Finite Automata and Formal Languages

# TMV026/DIT321-LP4 2012

### Lecture 9 Ana Bove

#### April 17th 2012

#### **Overview of today's lecture:**

- Closure Properties for Regular Languages
- Decision Properties for Regular Languages

# More Closure Properties for Regular Languages

We shall now see that RL are also closed under the following operations:

 Reversal Recall that intuitively, rev(a<sub>1</sub>...a<sub>n</sub>) = a<sub>n</sub>...a<sub>1</sub> (slide 13, lecture 3) and that ∀x, rev(rev(x)) = x (slide 14, lecture 3)

Given  $\mathcal{L}$ , let  $\mathcal{L}^{\mathsf{r}} = \{\mathsf{rev}(x) \mid x \in \mathcal{L}\};$ 

- Homomorphism (substitution of string by symbols);
- Inverse homomorphism.

# **Closure under Reversal**

We define the following function over RE:

$$\emptyset^{\mathsf{r}} = \emptyset \quad \epsilon^{\mathsf{r}} = \epsilon \quad a^{\mathsf{r}} = a$$
$$(R_1 + R_2)^{\mathsf{r}} = R_1^{\mathsf{r}} + R_2^{\mathsf{r}}$$
$$(R_1 R_2)^{\mathsf{r}} = R_2^{\mathsf{r}} R_1^{\mathsf{r}}$$
$$(R^*)^{\mathsf{r}} = (R^{\mathsf{r}})^*$$

**Theorem:** If  $\mathcal{L}$  is regular so is  $\mathcal{L}^{r}$ .

**Proof:** (See theo. 4.11, pages 139–140). Let R be a RE such that  $\mathcal{L} = \mathcal{L}(R)$ . We need to prove by structural induction on R that  $\mathcal{L}(R^r) = (\mathcal{L}(R))^r$ . Hence  $\mathcal{L}^r = (\mathcal{L}(R))^r = \mathcal{L}(R^r)$  and  $\mathcal{L}^r$  is regular.

**Example:** The reverse of the language defined by  $(0 + 1)^*0$  can be defined by  $0(0 + 1)^*$ .

TMV026/DIT321

April 17th 2012, Lecture 9

Closure under Reversal

Another way to prove this result is by constructing a  $\epsilon$ -NFA for  $\mathcal{L}^{r}$ .

**Proof:** Let  $N = (Q, \Sigma, \delta_N, q_0, F)$  be a NFA such that  $\mathcal{L} = \mathcal{L}(N)$ . Define  $E = (Q \cup \{q\}, \Sigma, \delta_E, q, \{q_0\})$  with  $q \notin Q$  and  $\delta_E$  such that

$$r \in \delta_E(s, a)$$
 iff  $s \in \delta_N(r, a)$  for  $r, s \in Q$   
 $r \in \delta_E(q, \epsilon)$  iff  $r \in F$ 

## Recall: Functions between Languages

(from slide 21, lecture 3)

**Definition:** A function  $f : \Sigma^* \to \Delta^*$  between 2 languages should be such that it satisfies

 $f(\epsilon) = \epsilon$ f(xy) = f(x)f(y)

Intuitively,  $f(a_1 \dots a_n) = f(a_1) \dots f(a_n)$ . Notice that  $f(a) \in \Delta^*$  if  $a \in \Sigma$ .

**Definition:** *f* is called *coding* iff *f* is *injective*.

**Definition:**  $f(\mathcal{L}) = \{f(x) \mid x \in \mathcal{L}\}.$ 

April 17th 2012, Lecture 9

TMV026/DIT321

Languages are Monoids

**Definition:** A *monoid* is an algebraic structure with an associative binary operation and an identity element.

Let  $\Sigma$  be an alphabet.

Then  $\Sigma^*$  is a monoid if we consider the concatenation as binary operation and  $\epsilon$  as the identity element with respect to the binary operation.

