Finite Automata and Formal Languages

TMV026/DIT321-LP4 2012

Lecture 7 Ana Bove

March 27th 2012

Overview of today's lecture:

- Regular Expressions
- From FA to RE

Regular Expressions

Regular expressions (RE) are an "algebraic" way to denote languages. Given a RE R, it defines the language $\mathcal{L}(R)$.

We will show that RE are as expressive as DFA and hence, they define all and only the *regular languages*.

RE can also be seen as a declarative way to express the strings we want to accept and serve as input language for certain systems.

Example: grep command in UNIX (K. Thompson). (**Note:** UNIX regular expressions are not exactly as the RE we will study in the course.)

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ , we can inductively define the *regular expressions* over Σ as:

Base cases: • The constants \emptyset and ϵ are RE; • If $a \in \Sigma$ then a is a RE. Inductive steps: Given the RE R and S, we define the following RE: • R + S and RS are RE; • R^* is RE.

The precedence of the operands is the following:

• The closure operator * has the highest precedence;

- Next comes concatenation;
- Finally, comes the operator +;
- We use parentheses (,) to change the precedences.

March 27th 2012, Lecture 7

TMV026/DIT321

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF (Backus-Naur Form), for $a \in \Sigma$:

 $R ::= \emptyset \mid \epsilon \mid a \mid R + R \mid RR \mid R^*$

alternatively

$$R,S ::= \emptyset \mid \epsilon \mid a \mid R + S \mid RS \mid R^*$$

Question: Can you guess their meaning?

Note: BNF is a way to declare the syntax of a language. It is very useful when describing *context-free grammars* and in particular the syntax of most programming languages.

Functional Representation of Regular Expressions data RExp a = Empty | Epsilon | Atom a | Plus (RExp a) (RExp a) | Concat (RExp a) (RExp a) | Star (RExp a) For example the expression $b + (bc)^*$ is given as Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c"))) TMV026/DIT321 Recall: Some Operations on Languages (Lecture 3) **Definition:** Given \mathcal{L} , \mathcal{L}_1 and \mathcal{L}_2 languages then we define the following languages: Union: $\mathcal{L}_1 \cup \mathcal{L}_2 = \{x \mid x \in \mathcal{L}_1 \text{ or } x \in \mathcal{L}_2\}$

Intersection: $\mathcal{L}_1 \cap \mathcal{L}_2 = \{x \mid x \in \mathcal{L}_1 \text{ and } x \in \mathcal{L}_2\}$

Concatenation: $\mathcal{L}_1\mathcal{L}_2 = \{x_1x_2 \mid x_1 \in \mathcal{L}_1, x_2 \in \mathcal{L}_2\}$

Closure: $\mathcal{L}^* = \bigcup_{n \in \mathbb{N}} \mathcal{L}^n$ where $\mathcal{L}^0 = \{\epsilon\}$, $\mathcal{L}^{n+1} = \mathcal{L}^n \mathcal{L}$.

Note: We have then that $\emptyset^* = \{\epsilon\}$ and $\mathcal{L}^* = \mathcal{L}^0 \cup \mathcal{L}^1 \cup \mathcal{L}^2 \cup \ldots = \{\epsilon\} \cup \{x_1 \ldots x_n \mid n > 0, x_i \in \mathcal{L}\}$

Notation: $\mathcal{L}^+ = \mathcal{L}^1 \cup \mathcal{L}^2 \cup \mathcal{L}^3 \cup \ldots$ and $\mathcal{L}? = \mathcal{L} \cup \{\epsilon\}.$

Language Defined by the Regular Expressions

Definition: The *language* defined by a regular expression is defined by recursion on the expression:

Base cases: $\mathcal{L}(\emptyset) = \emptyset;$ $\mathcal{L}(\epsilon) = \{\epsilon\};$ $\mathcal{L}(\epsilon) = \{\epsilon\};$

Note: $x \in \mathcal{L}(R)$ iff x is generated/accepted by R.

Notation: We write $x \in R$ or $x \in \mathcal{L}(R)$ indistinctly.

March 27th 2012, Lecture 7

TMV026/DIT321

Example of Regular Expressions

Let
$$\Sigma = \{0, 1\}$$
:
• $(01)^*$
• $0^* + 1^*$
• $(0 + 1)^*$
• $(000)^*$
• $01^* + 1$
• $((0(1^*)) + 1)$
• $(01)^* + 1$
• $(\epsilon + 1)(01)^*(\epsilon + 0)$
• $(01)^* + 1(01)^* + (01)^*0 + 1(01)^*0$

What do they mean? Are there expressions that are equivalent?

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T:

- Associativity: R + (S + T) = (R + S) + T and R(ST) = (RS)T;
- Commutativity: R + S = S + R;
- In general, $RS \neq SR$;
- Distributivity: R(S + T) = RS + RT and (S + T)R = SR + TR;
- Identity: $R + \emptyset = \emptyset + R = R$ and $R\epsilon = \epsilon R = R$;
- Annihilator: $R\emptyset = \emptyset R = \emptyset$;
- Idempotent: R + R = R;
- $\emptyset^* = \epsilon^* = \epsilon;$
- $R? = \epsilon + R;$
- $R^+ = RR^* = R^*R;$
- $R^* = (R^*)^* = R^*R^* = \epsilon + R^+$.

Note: Compare this slide with slide 19 of lecture 3.

