Lecture 7
Ana Bove

March 27th 2012

Overview of today’s lecture:

o Regular Expressions
o From FA to RE

Regular expressions (RE) are an “algebraic” way to denote languages.
Given a RE R, it defines the language L(R).

We will show that RE are as expressive as DFA and hence, they define all
and only the regular languages.

RE can also be seen as a declarative way to express the strings we want to
accept and serve as input language for certain systems.

Example: grep command in UNIX (K. Thompson).
(Note: UNIX regular expressions are not exactly as the RE we will study in the

cou rse.)

March 27th 2012, Lecture 7 TMV026/DIT321 1/26

Inductive Definition of Regular Expressions

Definition: Given an alphabet ¥, we can inductively define the regular
expressions over X as:

Base cases: @ The constants () and € are RE;
o If a€ X then ais a RE.
Inductive steps: Given the RE R and S, we define the following RE:

o R+ S and RS are RE;
o R*is RE.

The precedence of the operands is the following:
o The closure operator * has the highest precedence;
o Next comes concatenation;
o Finally, comes the operator +;
o We use parentheses (,) to change the precedences.

March 27th 2012, Lecture 7 TMV026/DIT321 2/26

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following
BNF (Backus-Naur Form), for a € ¥

R:=0|e|la| R+R|RR|R*

alternatively
R,S:=0|e|la|R+S|RS|R"

Question: Can you guess their meaning?

Note: BNF is a way to declare the syntax of a language.
It is very useful when describing context-free grammars and in particular
the syntax of most programming languages.

March 27th 2012, Lecture 7 TMV026/DIT321 3/26

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

For example the expression b+ (bc)* is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

March 27th 2012, Lecture 7 TMV026/DIT321 4/26

Recall: Some Operations on Languages (Lecture 3)

Definition: Given £, £; and L5 languages then we define the following
languages:

Union: L1 ULy ={x | x € L1 or x € Ly}
Intersection: £ N Ly ={x | x € L1 and x € Ly}
Concatenation: L£1L; = {x1x2 | x1 € L1, x2 € L}

Closure: L* = |J,en £"
where £0 = {e}, L1 = L"L.

Note: We have then that 0* = {e} and
£r=L0uctuL’u...={du{xx...x, | n>0,x; € L}

Notation: £T =£'uL?2uL3U... and L?=LU{e}.

March 27th 2012, Lecture 7 TMV026/DIT321

Language Defined by the Regular Expressions

Definition: The /anguage defined by a regular expression is defined by
recursion on the expression:

Base cases: o L(0) = 0;
o L(e) = {e};
o Given a€ X, L(a) = {a}.
Recursive cases: o L(R+ S) = L(R) U L(S);
o L(RS) = L(R)L(S);
o L(R*) = L(R)*.

Note: x € L(R) iff x is generated/accepted by R.

Notation: We write x € R or x € L(R) indistinctly.

March 27th 2012, Lecture 7 TMV026/DIT321

Example of Regular Expressions

Let ¥ = {0,1}:
o (01)*
o 0* 417
o (0+1)
o (000)*
0 01" +1
o ((01%) +1)
o (01)*+1
o (e+1)(01)*(e +0)
o (01)* +1(01)* 4+ (01)*0 + 1(01)*0

What do they mean? Are there expressions that are equivalent?

March 27th 2012, Lecture 7 TMV026/DIT321

6/26

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T:

Associativity: R+ (S+T)=(R+S)+ T and R(ST) =(RS)T;
Commutativity: R+S =S+ R;

In general, RS # SR,

Distributivity: R(S+ T) = RS+ RT and (S+ T)R = SR+ TR;
ldentity: R+0 =0+ R =R and Re = e¢R = R;

Annihilator: R} = 0R = 0;

ldempotent: R+ R = R;

0* = €* =¢;

R? = ¢+ R;

R™ = RR* = R*R;

R* = (R*)* = R*R* = e+ RT.

¢ 6 6 6 6 6 ¢ 6 ¢ ¢ ¢

Note: Compare this slide with slide 19 of lecture 3.

