
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 7
Ana Bove

March 27th 2012

Overview of today’s lecture:

Regular Expressions

From FA to RE

Regular Expressions

Regular expressions (RE) are an “algebraic” way to denote languages.
Given a RE R, it defines the language L(R).

We will show that RE are as expressive as DFA and hence, they define all
and only the regular languages.

RE can also be seen as a declarative way to express the strings we want to
accept and serve as input language for certain systems.

Example: grep command in UNIX (K. Thompson).
(Note: UNIX regular expressions are not exactly as the RE we will study in the

course.)

March 27th 2012, Lecture 7 TMV026/DIT321 1/26

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ, we can inductively define the regular
expressions over Σ as:

Base cases: The constants ∅ and ǫ are RE;

If a ∈ Σ then a is a RE.

Inductive steps: Given the RE R and S , we define the following RE:

R + S and RS are RE;

R∗ is RE.

The precedence of the operands is the following:

The closure operator ∗ has the highest precedence;

Next comes concatenation;

Finally, comes the operator +;

We use parentheses (,) to change the precedences.

March 27th 2012, Lecture 7 TMV026/DIT321 2/26

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following
BNF (Backus-Naur Form), for a ∈ Σ:

R ::= ∅ | ǫ | a | R + R | RR | R∗

alternatively
R, S ::= ∅ | ǫ | a | R + S | RS | R∗

Question: Can you guess their meaning?

Note: BNF is a way to declare the syntax of a language.
It is very useful when describing context-free grammars and in particular
the syntax of most programming languages.

March 27th 2012, Lecture 7 TMV026/DIT321 3/26

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

For example the expression b + (bc)∗ is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

March 27th 2012, Lecture 7 TMV026/DIT321 4/26

Recall: Some Operations on Languages (Lecture 3)

Definition: Given L, L1 and L2 languages then we define the following
languages:

Union: L1 ∪ L2 = {x | x ∈ L1 or x ∈ L2}
Intersection: L1 ∩ L2 = {x | x ∈ L1 and x ∈ L2}
Concatenation: L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}

Closure: L∗ =
⋃

n∈N Ln

where L0 = {ǫ}, Ln+1 = LnL.

Note: We have then that ∅∗ = {ǫ} and
L∗ = L0 ∪ L1 ∪ L2 ∪ . . . = {ǫ} ∪ {x1 . . . xn | n > 0, xi ∈ L}

Notation: L+ = L1 ∪ L2 ∪ L3 ∪ . . . and L? = L ∪ {ǫ}.

March 27th 2012, Lecture 7 TMV026/DIT321 5/26

Language Defined by the Regular Expressions

Definition: The language defined by a regular expression is defined by
recursion on the expression:

Base cases: L(∅) = ∅;
L(ǫ) = {ǫ};
Given a ∈ Σ, L(a) = {a}.

Recursive cases: L(R + S) = L(R) ∪ L(S);

L(RS) = L(R)L(S);

L(R∗) = L(R)∗.

Note: x ∈ L(R) iff x is generated/accepted by R.

Notation: We write x ∈ R or x ∈ L(R) indistinctly.

March 27th 2012, Lecture 7 TMV026/DIT321 6/26

Example of Regular Expressions

Let Σ = {0, 1}:
(01)∗

0∗ + 1∗

(0 + 1)∗

(000)∗

01∗ + 1

((0(1∗)) + 1)

(01)∗ + 1

(ǫ + 1)(01)∗(ǫ + 0)

(01)∗ + 1(01)∗ + (01)∗0 + 1(01)∗0

What do they mean? Are there expressions that are equivalent?

