
Compiling functional 
languages

Lecture 5
Haskell-style overloading

Johan Nordlander

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/



Some terminology

• Parametric polymorphism: a term is defined 
not to depend on (parts of) its type
 length :: [a] -> Int     = ...

• Ad hoc polymorphism: a term is defined 
differently on basis of (parts of) its type
 (+) :: Int->Int->Int     = ...
 (+) :: Float->Float->Float   = ...

• The latter is also known as overloading



Going ad hoc
• Parametric polymorphism is neatly captured in 

the Hindley/Milner system

• Ad hoc polymorphism can be treated 
separately (Standard ML), but that leads to 
problems. E.g., consider the type of
 f x y = x + y

• Haskell addresses the ad hoc problem by the 
introduction of type classes. For example:
 f :: Num a => a -> a -> a



Type classes

• The basic idea behind “making ad hoc 
polymorphism less ad hoc” is to constrain 
polymorphism by means of class predicates 
like Num a, Eq a, etc

• The idea was suggested by Wadler&Blott in 
1989, but its theory was primarily developed 
by Jones (A Theory of Qualified Types, 1992)



Qualified types
• Compared to the Hindley/Milner system, the 

basic difference is that judgements are 
extended with qualifying predicates:
  P ∣ A ⊦ e ∶ σ

• Read: e has type σ in scope A, provided all 
predicates in P are true

• Qualifying predicates, a.k.a. the "context"
   P  ::=  q1, ..., qn      q ::=   C t1 ... tm

    σ  ::=   t  |  ∀a . σ   |  q => σ



Qualified types

P | A ⊦ e e' : t
P | A ⊦ e : t' -> t P | A ⊦ e' : t'

App
P | A ⊦ \x -> e : t' -> t

P | A,x:t' ⊦ e : t
Abs

P | A ⊦ x : σ
x:σ ∈ A

Var
P | A ⊦ let x = e in e' : t

P | A ⊦ e : σ P | A,x:σ ⊦ e' : t
Let

P | A ⊦ e : [t/a]σ
Inst

P | A ⊦ e : ∀a.σ
P | A ⊦ e : ∀a.σ

Gen
P | A ⊦ e : σ a ∉ fv(A,P)

P | A ⊦ e : q => σ
Qual

P,q | A ⊦ e : σ
P | A ⊦ e : σ

Entail
P | A ⊦ e : q => σ P ⊩ q

merge merge



Qualified types

P | A ⊦ e e' : t
P | A ⊦ e : t' -> t P | A ⊦ e' : t'

App
P | A ⊦ \x -> e : t' -> t

P | A,x:t' ⊦ e : t
Abs

P | A ⊦ let x = e in e' : t'
qs | A ⊦ e : t P | A,x:σ ⊦ e' : t'

Let

  where σ  = gen(qs=>t,A)
   = ∀ fv(qs=>t)\fv(A) . qs => t

(Type schemes:    σ   ::=  ∀as . qs => t)

P | A ⊦ x : [ts/as]t
x:∀as.qs=>t ∈ A

Var
P ⊩ [ts/as]qs



Example

|A' ⊦ f:I->I

 |A ⊦ let f = \x -> neg x in (f 1, f 1.1) : (I,F)

N b | A,x:b ⊦ x : b

Abs

Let

N b | A ⊦ \x->neg x : b->b

|A' ⊦ (f 1, f 1.1) : (I,F)

f:...∈A'

Var
x:b ∈ A,x:b

where A  = neg:∀a. N a => a->a  A' = A, f:∀b. N b => b->b

N b | A,x:b ⊦ neg : b->b
Var

neg:... ∈ A,x:b N b ⊩ N b

App

N b | A,x:b ⊦ neg x : b

⊩N I

App

|A' ⊦ f 1 : I
Con

P|A'⊦1:I |A' ⊦ f:F->F
f:...∈A' ⊩N F

App

|A' ⊦ f 1.1 : F
P|A'⊦1.1:F

VarVar



Entailment
• Read each q as a truth statement on types

- Num a     a is a numeric type

- Collection c a   c and a are in the collection relation

• Relation P ⊩ qs reads "P entails qs" or
 "each q ∈ qs is true if all q' ∈ P are true"

• Simplistic interpretation for now:
 P ⊩ qs  if  qs ⊆ P,P0  
 where P0 are the top-level instance "facts"

• But what does it mean for a q to be true?