March 27th 2012, Lecture 7 TMV026/DIT321 8/26

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

o Shifting rule: R(SR)* = (RS)*R

@ Denesting rule: (R*S)*R* = (R+ S)*

Note: By the shifting rule we also get R*(SR*)* = (R + S)*

o Variation of the denesting rule: (R*S)* =e¢+ (R+ S)*S

March 27th 2012, Lecture 7 TMV026/DIT321

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that a*b(c + da*b)* = (a+ bc*d)*bc*:

a*b(c + da*b)* = a*b(c*da*b)*c* by denesting (R = ¢, S = da*b)
a*b(c*da*b)*c* = (a*bc*d)*a*bc* by shifting (R = a*b, S = c¢*d)
(a*bc*d)*a*bc* = (a+ bc*d)*bc* by denesting (R = a,S = bc*d)

Example: The set of all words with no substring of more than two
adjacent 0's is (1 + 01 4+ 001)*(e + 0 + 00). Now,

(1+01+001)*(e+0+00)=((¢+0)(e+0)1)*(¢+ 0)(e+0)
= (e+0)(e+0)(1(e +0)(e + 0))* by shifting
= (e+ 0+ 00)(1 + 10 + 100)*

Then (1 + 01 + 001)*(e + 0 4+ 00) = (e 4 0 + 00)(1 + 10 + 100)*

March 27th 2012, Lecture 7 TMV026,/DIT321 10/26

Equality of Regular Expressions

Remember that RE are a way to denote languages.
Then, for RE R and S, R = S actually means L(R) = L(S).

Hence we can prove the equality of RE in the same way we can prove the
equality of languages.

Example: Let us prove that R* = R*R*. Let L = L(R).
L*C L*L* since e € L*.

Conversely, if L*L* C L* then x = xy1x» with x; € L* and x» € L*.

If x; = € or xo = € then it is clear that x € L*.

Otherwise x; = ujus ... u, with u; € £ and xp = vivo ... vy with v; € L.
Then x = x1x0 = tqUp ... U,VIVD ...V IS In LF.

March 27th 2012, Lecture 7 TMV026/DIT321 11/26

Proving Algebraic Laws for Regular Expressions

Given the RE R and S we can prove the law R = S as follows:

Q Convert R and S into concrete regular expressions C and D,
respectively, by replacing each variable in the RE R and S by
(different) concrete symbols.

Example: R(SR)* = (RS)*R can be converted into
a(ba)* = (ab)*a.

Q Prove or disprove whether £(C) = L(D). If L(C) = L(D) then
R = S is a true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the shifting law was (somehow) one of the exercises in

assignment 1: prove that for all n, a(ba)” = (ab)"a.
March 27th 2012, Lecture 7 TMV026,/DIT321 12/26

Example: Proving the Denesting Rule

We can state (R*S)*R* = (R+ S)* by proving L((a*b)*a*) = L((a+ b)*):

C: Let x € (a*b)*a*, then x = vw with v € (a*h)* and w € a*.

By induction on v.

If v =€ we are done.

Otherwise v = av’ or v = bv'.

Observe that in both cases v/ € (a*b)* hence by IH v'w € (a + b)* and so
is vw.

O: Let x € (a+ b)*. By induction on x.

If x = € then we are done.

Otherwise x = x’a or x = x'b and x’ € (a+ b)*.

By IH x" € (a*b)*a* and then x’ = vw with v € (a*b)* and w € a*.
If x'a = v(wa) € (a*b)*a* since v € (a*b)* and (wa) € a*.

If x'b = (v(wb))e € (a*b)*a* since v(wb) € (a*b)* and € € a*.

March 27th 2012, Lecture 7 TMV026/DIT321 13/26

Regular Languages and Regular Expressions

Theorem: If L is a regular language then there exists a regular
expression R such that £ = L(R).

Proof: Recall that each regular language has an automata that
recognises it.
We shall construct a regular expression from such automata.

The book shows 2 ways of constructing a regular expression from an
automata.

o Computing ng-k) (section 3.2.1): too expensive, produces big and
complicated regular expressions;

o Eliminating states (section 3.2.2).

We will also see how to do this by solving a /inear equation system using
Arden’s Lemma.

March 27th 2012, Lecture 7 TMV026,/DIT321 14/26

From FA to RE: Eliminating States in an Automaton A

This method of constructing a RE from a FA involves eliminating states.

When we eliminate the state s, all the paths that went through s do not
longer exists!

To preserve the language of the automaton we must include, on an arc
that goes directly from g to p, the labels of the paths that went from g to
p passing through s.

Labels now are not just symbols but (possible an infinite number of)
strings: hence we will use RE as labels.

March 27th 2012, Lecture 7 TMV026/DIT321

March 27th 2012, Lecture 7

TMV026/DIT321

If an arc does not
exist in A, then it is
labelled @ here.

For simplification, we
assume the g's are
different from the p's.