March 27th 2012, Lecture 7 TMV026/DIT321 7/26

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T :

Associativity: R + (S + T) = (R + S) + T and R(ST) = (RS)T ;

Commutativity: R + S = S + R;

In general, RS 6= SR;

Distributivity: R(S + T) = RS + RT and (S + T)R = SR + TR;

Identity: R + ∅ = ∅+ R = R and Rǫ = ǫR = R;

Annihilator: R∅ = ∅R = ∅;
Idempotent: R + R = R;

∅∗ = ǫ∗ = ǫ;

R? = ǫ + R;

R+ = RR∗ = R∗R;

R∗ = (R∗)∗ = R∗R∗ = ǫ + R+.

Note: Compare this slide with slide 19 of lecture 3.
March 27th 2012, Lecture 7 TMV026/DIT321 8/26

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

Shifting rule: R(SR)∗ = (RS)∗R

Denesting rule: (R∗S)∗R∗ = (R + S)∗

Note: By the shifting rule we also get R∗(SR∗)∗ = (R + S)∗

Variation of the denesting rule: (R∗S)∗ = ǫ + (R + S)∗S

March 27th 2012, Lecture 7 TMV026/DIT321 9/26

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗:

a∗b(c + da∗b)∗ = a∗b(c∗da∗b)∗c∗ by denesting (R = c , S = da∗b)

a∗b(c∗da∗b)∗c∗ = (a∗bc∗d)∗a∗bc∗ by shifting (R = a∗b, S = c∗d)

(a∗bc∗d)∗a∗bc∗ = (a + bc∗d)∗bc∗ by denesting (R = a, S = bc∗d)

Example: The set of all words with no substring of more than two
adjacent 0’s is (1 + 01 + 001)∗(ǫ + 0 + 00). Now,

(1 + 01 + 001)∗(ǫ + 0 + 00) = ((ǫ + 0)(ǫ + 0)1)∗(ǫ + 0)(ǫ + 0)

= (ǫ + 0)(ǫ + 0)(1(ǫ + 0)(ǫ + 0))∗ by shifting

= (ǫ + 0 + 00)(1 + 10 + 100)∗

Then (1 + 01 + 001)∗(ǫ + 0 + 00) = (ǫ + 0 + 00)(1 + 10 + 100)∗

March 27th 2012, Lecture 7 TMV026/DIT321 10/26

Equality of Regular Expressions

Remember that RE are a way to denote languages.
Then, for RE R and S , R = S actually means L(R) = L(S).

Hence we can prove the equality of RE in the same way we can prove the
equality of languages.

Example: Let us prove that R∗ = R∗R∗. Let L = L(R).

L∗ ⊆ L∗L∗ since ǫ ∈ L∗.

Conversely, if L∗L∗ ⊆ L∗ then x = x1x2 with x1 ∈ L∗ and x2 ∈ L∗.
If x1 = ǫ or x2 = ǫ then it is clear that x ∈ L∗.
Otherwise x1 = u1u2 . . . un with ui ∈ L and x2 = v1v2 . . . vm with vj ∈ L.
Then x = x1x2 = u1u2 . . . unv1v2 . . . vm is in L∗.

March 27th 2012, Lecture 7 TMV026/DIT321 11/26

Proving Algebraic Laws for Regular Expressions

Given the RE R and S we can prove the law R = S as follows:

1 Convert R and S into concrete regular expressions C and D,
respectively, by replacing each variable in the RE R and S by
(different) concrete symbols.

Example: R(SR)∗ = (RS)∗R can be converted into
a(ba)∗ = (ab)∗a.

2 Prove or disprove whether L(C) = L(D). If L(C) = L(D) then
R = S is a true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the shifting law was (somehow) one of the exercises in
assignment 1: prove that for all n, a(ba)n = (ab)na.
March 27th 2012, Lecture 7 TMV026/DIT321 12/26

Example: Proving the Denesting Rule

We can state (R∗S)∗R∗ = (R +S)∗ by proving L((a∗b)∗a∗) = L((a+b)∗):

⊆: Let x ∈ (a∗b)∗a∗, then x = vw with v ∈ (a∗b)∗ and w ∈ a∗.
By induction on v .
If v = ǫ we are done.
Otherwise v = av ′ or v = bv ′.
Observe that in both cases v ′ ∈ (a∗b)∗ hence by IH v ′w ∈ (a + b)∗ and so
is vw .

