
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 9
Ana Bove

April 17th 2012

Overview of today’s lecture:

Closure Properties for Regular Languages

Decision Properties for Regular Languages

More Closure Properties for Regular Languages

We shall now see that RL are also closed under the following operations:

Reversal
Recall that intuitively, rev(a1 . . . an) = an . . . a1 (slide 13, lecture 3)
and that ∀x , rev(rev(x)) = x (slide 14, lecture 3)

Given L, let Lr = {rev(x) | x ∈ L};

Homomorphism (substitution of string by symbols);

Inverse homomorphism.

April 17th 2012, Lecture 9 TMV026/DIT321 1/23

Closure under Reversal

We define the following function over RE:

∅r = ∅ εr = ε ar = a
(R1 + R2)r = R r

1 + R r
2

(R1R2)r = R r
2R

r
1

(R∗)r = (R r)∗

Theorem: If L is regular so is Lr.

Proof: (See theo. 4.11, pages 139–140). Let R be a RE such that
L = L(R).
We need to prove by structural induction on R that L(R r) = (L(R))r.
Hence Lr = (L(R))r = L(R r) and Lr is regular.

Example: The reverse of the language defined by (0 + 1)∗0 can be
defined by 0(0 + 1)∗.
April 17th 2012, Lecture 9 TMV026/DIT321 2/23

Closure under Reversal

Another way to prove this result is by constructing a ε-NFA for Lr.

Proof: Let N = (Q,Σ, δN , q0,F) be a NFA such that L = L(N).
Define E = (Q ∪ {q},Σ, δE , q, {q0}) with q /∈ Q and δE such that

r ∈ δE (s, a) iff s ∈ δN(r , a) for r , s ∈ Q
r ∈ δE (q, ε) iff r ∈ F

April 17th 2012, Lecture 9 TMV026/DIT321 3/23

Recall: Functions between Languages

(from slide 21, lecture 3)

Definition: A function f : Σ∗ → ∆∗ between 2 languages should be such
that it satisfies

f (ε) = ε
f (xy) = f (x)f (y)

Intuitively, f (a1 . . . an) = f (a1) . . . f (an).
Notice that f (a) ∈ ∆∗ if a ∈ Σ.

Definition: f is called coding iff f is injective.

Definition: f (L) = {f (x) | x ∈ L}.

April 17th 2012, Lecture 9 TMV026/DIT321 4/23

Languages are Monoids

Definition: A monoid is an algebraic structure with an associative binary
operation and an identity element.

Let Σ be an alphabet.
Then Σ∗ is a monoid if we consider the concatenation as binary operation
and ε as the identity element with respect to the binary operation.

Recall:

Concatenation is associative: (xy)z = x(yz)

xε = εx = ε

Concatenation is in general not commutative (but this is not required
in the definition of a monoid)

April 17th 2012, Lecture 9 TMV026/DIT321 5/23

Homomorphisms

Definition: A homomorphism is a structure-preserving map between 2
algebraic structures.

Note: A function h : Σ∗ → ∆∗ satisfying

h(ε) = ε
h(xy) = h(x)h(y)

can be seen as a homomorphism between the monoids (languages) Σ∗ and
∆∗.

Recall we have then that h(a1 . . . an) = h(a1) . . . h(an).

April 17th 2012, Lecture 9 TMV026/DIT321 6/23

Closure under Homomorphisms

Theorem: If L is a RL over Σ and h : Σ∗ → ∆∗ is an homomorphism on
Σ then h(L) is also regular.

Proof: We define the following function over RE:

fh(∅) = ∅ fh(ε) = ε fh(a) = h(a)
fh(R1 + R2) = fh(R1) + fh(R2)
fh(R1R2) = fh(R1)fh(R2)
fh(R∗) = (fh(R))∗

We need to prove by structural induction on R that L(fh(R)) = h(L(R)).
Now, if L = L(R) then we have that h(L) is regular since
h(L) = h(L(R)) = L(fh(R)).
(See Theorem 4.14, pages 141–142.)

April 17th 2012, Lecture 9 TMV026/DIT321 7/23

Closure under Homomorphisms

Let h : Σ∗ → ∆∗ be a homomorphism and L a RL over Σ.

By the previous theorem and the definition of RL, we know that there
exists a DFA D over Σ and a DFA F over ∆ such that

L = L(D) and h(L) = L(F)

F can be constructed from the RE for L (via an ε-NFA).

