
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 8
Ana Bove

April 16th 2012

Overview of today’s lecture:

Small recap from FA to RE

From RE to FA

Pumping Lemma for Regular Languages

Closure Properties for Regular Languages

Example: Eliminating States

Consider the automaton D

q0 q1

q2

a c

b

db

a

By eliminating states the expression is

a∗b(c + da∗b)∗

Consider the automaton D ′

q0 q1

a c

b

d

By eliminating states the expression is

(a + bc∗d)∗bc∗

April 16th 2012, Lecture 8 TMV026/DIT321 1/16

Example: Linear Equation System

The linear equations corresponding to the automaton D ′ are

E0 = aE0 + bE1 E1 = ǫ + cE1 + dE0

The resulting RE depends on the order we solve the system.

If we eliminate E1 first we get E0 = (a + bc∗d)∗bc∗.

If we eliminate E0 first we get E0 = a∗b(c + da∗b)∗.

It should then be that a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗!
(See the proof in slide 10 lecture 7.)

What RE do we obtain for the automaton D?

April 16th 2012, Lecture 8 TMV026/DIT321 2/16

From Regular Expressions to Finite Automata

Proposition: Every language defined by a RE is accepted by a FA.

Proof: Let L = L(R) for some RE R. By induction on R we construct a
ǫ-NFA E with only one final state and no arcs into the initial state or out
of the final state, and such that L = L(E).

Base cases are ∅, ǫ and a ∈ Σ. The corresponding ǫ-NFA recognising the
languages ∅, {ǫ} and {a} respectively, are:

ǫ a

April 16th 2012, Lecture 8 TMV026/DIT321 3/16

From RE to FA: Inductive Step

Given the RE R and S and FA for them, we construct the FA for R + S ,
RS and R∗ recognising the languages L(R) ∪ L(S), L(R)L(S) and L(R)∗

respectively:

ǫ

ǫ

ǫ

ǫ

R

S

ǫ
R S

ǫ ǫ

ǫ

ǫ

R

April 16th 2012, Lecture 8 TMV026/DIT321 4/16

Example: From RE to FA

Let us follow this method to construct a FA for the RE 0∗1.

ǫ 0

ǫ

ǫ

ǫ ǫ 1

Compare it with the following FA:

0

1

April 16th 2012, Lecture 8 TMV026/DIT321 5/16

How to Identify Regular Languages?

We have seen that a language is regular iff there is a DFA that accepts the
language.

Then we saw that DFA, NFA and ǫ-NFA are equivalent in the sense that
we can convert between them.
Hence FA accept all and only the regular languages (RL).

Now we have seen how to convert between FA and RE.
Thus RE also define all and only the RL.

April 16th 2012, Lecture 8 TMV026/DIT321 6/16

How to Prove that a Language is NOT Regular?

In a FA with n states, any path

q1
a1→ q2

a2→ q3
a3→ . . .

am−1→ qm
am→ qm+1

has a loop if m > n.

That is, we have i < j such that qi = qj in the path above.

This can be seen as an application of the Pigeonhole Principle, which is an
important reasoning technique in mathematics and computer science.
(See Wikipedia.)

April 16th 2012, Lecture 8 TMV026/DIT321 7/16

The Pigeonhole Principle

“If you have more pigeons than pigeonholes and each pigeon flies into
some pigeonhole, then there must be at least one hole with more than one
pigeon.”

More formally: if f : X → Y and |X | > |Y | then f cannot be injective
and there must exist at least 2 different elements with the same image,
that is, there must exist x , z ∈ X such that x 6= z and f (x) = f (z).

This principle is often used to show the existence of an object without
building this object explicitly.

Example: In a room with at least 13 people, at least 2 of them are born
the same month (maybe on different years).
We know the existence of these 2 people, maybe without being able to
know exactly who they are.

April 16th 2012, Lecture 8 TMV026/DIT321 8/16

How to Prove that a Language is Not Regular?

Example: Let us prove that L = {0m1m|m > 0} is not a RL.

Let us assume it is: then L = L(A) for some FA A with n states.

Let k > n > 0 and let w = 0k1k ∈ L.
Then there must be an accepting path q0

w→ q ∈ F .

Since k > n we know there is a loop (by the pigeonhole principle) when
reading the 0’s.
Then w = xyz with |xy | = j 6 n, y 6= ǫ and z = 0k−j1k such that

q0
x→ ql

y→ ql
z→ q ∈ F

Observe that the following path is also an accepting path

q0
x→ ql

z→ q ∈ F

However y must be of the form 0i with i > 0 hence xz = 0k−i1k /∈ L.