March 27th 2012, Lecture 7

Ri1 + Q15" P,

le + QlS*Pm

TMV026/DIT321

For each accepting state g we proceed as before until we have only g¢ and
q left. For each accepting state g we have 2 cases: gy # g or go = q.

ifao#q U
S
The expression is (R + SU*T)*SU*
7
If g0 = ¢ R

The expression is R*

The final expression is the sum of the expressions derived for each final
state.

March 27th 2012, Lecture 7 TMV026/DIT321

Recall:

Observe: Eliminating g is trivial. Eliminating g1g3 and g»qg is also easy.

March 27th 2012, Lecture 7 TMV026/DIT321

Example: Regular Expression Representing Gilbreath's
Principle

After eliminating g, g1g3 and g>qs4 we get:

e
o @D

1
1
S

o RE when final state is qog3qaqgs: (10 +01)(10 + 01)* = (10 + 01)*
o RE when final state is g2qags: (10 + 01)(10)*0(1(10)*0)*
o RE when final state is g1g3¢g5: (10 + 01)(01)*1(0(01)*1)*

March 27th 2012, Lecture 7 TMV026/DIT321 20/26

Example: Regular Expression Representing Gilbreath's
Principle

The final RE is the sum of the 3 previous expressions.
Let us first do some simplifications.

(10 + 01)(10)*0(1(10)*0)* = (10 + 01)(10)*(01(10)*)*0
= (10 + 01)(10 + 01)*0 by the shifted-denesting rule
= (10+01)*0

by shifting

Similarly (10 4 01)(01)*1(0(01)*1)* = (10 + 01)*1.
Hence the final RE is

(10 +01)* + (10 +01)"0 + (10 +01)"1
which is equivalent to

(10 +01)T (e +0+41)

March 27th 2012, Lecture 7 TMV026/DIT321 21/26

From FA to RE: Linear Equation System

To any automaton we associate a system of equations such that the
solution will be regular expressions.

At the end we get a regular expression for the language recognised by the
automaton. This works for DFA, NFA and e-NFA.

To every state g; we associate a variable E;.

Each E; represents the set {x € ¥* | §(gi, x) € F} (for DFA).
Then Eg represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each
variable E;.

Then the solution for Ep is the RE generating the same language that is
accepted by the FA.

March 27th 2012, Lecture 7 TMV026,/DIT321 22/26

Constructing the Linear Equation System

Consider a state g; and all the transactions coming out if it:

‘ Then we have the equation
E,-:a,-1E1—|—...—|—a,-jEj+...—|—a,-,,E,,
@
If E; is final then we add ¢
;‘ E,-:e—l—a,-lEl+...—|—a,-jEJ-+...—|—a,-,,E,,
O If there is no arrow coming out of g;

then E; = () if g; is not final

‘ or E; = ¢ if g; is final

March 27th 2012, Lecture 7 TMV026/DIT321

Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is X = R*S. Furthermore,
if e ¢ L(R) then this is the only solution to the equation X = RX + S.

Proof: We have that R* = RR* + «.
Hence R*S = RR*S + S and then X = R*S is a solution to X = RX + S.

One should also prove that:
@ Any solution to X = RX + S contains at least R*S;

o If ¢ ¢ L(R) then R*S is the only solution to the equation
X = RX + S (that is, no solution is "bigger” than R*S).

Note: See for example Theorem 6.1, pages 185-186 of Theory of Finite
Automata, with an introduction to formal languages by John Carroll and
Darrell Long, Prentice-Hall International Editions.

March 27th 2012, Lecture 7 TMV026,/DIT321 24/26

Example: Regular Expression Representing Gilbreath's
Principle

We obtain the following system of equations (see slide 19):

Eo = 1E13+ 0Ex, Eozss = € + 0Ep4s5 + 1E135
E13 = 0Eq345 + 1E, E>45 = € + 1Eq3s5
Eos = 1Ep345 + 0E; Ei3s = € + 0Ep345

E,=10

This can be simplified to:

Eo = 1E13 4+ 0Epy Eozss = € + 0Ep45 + 1Eq35
E13 = 0Ep345 Ezas = € + 1Eq345
E>4 = 1Eg3ss E135 = € + 0Eqz45

March 27th 2012, Lecture 7 TMV026/DIT321

And further to:

Eo = (10 + 01)Egsas
Eo3a5 = (10 + 01)Eg345 + € +0+ 1

Then a solution to Egsas is

(10 4+ 01)*(e + 0 + 1)

and the RE which is the solution to the problem is

or

March 27th 2012, Lecture 7

(10 4+ 01)(10 + 01)*(e 4+ 0 + 1)

(10 +01)T(e +0+1)

TMV026/DIT321