#### **Recall:**

- Concatenation is associative: (xy)z = x(yz)
- $x\epsilon = \epsilon x = \epsilon$
- Concatenation is in general not commutative (but this is not required in the definition of a monoid)

# Homomorphisms

**Definition:** A *homomorphism* is a structure-preserving map between 2 algebraic structures.

**Note:** A function  $h: \Sigma^* \to \Delta^*$  satisfying

$$h(\epsilon) = \epsilon$$
  
$$h(xy) = h(x)h(y)$$

can be seen as a homomorphism between the monoids (languages)  $\Sigma^*$  and  $\Delta^*.$ 

Recall we have then that  $h(a_1 \dots a_n) = h(a_1) \dots h(a_n)$ .

April 17th 2012, Lecture 9

TMV026/DIT321

# Closure under Homomorphisms

**Theorem:** If  $\mathcal{L}$  is a RL over  $\Sigma$  and  $h : \Sigma^* \to \Delta^*$  is an homomorphism on  $\Sigma$  then  $h(\mathcal{L})$  is also regular.

**Proof:** We define the following function over RE:

$$f_h(\emptyset) = \emptyset \qquad f_h(\epsilon) = \epsilon \qquad f_h(a) = h(a)$$
  

$$f_h(R_1 + R_2) = f_h(R_1) + f_h(R_2)$$
  

$$f_h(R_1R_2) = f_h(R_1)f_h(R_2)$$
  

$$f_h(R^*) = (f_h(R))^*$$

We need to prove by structural induction on R that  $\mathcal{L}(f_h(R)) = h(\mathcal{L}(R))$ . Now, if  $\mathcal{L} = \mathcal{L}(R)$  then we have that  $h(\mathcal{L})$  is regular since  $h(\mathcal{L}) = h(\mathcal{L}(R)) = \mathcal{L}(f_h(R))$ . (See Theorem 4.14, pages 141–142.)

## Closure under Homomorphisms

Let  $h: \Sigma^* \to \Delta^*$  be a homomorphism and  $\mathcal{L}$  a RL over  $\Sigma$ .

By the previous theorem and the definition of RL, we know that there exists a DFA D over  $\Sigma$  and a DFA F over  $\Delta$  such that

 $\mathcal{L} = \mathcal{L}(D)$  and  $h(\mathcal{L}) = \mathcal{L}(F)$ 

*F* can be constructed from the RE for  $\mathcal{L}$  (via an  $\epsilon$ -NFA).

Often not obvious how to construct the DFA directly.

April 17th 2012, Lecture 9

TMV026/DIT321

Inverse Homomorphisms

**Definition:** If  $h: \Sigma^* \to \Delta^*$  is a homomorphism and  $\mathcal{L}$  is a language over  $\Delta$ ,  $h^{-1}(\mathcal{L})$  (read *h* inverse of  $\mathcal{L}$ ) is the set of strings *w* such that  $h(w) \in \mathcal{L}$ . In other words,  $h^{-1}(\mathcal{L}) = \{w \in \Sigma^* \mid h(w) \in \mathcal{L}\}.$ 

**Note:**  $h^{-1}$  does not necessarily correspond to a function!

**Example:** Imagine we have that h(a) = c, h(b) = c and  $\mathcal{L} = \{c\}$ . Then  $h^{-1}(\mathcal{L}) = \{a, b\}$  but  $h^{-1}$  itself is not a function.

### **Closure under Inverse Homomorphisms**

**Theorem:** Let  $h : \Sigma^* \to \Delta^*$  be a homomorphism. If  $\mathcal{L}$  is a RL over  $\Delta$  then  $h^{-1}(\mathcal{L})$  is a RL over  $\Sigma$ .