• How do we compile overloaded code?



Witness translation
• Each class C as where xi :: ti translates into

 data C as = C t1 ... tn  a witness type
 x1 (C y1 ... yn) = y1    projection functions
    ...
 xn (C y1 ... yn) = yn     

• Each instance C ts where xi = ei translates into
 wit :: C ts      a witness term (fact)
 wit = C e1 ... en     (assuming ordered xi)

where wit is a new witness name



Witness translation
• Contexts are extended with witness names:

 P ::=   y1 : q1, ..., yn : qn

(note similarity with assumptions A!)

• Overloaded terms are translated according to 
their type derivation:

 P | A ⊦ e : t ↝ e'

• Read: e has type t in scope A and context P, 
and has a non-overloaded equivalent e'



Witness translation

P|A ⊦ e1 e2 : t ↝ e1' e2'
P|A ⊦ e1 : t'->t ↝ e1' P|A ⊦ e2 : t'↝ e2'

App

P|A ⊦ \x->e : t'->t ↝ \x->e'
P|A,x:t' ⊦ e : t ↝ e'

Abs

P|A ⊦ let x=e1 in e2 : t'↝ let x=\ys->e1' in e2'
ys:qs|A ⊦ e1 : t ↝ e1' P|A,x:σ ⊦ e2 : t' ↝ e2'

Let

  where σ  = gen(qs=>t,A)

P|A ⊦ x : [ts/as]t ↝ x es
x:∀as.qs=>t ∈ A

Var
P ⊩ es : [ts/as]qs



Witness translation

• Translate qualified type schemes as
    ⟦ ∀as . q1, ..., qn  => t ⟧  = ∀as . ⟦q1⟧ -> ... -> ⟦qn⟧ -> t
    ⟦ C ts ⟧      = C ts
    ⟦ x1 : σ1, ..., xn : σn ⟧  = x1 : ⟦σ1⟧, ..., xn : ⟦σn⟧

    ⟦ y1 : q1, ..., yn : qn ⟧   = y1 : ⟦q1⟧, ..., yn : ⟦qn⟧

• We now have

 If  P | A ⊦ e : t ↝ e'  then  ⟦P0,P⟧,⟦A⟧ ⊦ e' : t



Qualified
type inference algorithm W

• Main ideas:

- Generate fresh witness context at Var leafs

- Accumulate contexts from all subexpressions

- Qualify with accumulated context at generalization

P | θA ⊦w e : t ↝ e'

Input (an environment and an expression)

Output (a type, a context, a scope substitution and a translation)



Qualified
type inference algorithm W

P|θA ⊦w \x->e : θa->t ↝ \x->e'
P|θ(A,x:a) ⊦w e : t ↝ e'

Abs
ys:θqs | []A ⊦w x : θt ↝ x ys

Var

P|(θ2θ1)A ⊦w let x = e1 in e2 : t'↝ let x=\ys->e1' in e2'
ys:qs|θ1A ⊦w e1 : t ↝ e1' P|θ2(θ1A,x:σ) ⊦w e2 : t'↝ e2'

Let

where  σ = gen(qs=>t,θ1A) = ∀ fv(qs=>t)\fv(θ1A) . qs => t

where a is newwhere θ=[bs/as] and ys,bs are new

θ3θ2P1,θ3P2|(θ3θ2θ1)A ⊦w e1 e2 : θ3 a ↝ e1' e2'
P1|θ1A ⊦w e1 : t ↝ e1' P2|θ2(θ1A) ⊦w e2 : t'↝ e2'

App
θ2t ~ t'->a

where a is new

θ3

x:∀as.qs=>t ∈ A



The ususal properties
• (Soundness)

- If  P | θA ⊦w e : t ↝ e' succeeds then  
P | θA ⊦ e : t ↝ e'

• (Completeness)

- If  P | θA ⊦ e : t ↝ e'  then P' | θ'A ⊦w e : t'↝ e"  
succeeds such that for some θ":

•  θ = θ"θ'

•  t = θ"t'

•  P ⊩ θ"P'



Context reduction
• Qualifying with all accumulated predicates in the 

Let-rule is semantically correct but may include

- Duplicates   ∀a . (Num a, Num a) => a -> a
No point taking two identical arguments

- Tautologies   ∀a . (Num Int, Num a) => a -> a
No point taking an argument that exists as a global