Often not obvious how to construct the DFA directly.

April 17th 2012, Lecture 9 TMV026/DIT321 8/23

Inverse Homomorphisms

Definition: If h : Σ∗ → ∆∗ is a homomorphism and L is a language over
∆, h−1(L) (read h inverse of L) is the set of strings w such that
h(w) ∈ L.
In other words, h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.

Note: h−1 does not necessarily correspond to a function!

Example: Imagine we have that h(a) = c, h(b) = c and L = {c}.
Then h−1(L) = {a, b} but h−1 itself is not a function.

April 17th 2012, Lecture 9 TMV026/DIT321 9/23

Closure under Inverse Homomorphisms

Theorem: Let h : Σ∗ → ∆∗ be a homomorphism. If L is a RL over ∆
then h−1(L) is a RL over Σ.

Proof: Let D = (Q,∆, δ, q0,F) be a DFA such that L = L(D).
We define the DFA D ′ = (Q,Σ, δ′, q0,F) over Σ such that

δ′(q, a) = δ̂(q, h(a))

By induction on |w | we prove that δ̂′(q,w) = δ̂(q, h(w))
(Recall that δ̂(q, xy) = δ̂(δ̂(q, x), y).)
Then D ′ accepts w iff D accepts h(w) (since the set of accepting states is
the same in both DFA).

Note: Since h−1 might not be a function it seems difficult to directly
define the RE that corresponds to the h inverse of L.

April 17th 2012, Lecture 9 TMV026/DIT321 10/23

Example: L′ from Slide 14 Lecture 8

Example: We know L = {bmcm | m > 0} is not regular.
Let us consider L′ = a+L ∪ (b + c)∗.

We will prove that L′ is not regular. Let us assume it is.

Then a+L = L′ ∩ (b + c)∗ must be regular.

Then, L = h(a+L) must also be regular, where h is the following
homomorphism: h(a) = ε, h(b) = b, h(c) = c .

We arrive at a contradiction, hence L′ cannot be regular.

April 17th 2012, Lecture 9 TMV026/DIT321 11/23

Decision Properties of Regular Languages

We want to be able to answer YES/NO to questions such as

Is this language empty?

Is string w in the language L?

Are these 2 languages equivalent?

In general languages are infinite so we cannot do a “manual” checking.

Instead we should work with the finite description of the languages (DFA,
NFA. ε-NFA, RE).
Which description is the most convenient depends on the property and on
the language.

April 17th 2012, Lecture 9 TMV026/DIT321 12/23

Testing Emptiness of Regular Languages

Given a FA for a language, testing whether the language is empty or not
amounts to checking if there is a path from the start state to a final state.

Let D = (Q,Σ, δ, q0,F) be a DFA.

Recall the notion of accessible states from slide 22 in lecture 4:

Definition: The set Acc = {δ̂(q0, x) | x ∈ Σ∗} is the set of accessible
states (from the state q0).

Proposition: Given D as above, then D ′ = (Q ∩ Acc,Σ, δ′, q0,F ∩ Acc),
where δ′ is the function δ restricted to the states in Q ∩ Acc, is a DFA
such that L(D) = L(D ′).

In particular, L(D) = ∅ if F ∩ Acc = ∅.
(Actually, L(D) = ∅ iff F ∩ Acc = ∅ since if δ̂(q0, x) ∈ F then
δ̂(q0, x) ∈ F ∩ Acc.)
April 17th 2012, Lecture 9 TMV026/DIT321 13/23

Testing Emptiness of Regular Languages

A recursive algorithm to test whether a state is accessible/reachable is as
follows:

Base case: The start state q0 is reachable from q0.

Recursive step: If q is reachable from q0 and there is an arc from q to p
(with any label, including ε) then p is also reachable from q0.

(This algorithm is an instance of graph-reachability.)

If the set of reachable states contains at least one final state then the RL
is NOT empty.

