments
Tautologies va . (Num Int,Numa)=>a->a

No point taking an argument that exists as a global

Local constants va.(Num b, Numa)=>a->a

No point taking an argument that will always be the same value

Absurdities va . (Num Bool, Num a) =>a -> a

No point expecting an argument that will never be provided

e Better: reduce the ys:gs before calling gen(gs=>t,A)

Context reduction

Pi|01AFWe; it ~ eg P2|82(B1A,x:0) FWeo i 1~ o'
ys1:02qs1,P2[(0201)A FV let x = ejinez : t

Let

~ let x=\ysz-> (letys3=esinei’) ine;’

constant residue reducible

where P1 = ysiigs1, ys2igse, .\@a
maximize
fV(q51) C fV(elA) /
ys2:qsz |- es : gs3

o = gen(gsz=>t, 61A)

Entailment revisited

Both a logical system and a algorithm (no substitution threading!)

Input (a context and a set of predicates)

/N

Pl-es:gs

/

Output (witness terms for the given predicates)

... or failure if no rules match

PlFei:qq .. Pl-en:qgn y:q e P
Multi Equiv
Pl-e, .. en: d1, ..., Qn P I+ Y:q

Qualified instances

e Example: instance Eq a => Eq [a] where x; = ¢;

e Translate into
eqList :: Eq a -> Eq [a]
eqList = \y ->Eqe: ... en

e Witness y stands for Eq a when checking the e;
e Now eqlList eqInt is a withess of Eq [Int]
e Note inherent polymorphism: Eq a => Eq [a] for all a

Sub/superclasses

e Translate class (qi, ..., gn) => C as where x; :: tj into
dataCas=Cqi .. Qm t1... Ty a witnhess type
sup1 (Czi... Zn Y1 ... yn) = Z1 (supi, Z new)

st;m (Czi..ZmY1..Yn)= Zm
X1 (Cz1...Zm Y1 ... Yn) = Y1
xr;"(C Z1 ... Zm Y1 ... Yn) = Yn

e If q:is asuperclass of q- as projected by supy,
and y. a withess of gz, then supk y2 is a witness of q:

 Note inherent polymorphism: Eqa=>Ord a forall a
(superclass-of)

Entailment extended

PlFe:Cts

Sup
P I supj e : [ts/as]q;

if class (..., qj, ...) => C as where ... € top-decls
and sup;j is the projection from C as to q;

PI-es: [ts/as]gs
P I wit es : [ts/as]q

Inst

if instance vas . gs => q where ... € top-decls
and wit is its generated witness name

Ambiguity

Intuitively,P| At e:t ~ e' assigns ferm e’ as the
meaning of overloaded term e

Problem: P| Ate:t ~e;andP| Al e:t ~ e; does not
imply equivalence between e; and e: in general
But it can be shown that if the principal type scheme

for e under A (as computed by W) is unambiguous,
the meaning of overloading is well-defined

For an unambiguous type scheme vas . gs => t:

fv(gs) N as < fv(t) check at each let-expressionl!

Qualified matching

¢ Deflanlon: YVas. dSa =2 te < Vbs. qsb => tb |ff
Vbs. Jas. ta= 1o & gsb IF gsq

e Matching algorithm:

fa~ ¢ to B dqgss I es i 8qgsq

6
Vas. gsqa => ta < Vbs. gsp => tb

where ¢ is a substitution skolemizing bs with respect to
fv(Vas. gsa => t4) U fv(Vbs. gsp => tb)

(Caveat: this algorithm is not complete for multi-parameter type-classes, and in
fact it cannot be because of the inability to qualify over "entailment constraints".
On the other hand, no known Haskell implementation solves this problem either...)

Summary

The essence of Haskell-style overloading: qualifying
predicates extend judgements and type schemes

Straightforward qualified variants of type correctness
rules and type inference algorithm

Witness translation removes overloading, defined as an
additional attribute to type derivations

Context reduction amounts o remove predicates
entailed by other predicates or instance facts

Challenge: split context to enable minimal residue
Challenge: integrate reduction with signature matching