- Local constants ∀a . (Num b, Num a) => a -> a
No point taking an argument that will always be the same value

- Absurdities   ∀a . (Num Bool, Num a) => a -> a
No point expecting an argument that will never be provided

• Better: reduce the ys:qs before calling gen(qs=>t,A)



Context reduction

ys1:θ2qs1,P2|(θ2θ1)A ⊦w let x = e1 in e2 : t'
P1|θ1A ⊦w e1 : t ↝ e1' P2|θ2(θ1A,x:σ) ⊦w e2 : t'↝ e2'

Let

where P1 = ys1:qs1,   ys2:qs2,   ys3:qs3  

  fv(qs1) ⊆ fv(θ1A)

  ys2:qs2 ⊩ es : qs3

  σ = gen(qs2=>t, θ1A)

↝ let x=\ys2 -> (let ys3 = es in e1') in e2'

constant residue reducible

maximize



Entailment revisited

Multi
P ⊩ e1, ..., en : q1, ..., qn

P ⊩ e1 : q1      ...     P ⊩ en : qn
Equiv

P ⊩ y : q

y:q ∈ P

P ⊩ es : qs

Input (a context and a set of predicates)

Output (witness terms for the given predicates)

Both a logical system and a algorithm (no substitution threading!)

... or failure if no rules match



Qualified instances

• Example: instance Eq a => Eq [a] where xi = ei

• Translate into 
 eqList :: Eq a -> Eq [a]
 eqList = \y -> Eq e1 ... en

• Witness y stands for Eq a when checking the ei

• Now eqList eqInt is a witness of Eq [Int]

• Note inherent polymorphism: Eq a => Eq [a] for all a



Sub/superclasses
• Translate class (q1, ..., qm) => C as where xi :: ti into

 data C as = C q1 ... qm t1 ... tn   a witness type
 sup1 (C z1 ... zm y1 ... yn) = z1   (supi, zi new)
 

 supm (C z1 ... zm y1 ... yn) = zm 
 x1 (C z1 ... zm y1 ... yn) = y1 
 

 xn (C z1 ... zm y1 ... yn) = yn 

• If q1 is a superclass of q2 as projected by supk, 
and y2 a witness of q2, then supk y2 is a witness of q1

• Note inherent polymorphism: Eq a => Ord a for all a
(superclass-of)

...

...



Entailment extended

Inst
P ⊩ wit es : [ts/as]q

P ⊩ es : [ts/as]qs

Sup
P ⊩ supj e : [ts/as]qj

P ⊩ e : C ts

if class (..., qj, ...) => C as where ...  ∈  top-decls
and supj is the projection from C as to qj

if instance ∀as . qs => q where ...  ∈  top-decls
and wit is its generated witness name



Ambiguity
• Intuitively, P | A ⊦ e : t ↝ e' assigns term e' as the 

meaning of overloaded term e

• Problem: P | A ⊦ e : t ↝ e1 and P | A ⊦ e : t ↝ e2 does not 
imply equivalence between e1 and e2 in general

• But it can be shown that if the principal type scheme 
for e under A (as computed by W) is unambiguous, 
the meaning of overloading is well-defined

• For an unambiguous type scheme ∀as . qs => t:
 fv(qs) ∩ as ⊆ fv(t) check at each let-expression!



∀as. qsa => ta ≼ ∀bs. qsb => tb

Qualified matching
• Definition:  ∀as. qsa => ta ≼ ∀bs. qsb => tb   iff 

    ∀bs . ∃as . ta = tb  &  qsb ⊩ qsa

• Matching algorithm:

θ
θφqsb ⊩ es : θqsata ~ φtb

θ

whereφis a substitution skolemizing bs with respect to 

fv(∀as. qsa => ta) ∪ fv(∀bs. qsb => tb) 

(Caveat: this algorithm is not complete for multi-parameter type-classes, and in 
fact it cannot be because of the inability to qualify over "entailment constraints". 
On the other hand, no known Haskell implementation solves this problem either...)



Summary
• The essence of Haskell-style overloading: qualifying 

predicates extend judgements and type schemes

• Straightforward qualified variants of type correctness 
rules and type inference algorithm

• Witness translation removes overloading, defined as an 
additional attribute to type derivations

• Context reduction amounts to remove predicates 
entailed by other predicates or instance facts

• Challenge: split context to enable minimal residue

• Challenge: integrate reduction with signature matching