**Proof:** Let  $D = (Q, \Delta, \delta, q_0, F)$  be a DFA such that  $\mathcal{L} = \mathcal{L}(D)$ . We define the DFA  $D' = (Q, \Sigma, \delta', q_0, F)$  over  $\Sigma$  such that

$$\delta'(q,a) = \widehat{\delta}(q,h(a))$$

By induction on |w| we prove that  $\hat{\delta}'(q, w) = \hat{\delta}(q, h(w))$ (Recall that  $\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$ .) Then D' accepts w iff D accepts h(w) (since the set of accepting states is the same in both DFA).

**Note:** Since  $h^{-1}$  might not be a function it seems difficult to directly define the RE that corresponds to the *h* inverse of  $\mathcal{L}$ .

April 17th 2012, Lecture 9

TMV026/DIT321

## Example: $\mathcal{L}'$ from Slide 14 Lecture 8

**Example:** We know  $\mathcal{L} = \{b^m c^m \mid m \ge 0\}$  is not regular. Let us consider  $\mathcal{L}' = a^+ \mathcal{L} \cup (b+c)^*$ .

We will prove that  $\mathcal{L}'$  is not regular. Let us assume it is.

Then  $a^+\mathcal{L} = \mathcal{L}' \cap \overline{(b+c)^*}$  must be regular.

Then,  $\mathcal{L} = h(a^+\mathcal{L})$  must also be regular, where *h* is the following homomorphism:  $h(a) = \epsilon$ , h(b) = b, h(c) = c.

We arrive at a contradiction, hence  $\mathcal{L}'$  cannot be regular.

# **Decision Properties of Regular Languages**

We want to be able to answer YES/NO to questions such as

- Is this language empty?
- Is string w in the language  $\mathcal{L}$ ?
- Are these 2 languages equivalent?

In general languages are infinite so we cannot do a "manual" checking.

Instead we should work with the finite description of the languages (DFA, NFA.  $\epsilon$ -NFA, RE).

Which description is the most convenient depends on the property and on the language.

#### April 17th 2012, Lecture 9

FMV026/DIT321

12/23

# Testing Emptiness of Regular Languages

Given a FA for a language, testing whether the language is empty or not amounts to checking if there is a path from the start state to a final state.

Let  $D = (Q, \Sigma, \delta, q_0, F)$  be a DFA.

Recall the notion of accessible states from slide 22 in lecture 4:

**Definition:** The set  $Acc = \{\hat{\delta}(q_0, x) \mid x \in \Sigma^*\}$  is the set of *accessible* states (from the state  $q_0$ ).

**Proposition:** Given D as above, then  $D' = (Q \cap Acc, \Sigma, \delta', q_0, F \cap Acc)$ , where  $\delta'$  is the function  $\delta$  restricted to the states in  $Q \cap Acc$ , is a DFA such that  $\mathcal{L}(D) = \mathcal{L}(D')$ .

In particular,  $\mathcal{L}(D) = \emptyset$  if  $F \cap Acc = \emptyset$ . (Actually,  $\mathcal{L}(D) = \emptyset$  iff  $F \cap Acc = \emptyset$  since if  $\hat{\delta}(q_0, x) \in F$  then  $\hat{\delta}(q_0, x) \in F \cap Acc$ .)

April 17th 2012, Lecture 9

# Testing Emptiness of Regular Languages

A recursive algorithm to test whether a state is accessible/reachable is as follows:

Base case: The start state  $q_0$  is reachable from  $q_0$ .

Recursive step: If q is reachable from  $q_0$  and there is an arc from q to p (with any label, including  $\epsilon$ ) then p is also reachable from  $q_0$ .

(This algorithm is an instance of *graph-reachability*.)

If the set of reachable states contains at least one final state then the RL is NOT empty.