⊇: Let x ∈ (a + b)∗. By induction on x .
If x = ǫ then we are done.
Otherwise x = x ′a or x = x ′b and x ′ ∈ (a + b)∗.
By IH x ′ ∈ (a∗b)∗a∗ and then x ′ = vw with v ∈ (a∗b)∗ and w ∈ a∗.
If x ′a = v(wa) ∈ (a∗b)∗a∗ since v ∈ (a∗b)∗ and (wa) ∈ a∗.
If x ′b = (v(wb))ǫ ∈ (a∗b)∗a∗ since v(wb) ∈ (a∗b)∗ and ǫ ∈ a∗.
March 27th 2012, Lecture 7 TMV026/DIT321 13/26

Regular Languages and Regular Expressions

Theorem: If L is a regular language then there exists a regular
expression R such that L = L(R).

Proof: Recall that each regular language has an automata that
recognises it.
We shall construct a regular expression from such automata.

The book shows 2 ways of constructing a regular expression from an
automata.

Computing R
(k)
ij (section 3.2.1): too expensive, produces big and

complicated regular expressions;

Eliminating states (section 3.2.2).

We will also see how to do this by solving a linear equation system using
Arden’s Lemma.

March 27th 2012, Lecture 7 TMV026/DIT321 14/26

From FA to RE: Eliminating States in an Automaton A

This method of constructing a RE from a FA involves eliminating states.

When we eliminate the state s, all the paths that went through s do not
longer exists!

To preserve the language of the automaton we must include, on an arc
that goes directly from q to p, the labels of the paths that went from q to
p passing through s.

Labels now are not just symbols but (possible an infinite number of)
strings: hence we will use RE as labels.

March 27th 2012, Lecture 7 TMV026/DIT321 15/26

Eliminating State s in A

q1

qk

s

p1

pm

Q1

Qk

P1

Pm

S

R11

Rkm

R1m

Rk1

If an arc does not
exist in A, then it is
labelled ∅ here.

For simplification, we
assume the q’s are
different from the p’s.

March 27th 2012, Lecture 7 TMV026/DIT321 16/26

Eliminating State s in A

q1

qk

p1

pm

R11 + Q1S
∗P1

Rkm + QkS∗Pm

R1m + Q1S
∗PmRk1 + QkS∗P1

March 27th 2012, Lecture 7 TMV026/DIT321 17/26

Eliminating States in A

For each accepting state q we proceed as before until we have only q0 and
q left. For each accepting state q we have 2 cases: q0 6= q or q0 = q.

If q0 6= q:

q0 q

R U

S

T
The expression is (R + SU∗T)∗SU∗

If q0 = q:

q0

R

The expression is R∗

The final expression is the sum of the expressions derived for each final
state.
March 27th 2012, Lecture 7 TMV026/DIT321 18/26

Example: Regular Expression Representing Gilbreath’s
Principle

Recall:

q0

q1q3

q2q4

q2q4q5

q1q3q5

q0q3q4q5q

1

0

0

1

0

1

0

1

1

0

0

1

Observe: Eliminating q is trivial. Eliminating q1q3 and q2q4 is also easy.

March 27th 2012, Lecture 7 TMV026/DIT321 19/26

Example: Regular Expression Representing Gilbreath’s
Principle

After eliminating q, q1q3 and q2q4 we get:

q0

q2q4q5

q1q3q5

q0q3q4q5
10 + 01

0

1

0

1

RE when final state is q0q3q4q5: (10 + 01)(10 + 01)∗ = (10 + 01)+

RE when final state is q2q4q5: (10 + 01)(10)∗0(1(10)∗0)∗

RE when final state is q1q3q5: (10 + 01)(01)∗1(0(01)∗1)∗

March 27th 2012, Lecture 7 TMV026/DIT321 20/26

Example: Regular Expression Representing Gilbreath’s
Principle

The final RE is the sum of the 3 previous expressions.
Let us first do some simplifications.

