Compiling functional
languages

http://www.cse.chalmers.se/edu/year/2011/course/CompFun/

Lecture 4
Type inference

Johan Nordlander

Types

* A means of classifying programs/functions/
terms/variables, in order to filter out nonsense

e Trivial example:
- 3.2/xis a Float if x is a Float

- 3.2/x is nonsense if x is a String

e Typical limitation:
- 3.2/x is still a Float, even if x might be 0.0

Types

* A means of abstractly describing programs/
functions/terms/variables

e Trivial example:
- sortBy :: (a->a -> Bool) -> [a] -> [a]

- Provides some useful info about a term whose
implementation is hidden

e Typical limitation:
- sortBy could still be defined as (\p xs ->[]) ...

Compilation issues

e Type-checking:
- Find out if a program has a given type
e Type-inference:

- Find out if a program has any type at all

- Find some type for a program (if it has one)

- Find the "best" type for a program (if it
might have more than one type)

Type syntax

e Concretely:
t n= a | Tt | +->1 | [#1 | (f1,....tn)

e C.f. haskell-src:
data HsType = HsTyFun HsType HsType
| HsTyTuple [HsType]
| HsTyApp HsType HsType
| HsTyVar HsName
| HsTyCon HsQName

e Type desugaring:

[t] = [f (frotn) =2 (o) F1 e

e T.e, alist or tuple constructoris justa T

Correct types

Under what conditions does term e have type 1?
Usually described in informal language reports...

Must be matched by type-checking/inference
algorithms implemented in compilers

Advantage of the functional language heritage:

A rich tradition of defining type correctness
formally using logical inference systems!

Simple type correctness

Scope = set of type assumptions on variables

/ Pr‘emlses

AFe:t >t AFe i1
, App
AFee 't

Extension
_____—"|Right-biased lookup
Axt Fe:t Xt e A
Abs Var
AF\x >e:t >+ AFx:+¢

\x->e has type t'->t in scope A...

... if e has type 1 in scope A extended with x of type t'

Example

odd:I->B € odd:I->B x:I x:I € odd:I->B x:I

Var

odd:I->B, x:IFtodd:I->B Var odd:I->B, x:IFx: I

)) . App
odd:I->B, x:IFodd x: B

odd:I->BF\x >0dd x:I->B

Abs

Cannot be derived: odd:I->B I odd odd : B

Datatypes and case

Albe:Tts A xsi:[ts/as]tsik ei: t
AlFcaseeof { Kixsi->ej}:t

Case

where data T as = Ki ts; € top-decls

Al es: [ts/as]ts;
AFKjes: Tts

Con

where data T as = Ki ts; € top-decls

Polymorphism

Type variables have scope as well:

id::a->a

Not the same al

id = \x -> X /

f:a->a->(a, Char)
f=\xy->letg:ia->a

g=\X->Xx
in(gx,g X')

So where do type
variables get bound?

The Hindley/Milner
approximation

e Type variables are universally quantified at
the outermost type expressions only

e Tmplicitly present in Haskell/ML/etc:

id::Va.a->a

id = \x ->x A phrase of the form

va .. van.t
is called a type scheme,
which is not a type itself

f:Vva.a->a->(a, Char)
f=\xy->letg:va.a->a
g=\X->Xx

in(gx,g'A")

Hindley/Milner

polymorphism
e Types:
t u= a| T+t | t->1
e Type schemes: Free type variables:
o = Va.o |t fv(va.o) = fv(o) \ {a}
* Assumptions: Judgements:
A i X{:01,..,Xn: On AlFe:o

Note that all types count as schemes, but not vice versa
Also note that a variable stands for a type, not a scheme

Hindley/Milner
polymorphism

Abe:it -1 Abe 1 Axt Fe:t
App Abs
Alee it AF\x->e:t ->1

X:0€ A Ale:o AxioFe' :t

ar Let

v
/Al-x:o Alletx=eine' : ¢ \

merge merge

\ Al-e:‘v’a.oInsT Ale:o anfV(A)G(an /
Ale:[t/a]o Ale:Vvao

Hindley/Milner
polymorphism

Abe:t >t Akbe' 1 Axit Fe:t
ApP Abs
A|‘€e':1’ Al_\x_>e:1-,->1-

X:vas.te A Abe:t Axiobe it

Var Let

Al x:[ts/as]t Alletx=eine' : 1’
where o = gen(t,A) = vV fv(t)\fv(A) . t

(Type schemes: o = Vas . t)

Example

X:a € X:a f:va.a->ae A f:Va.a->ae A
Var Var Var
x:akFx:a AL f:[B->B/ala->a Al f:[B/ala->a
Abs App
F \x->X : a->a f:va.a->alF f f: B->B]
et

Flet f = \x->xinf f: B->B

where A = f:Va.a->a

Example

Cannot be derived:

Incorrect generalization:

f:va.a e .. fiva.ae ..
Var Var
X:a € X:a ..Ff:[B->B/a]a ..Ff:[B/ala
Var App
x:akFx:a fva.a, x:akf f:B
Let

xiakFletf=xinff:B
F\x >letf=xinff:B

Abs

va.a # gen(a, (x:a)) = V fv(a) \ fv(x:a).a = V[].a = a

Example

Cannot be derived:

f:va.a->a € ... f:va.a->a € ...

o

Var

Var
[b->b/a]a->a . Ff:[b/ala->a

/v(f > f f

Must be a typel

A
aa>a|—ff b>b PP

oo 2555

Abs

Neither a type, nor a schemel

Why schemes # types?

e Because of decidability of type inference!