April 17th 2012, Lecture 9

TMV026/DIT32

Functional Representation of Testing Emptiness for FA

```
import List(union)
data Q = ... deriving Eq
data S = ...
final :: Q -> Bool
delta :: Q -> S -> Q
isIn :: [Q] -> Q -> Bool
isIn = flip elem
isSuperSet :: [Q] -> [Q] -> Bool
isSuperSet as bs = and (map (isIn as) bs)
```

# Functional Representation of Testing Emptiness for FA

The first argument in the functions below is a list with *all* symbols in the S.

```
closure :: [S] \rightarrow (Q \rightarrow S \rightarrow Q) \rightarrow [Q] \rightarrow [Q]

closure cs delta qs =

let qs' = qs >>= (\q -> map (delta q) cs)

in if isSuperSet qs qs' then qs

else closure cs delta (union qs qs')

accessible :: [S] \rightarrow (Q \rightarrow S \rightarrow Q) \rightarrow Q \rightarrow [Q]

accessible cs delta q = closure cs delta [q]

notEmpty :: [S] \rightarrow (Q \rightarrow S \rightarrow Q) \rightarrow Q \rightarrow Bool

notEmpty cs delta q0 =

or (map final (accessible cs delta q0))
```

Functional Representation of Testing Emptiness for FA

The closure function can be optimised by not computing the closure of the same state twice.

```
closure :: [S] \rightarrow (Q \rightarrow S \rightarrow Q) \rightarrow [Q] \rightarrow [Q]

closure cs delta qs = clos [] qs

where

clos :: [Q] \rightarrow [Q] \rightarrow [Q]

clos qs1 qs2 =

if qs2 == [] then qs1

else let qs = union qs1 qs2

qs' = qs2 >>= (\q -> map (delta q) cs)

qs'' = filter (\q -> not (isIn qs q)) qs'

in clos qs qs''
```



# Testing Membership in Regular Languages

Given a RL  $\mathcal{L}$  and a word w over the alphabet of  $\mathcal{L}$ , is  $w \in \mathcal{L}$  ?

When  $\mathcal{L}$  is given by a FA we can simply run the FA with the input w and see if the word is accepted by the FA.

We have seen algorithms that simulate the running of a FA (see slides 10–11 in lecture 4 for DFA, slides 10–12 in lecture 5 for NFA, and slides 15, 18–19 in lecture 6 for  $\epsilon$ -NFA).

Using *derivatives* (see exercises 4.2.3 and 4.2.5) there is a nice algorithm checking membership on RE.

Let  $\mathcal{L} = \mathcal{L}(R)$  and  $w = a_1 \dots a_n$ .

Let  $a \setminus R = D_a R = \{x \mid ax \in \mathcal{L}\}$  (in the book  $\frac{d\mathcal{L}}{da}$ ).

 $D_w R = D_{a_n}(\dots(D_{a_1}R)\dots).$ It can then be shown that  $w \in \mathcal{L}$  iff  $\epsilon \in D_w R$ .

April 17th 2012, Lecture 9

TMV026/DIT321

20/23

Other Testing Algorithms on Regular Expressions

Tests if a RE contains  $\epsilon$ .

```
hasEpsilon :: RExp a -> Bool
hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon _ = False
```

# Other Testing Algorithms on Regular Expressions

```
Tests if \mathcal{L}(R) \subseteq \{\epsilon\}.
atMostEps :: RExp a -> Bool
atMostEps Empty = True
atMostEps Epsilon = True
atMostEps (Atom _) = False
atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2
atMostEps (Concat e1 e2) = isEmpty e1 || isEmpty e2 ||
                             (atMostEps e1 && atMostEps e2)
atMostEps (Star e) = atMostEps e
Other Testing Algorithms on Regular Expressions
Tests if a regular expression denotes an infinite language.
infinite :: RExp a -> Bool
infinite (Star e) = not (atMostEps e)
infinite (Plus e1 e2) = infinite e1 || infinite e2
infinite (Concat e1 e2) = (infinite e1 && notIsEmpty e2) ||
                            (notIsEmpty e1 && infinite e2)
  where notIsEmpty e = not (isEmpty e)
infinite _ = False
```