April 17th 2012, Lecture 9 TMV026/DIT321 14/23

Functional Representation of Testing Emptiness for FA

import List(union)

data Q = ... deriving Eq

data S = ...

final :: Q -> Bool

delta :: Q -> S -> Q

isIn :: [Q] -> Q -> Bool
isIn = flip elem

isSuperSet :: [Q] -> [Q] -> Bool
isSuperSet as bs = and (map (isIn as) bs)

April 17th 2012, Lecture 9 TMV026/DIT321 15/23

Functional Representation of Testing Emptiness for FA

The first argument in the functions below is a list with all symbols in the S.

closure :: [S] -> (Q -> S -> Q) -> [Q] -> [Q]
closure cs delta qs =

let qs’ = qs >>= (\q -> map (delta q) cs)
in if isSuperSet qs qs’ then qs

else closure cs delta (union qs qs’)

accessible :: [S] -> (Q -> S -> Q) -> Q -> [Q]
accessible cs delta q = closure cs delta [q]

notEmpty :: [S] -> (Q -> S -> Q) -> Q -> Bool
notEmpty cs delta q0 =

or (map final (accessible cs delta q0))
April 17th 2012, Lecture 9 TMV026/DIT321 16/23

Functional Representation of Testing Emptiness for FA

The closure function can be optimised by not computing the closure of the
same state twice.

closure :: [S] -> (Q -> S -> Q) -> [Q] -> [Q]
closure cs delta qs = clos [] qs

where
clos :: [Q] -> [Q] -> [Q]
clos qs1 qs2 =

if qs2 == [] then qs1
else let qs = union qs1 qs2

qs’ = qs2 >>= (\q -> map (delta q) cs)
qs’’ = filter (\q -> not (isIn qs q)) qs’

in clos qs qs’’

April 17th 2012, Lecture 9 TMV026/DIT321 17/23

Testing Emptiness of Regular Languages (Again)

Given a RE for the language we can instead perform the following test:

Base cases: ∅ denotes the empty language while ε and a (any symbol
from the alphabet) do not.

Inductive step: Let R be our RE.

If R = R1 + R2 then L(R) is empty iff both L(R1) and
L(R2) are empty;
If R = R1R2 then L(R) is empty iff either L(R1) or
L(R2) is empty;
If R = R∗1 is never empty since it always contains the
word ε.

April 17th 2012, Lecture 9 TMV026/DIT321 18/23

Functional Representation of Testing Emptiness for RE

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

isEmpty :: RExp a -> Bool
isEmpty Empty = True
isEmpty (Plus e1 e2) = isEmpty e1 && isEmpty e2
isEmpty (Concat e1 e2) = isEmpty e1 || isEmpty e2
isEmpty _ = False

April 17th 2012, Lecture 9 TMV026/DIT321 19/23

Testing Membership in Regular Languages

Given a RL L and a word w over the alphabet of L, is w ∈ L ?

When L is given by a FA we can simply run the FA with the input w and
see if the word is accepted by the FA.
We have seen algorithms that simulate the running of a FA (see slides
10–11 in lecture 4 for DFA, slides 10–12 in lecture 5 for NFA, and slides
15, 18–19 in lecture 6 for ε-NFA).

Using derivatives (see exercises 4.2.3 and 4.2.5) there is a nice algorithm
checking membership on RE.
Let L = L(R) and w = a1 . . . an.

Let a\R = DaR = {x | ax ∈ L} (in the book
dL
da

).

DwR = Dan(. . . (Da1R) . . .).
It can then be shown that w ∈ L iff ε ∈ DwR.

April 17th 2012, Lecture 9 TMV026/DIT321 20/23

Other Testing Algorithms on Regular Expressions

Tests if a RE contains ε.

hasEpsilon :: RExp a -> Bool
hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon _ = False

April 17th 2012, Lecture 9 TMV026/DIT321 21/23

Other Testing Algorithms on Regular Expressions

Tests if L(R) ⊆ {ε}.

atMostEps :: RExp a -> Bool
atMostEps Empty = True
atMostEps Epsilon = True
atMostEps (Atom _) = False
atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2
atMostEps (Concat e1 e2) = isEmpty e1 || isEmpty e2 ||

(atMostEps e1 && atMostEps e2)
atMostEps (Star e) = atMostEps e

April 17th 2012, Lecture 9 TMV026/DIT321 22/23

Other Testing Algorithms on Regular Expressions

Tests if a regular expression denotes an infinite language.

infinite :: RExp a -> Bool
infinite (Star e) = not (atMostEps e)
infinite (Plus e1 e2) = infinite e1 || infinite e2
infinite (Concat e1 e2) = (infinite e1 && notIsEmpty e2) ||

(notIsEmpty e1 && infinite e2)
where notIsEmpty e = not (isEmpty e)

infinite _ = False

April 17th 2012, Lecture 9 TMV026/DIT321 23/23