* The type inference problem:
Given an e and an A, find the most
general t such that Ate:t

 Amounts to traversing e, guessing yet unknown
types, and adjusting the guesses when needed

e Guessing a type: invent a fresh type variable

e Adjusting a guess: unification
e (Guessing and adjusting type schemes: undecidablel)

Hindley/Milner
polymorphism

Adjust guesses to make equal Guess
Al-e:@‘r Al-e'\:@ AXit)Fe:t
= = App Abs
Alee :t AF\x->e:t' ->1
x:vas.t e A AlFe:t Axole it
Var Let
Al x: as]t Alletx=eine' : 1
where o = gen(t,A) = V fv(t)\fv(A) . t

Guess

Hindley/M.ilner
type inference sketch

Make equal... Guess
Abve:t AI-We':’r'@ mwe:’r
App - Abs
AFVee :a AFW\x ->e:a->1
where a is new where a is new
Guess L
x:vas.te A > AFWe:+t Axiolve' :t
Var Let
AW x: ‘as]’r AFWlet x=-eine' :t

where bs are new where o = gen(t,A) = V fv(t)\fv(A) . t

Unification

o Unification is the process of finding a
substitution that solves an equation

e E.g.a->Int=Bool->bis solved by [Bool/a, Int/b]

e Robinson's algorithm from 1965 finds a most
general solution to an equation, if a solution

exists at all

Robinson's unification
algorithm

] Output (a substitution)

0
General form: t1 ~ t»

\\
Inputs (two types)

[t/a] . [+/a] . []
t ~a ifaéefv(t) a ~ if a & fv(t) T~ T
B 6 B B
t1 ~ 13 01t ~ B1ty t1 ~ t3 01> ~ O1ta
0,0, 020,
T112 ~ 1314 T1>T2 ~ t3->14

Composition of substitutions: (8:6:)a = 8.(6:a)

The algorithm fails if no rule is applicable

Full Hindley/Milner
type inference (algorithm W)

General form:

Input (an environment and an expression)

/ \

8] A |_W e . 1- (W for "well-typed" (Milner))

N\ /

Output (a type and a substitution on the environment)

The algorithm fails if any internal unification attempt fails

Full Hindley/Milner
type inference (algorithm W)

' ' e '
1A et 02(01A) Ve’ it Bt ~t —>aApp 6(Ax:a)Fe:t Abs
(036261)A F¥ee’ : B3a BAF\x->e:0a->%
where a is new where a is new
X:vas.t € A 1AM et 02(01Ax:0) Ve’ : t
Var Let
LA P [bs/as] (8281)A P let x = e ine’ : 1

where bs are new where o = gen(t,61A) = v fv(t)\fv(81A) . t

Properties of algorithm W

e (Soundness)
- If A e:t succeeds then 6AFe: 1

e (Completeness)

- If 6Ate:t then 6'AFve: t' succeeds
such that for some 06":

e t=0"t
e =0"0
e Note: on the top-level, fv(A) =[], s0o 6A = A forall 0

Datatypes and case

6:A Vet 02(01A ,xsi:[bs/as]ts)) FV eiiti 02(T bs)—>1'i6"3' B21->a
(036201)A ¥ case e of { Ki xsi->ei }: 83a

Case

where data T as = K tfsi € top-decls and a, bs are new

(Details of unification and substitution threading for all i left as an exercisel)

61A W es : ts [bs/as]’rsje~2 ts
(6261)A FV K; es : 82(T bs)

Con

where data T as = K; tsi € top-decls and bs are new

Recursion

l l Note different assumptions!

Axthe:t Axole' it
AlFletx=eine':t’

where o = gen(t,A)

Let

e] (]
pr(Ax:a)FWe:t Bia~t 03(0201Axi0) Ve it s
e
(036201))AF let x=eine' : t'

where a is new and o = gen(62t, 62601A)

Generalization to mutual recursion straightforward (but space-consuming)

Explicit signatures

AFe:t gen(tA)<o Axole :f
Alletx: o, x=eine': 1

Let

where vas.t, < v‘v’bs.’rb iff for all bs there exist as such that .= 15

Matching # one-way unification...

.

0
6iAF et gen(t,61A) <o 03(8201Ax:0) Ve’ ;1
(030201)A W let x i o, x=eine' : t'

Let

Generalization to (mutual) recursion straightforward, but notice opportunity
to use x:0 as assumption when checking e — Haskell's polymorphic recursion!

Matching

Def: Vast. < Vbst, iff Vbs. Jas. ta= s

Matching algorithm vas.t, £ vbs.t, defined as:
find the smallest 6 such that e(vas.to) < 8(Vbs.tv)

Isn't +. 2+, sufficient? No, in addition:
- o must not touch bs (dom(8) N bs = @)

- 6 must not let bs escape
(fv(8(Vas.1s)) N bs = @ and fv(8(Vbs.15)) N bs = @)

Can be explicitly checked, of course. Alternatively...

Skolemization

Method for solving equations under nested v and 3

Note our general problem: Jas' . Vbs. Jas. ta= 1
where as' = fv(Vas.to) U fv(Vbs.ts)

Skolemized equivalent: Jas' . Jas . t.= ¢ 1, where
¢ is a substitution that maps each b; in bs to Tias'
and each T; is a newly invented type constructor

This problem is efficiently solved by .2 ¢+

Summary

The Hindley/Milner stratification:
- Types (including variables)
- Type schemes = types with universal quantifiers

Two similar formal systems
- Logical proof of type correctness: Ate:+t

- Algorithm for inferring m.g. types: 6AF e : t
Algorithm w based on unification and fresh names

Challenge: implement unification, substitution and
matching without getting too cleverlll