This contradicts the fact that A accepts L.
April 16th 2012, Lecture 8 TMV026/DIT321 9/16

The Pumping Lemma for Regular Languages

Theorem: Let L be a RL. Then, there exists a constant n—which
depends on L—such that for every string w ∈ L and |w | > n, we can
break w into 3 strings x , y and z such that w = xyz and

1 y 6= ǫ

2 |xy | 6 n

3 ∀k > 0, xykz ∈ L

April 16th 2012, Lecture 8 TMV026/DIT321 10/16

Proof of the Pumping Lemma

Assume we have a FA A that accepts the language, then L = L(A).
Let n be the number of states in A.

Then any path of length m > n has a loop.
Let us consider w = a1a2 . . . am ∈ L.

We have an accepting path and a loop such that

q0
x→ ql

y→ ql
z→ q ∈ F

with w = xyz ∈ L, y 6= ǫ, |xy | 6 n.

Then we also have

q0
x→ ql

yk

→ ql
z→ q ∈ F

for any k , that is, ∀k > 0, xykz ∈ L.

April 16th 2012, Lecture 8 TMV026/DIT321 11/16

Example: Application of the Pumping Lemma

Let us use the Pumping lemma to prove that {0m1m|m > 0} is not a RL.

We assume it is.
Let n be the constant given by the lemma and let w = 0n1n, hence
|w | > n.

By the lemma we know that w = xyz with y 6= ǫ, |xy | 6 n and
∀k > 0, xykz ∈ L.

Since y 6= ǫ and |xy | 6 n, we know that y = 0i with i > 1.

However, we have a contradiction since xykz /∈ L for k 6= 1.

Note: The Pumping lemma is connected to the fact that a FA has finite
memory! If we could build a machine with infinitely many states it would
be able to recognise the language.

April 16th 2012, Lecture 8 TMV026/DIT321 12/16

Example: Application of the Pumping Lemma

Example: Let us prove that L = {0i1j |i 6 j} is not a RL.

Let n be given by the Pumping lemma and let w = 0n1n+1 ∈ L, hence
|w | > n.

Then we know that w = xyz with y 6= ǫ, |xy | 6 n and ∀k > 0, xykz ∈ L.

Since y 6= ǫ and |xy | 6 n, we know that y = 0r with r > 1.

However, we have a contradiction since xykz /∈ L for k > 2.
(Even for k = 2 if r > 1.)

Example: What about the languages {0i1j | i > j}, {0i1j | i > j} and
{0i1j | i 6= j}? Does the Pumping lemma help?

April 16th 2012, Lecture 8 TMV026/DIT321 13/16

Pumping Lemma is not a Necessary Condition

By showing that the Pumping lemma does not apply to a certain language
L we prove that L is not regular.
However, if the Pumping lemma does apply to L, we cannot conclude
whether L is regular or not!

Example: We know L = {bmcm | m > 0} is not regular.
Let us consider L′ = a+L ∪ (b + c)∗.
L′ is not regular. If L′ would be regular, then we can prove that L is
regular (using the closure properties we will see next).
However, the Pumping lemma does apply for L′ with n = 1.

This shows the Pumping lemma is not a necessary condition for a
language to be regular.

April 16th 2012, Lecture 8 TMV026/DIT321 14/16

Closure Properties for Regular Languages

Let L and M be RL. Then L = L(R) = L(D) and M = L(S) = L(F) for
RE R and S , and DFA D and F .

We have seen that RL are closed under the following operations:

Union : L∪M = L(R + S) or L∪M = L(D ⊕ F) (slide 19, lect. 4);

Complement : L = L(D) (slide 20, lect. 4);

Intersection : L ∩M = L ∪M or L ∩M = L(D × F)
(sl. 18, lect. 4);

Difference : L −M = L ∩M;

Concatenation : LM = L(RS);

Closure (“star” operation) : L∗ = L(R∗);

Prefix : Prefix(L) See exercise 2 on DFA.
(Hint: in D, make final all states in a path from the start state to
final state)

April 16th 2012, Lecture 8 TMV026/DIT321 15/16

Closure under Prefix

Another way to prove that the language of prefixes of a RL is regular is as
follows.

Define the following function over RE:

pre(∅) = ∅
pre(ǫ) = ǫ
pre(a) = ǫ + a
pre(R1 + R2) = pre(R1) + pre(R2)
pre(R1R2) = pre(R1) + R1pre(R2)
pre(R∗) = R∗pre(R)

and prove that L(pre(R)) = Prefix(L(R)).

Then, if L = L(R) for some RE R then
Prefix(L) = Prefix(L(R)) = L(pre(R)).

April 16th 2012, Lecture 8 TMV026/DIT321 16/16