(10 + 01)(10)∗0(1(10)∗0)∗ = (10 + 01)(10)∗(01(10)∗)∗0 by shifting
= (10 + 01)(10 + 01)∗0 by the shifted-denesting rule
= (10 + 01)+0

Similarly (10 + 01)(01)∗1(0(01)∗1)∗ = (10 + 01)+1.

Hence the final RE is

(10 + 01)+ + (10 + 01)+0 + (10 + 01)+1

which is equivalent to

(10 + 01)+(ǫ + 0 + 1)

March 27th 2012, Lecture 7 TMV026/DIT321 21/26

From FA to RE: Linear Equation System

To any automaton we associate a system of equations such that the
solution will be regular expressions.

At the end we get a regular expression for the language recognised by the
automaton. This works for DFA, NFA and ǫ-NFA.

To every state qi we associate a variable Ei .

Each Ei represents the set {x ∈ Σ∗ | δ̂(qi , x) ∈ F} (for DFA).

Then E0 represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each
variable Ei .

Then the solution for E0 is the RE generating the same language that is
accepted by the FA.

March 27th 2012, Lecture 7 TMV026/DIT321 22/26

Constructing the Linear Equation System

Consider a state qi and all the transactions coming out if it:

qi

q1

qj

qn

ai1

aij

ain

Then we have the equation

Ei = ai1E1 + . . . + aijEj + . . . + ainEn

If Ei is final then we add ǫ

Ei = ǫ + ai1E1 + . . . + aijEj + . . . + ainEn

If there is no arrow coming out of qi

then Ei = ∅ if qi is not final

or Ei = ǫ if qi is final

March 27th 2012, Lecture 7 TMV026/DIT321 23/26

Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is X = R∗S. Furthermore,
if ǫ /∈ L(R) then this is the only solution to the equation X = RX + S.

Proof: We have that R∗ = RR∗ + ǫ.
Hence R∗S = RR∗S + S and then X = R∗S is a solution to X = RX + S .

One should also prove that:

Any solution to X = RX + S contains at least R∗S ;

If ǫ /∈ L(R) then R∗S is the only solution to the equation
X = RX + S (that is, no solution is “bigger” than R∗S).

Note: See for example Theorem 6.1, pages 185–186 of Theory of Finite
Automata, with an introduction to formal languages by John Carroll and
Darrell Long, Prentice-Hall International Editions.

March 27th 2012, Lecture 7 TMV026/DIT321 24/26

Example: Regular Expression Representing Gilbreath’s
Principle

We obtain the following system of equations (see slide 19):

E0 = 1E13 + 0E24 E0345 = ǫ + 0E245 + 1E135

E13 = 0E0345 + 1Eq E245 = ǫ + 1E0345

E24 = 1E0345 + 0Eq E135 = ǫ + 0E0345

Eq = ∅

This can be simplified to:

E0 = 1E13 + 0E24 E0345 = ǫ + 0E245 + 1E135

E13 = 0E0345 E245 = ǫ + 1E0345

E24 = 1E0345 E135 = ǫ + 0E0345

March 27th 2012, Lecture 7 TMV026/DIT321 25/26

Example: Regular Expression Representing Gilbreath’s
Principle

And further to:

E0 = (10 + 01)E0345

E0345 = (10 + 01)E0345 + ǫ + 0 + 1

Then a solution to E0345 is

(10 + 01)∗(ǫ + 0 + 1)

and the RE which is the solution to the problem is

(10 + 01)(10 + 01)∗(ǫ + 0 + 1)

or
(10 + 01)+(ǫ + 0 + 1)

March 27th 2012, Lecture 7 TMV026/DIT321 26/26