March 27th 2012, Lecture 7

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

- Shifting rule: $R(SR)^* = (RS)^*R$
- Denesting rule: $(R^*S)^*R^* = (R+S)^*$

Note: By the shifting rule we also get $R^*(SR^*)^* = (R + S)^*$

• Variation of the denesting rule: $(R^*S)^* = \epsilon + (R+S)^*S$

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that $a^*b(c + da^*b)^* = (a + bc^*d)^*bc^*$:

 $\begin{array}{ll} a^*b(c+da^*b)^*=a^*b(c^*da^*b)^*c^* & \text{by denesting } (R=c,S=da^*b)\\ a^*b(c^*da^*b)^*c^*=(a^*bc^*d)^*a^*bc^* & \text{by shifting } (R=a^*b,S=c^*d)\\ (a^*bc^*d)^*a^*bc^*=(a+bc^*d)^*bc^* & \text{by denesting } (R=a,S=bc^*d) \end{array}$

Example: The set of all words with no substring of more than two adjacent 0's is $(1 + 01 + 001)^*(\epsilon + 0 + 00)$. Now,

 $(1+01+001)^*(\epsilon+0+00) = ((\epsilon+0)(\epsilon+0)1)^*(\epsilon+0)(\epsilon+0)$ = (\epsilon+0)(\epsilon+0)(\epsilon+0)(\epsilon+0))^* by shifting = (\epsilon+0+00)(1+10+100)^*

Then $(1+01+001)^*(\epsilon+0+00) = (\epsilon+0+00)(1+10+100)^*$

March 27th 2012, Lecture 7

TMV026/DIT321

.0/26

Equality of Regular Expressions

Remember that RE are a way to denote languages. Then, for RE R and S, R = S actually means $\mathcal{L}(R) = \mathcal{L}(S)$.

Hence we can prove the equality of RE in the same way we can prove the equality of languages.

Example: Let us prove that $R^* = R^*R^*$. Let $\mathcal{L} = \mathcal{L}(R)$.

 $\mathcal{L}^* \subseteq \mathcal{L}^* \mathcal{L}^*$ since $\epsilon \in \mathcal{L}^*$.

Conversely, if $\mathcal{L}^*\mathcal{L}^* \subseteq \mathcal{L}^*$ then $x = x_1x_2$ with $x_1 \in \mathcal{L}^*$ and $x_2 \in \mathcal{L}^*$. If $x_1 = \epsilon$ or $x_2 = \epsilon$ then it is clear that $x \in \mathcal{L}^*$. Otherwise $x_1 = u_1u_2 \dots u_n$ with $u_i \in \mathcal{L}$ and $x_2 = v_1v_2 \dots v_m$ with $v_j \in \mathcal{L}$. Then $x = x_1x_2 = u_1u_2 \dots u_nv_1v_2 \dots v_m$ is in \mathcal{L}^* .

Proving Algebraic Laws for Regular Expressions

Given the RE R and S we can prove the law R = S as follows:

Convert R and S into concrete regular expressions C and D, respectively, by replacing each variable in the RE R and S by (different) concrete symbols.

Example: $R(SR)^* = (RS)^*R$ can be converted into $a(ba)^* = (ab)^*a$.

Prove or disprove whether $\mathcal{L}(C) = \mathcal{L}(D)$. If $\mathcal{L}(C) = \mathcal{L}(D)$ then R = S is a true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the shifting law was (somehow) one of the exercises in assignment 1: prove that for all n, $a(ba)^n = (ab)^n a$. March 27th 2012, Lecture 7 TMV026/DIT321 12/26

Example: Proving the Denesting Rule

We can state $(R^*S)^*R^* = (R+S)^*$ by proving $\mathcal{L}((a^*b)^*a^*) = \mathcal{L}((a+b)^*)$:

⊆: Let $x \in (a^*b)^*a^*$, then x = vw with $v \in (a^*b)^*$ and $w \in a^*$. By induction on v. If $v = \epsilon$ we are done. Otherwise v = av' or v = bv'. Observe that in both cases $v' \in (a^*b)^*$ hence by IH $v'w \in (a+b)^*$ and so is vw.

⊇: Let $x \in (a + b)^*$. By induction on x. If $x = \epsilon$ then we are done. Otherwise x = x'a or x = x'b and $x' \in (a + b)^*$. By IH $x' \in (a^*b)^*a^*$ and then x' = vw with $v \in (a^*b)^*$ and $w \in a^*$. If $x'a = v(wa) \in (a^*b)^*a^*$ since $v \in (a^*b)^*$ and $(wa) \in a^*$. If $x'b = (v(wb))\epsilon \in (a^*b)^*a^*$ since $v(wb) \in (a^*b)^*$ and $\epsilon \in a^*$.

Regular Languages and Regular Expressions

Theorem: If \mathcal{L} is a regular language then there exists a regular expression R such that $\mathcal{L} = \mathcal{L}(R)$.

Proof: Recall that each regular language has an automata that recognises it.

We shall construct a regular expression from such automata.

The book shows 2 ways of constructing a regular expression from an automata.

- Computing $R_{ij}^{(k)}$ (section 3.2.1): too expensive, produces big and complicated regular expressions;
- Eliminating states (section 3.2.2).

We will also see how to do this by solving a *linear equation system* using Arden's Lemma.

March 27th 2012, Lecture 7

TMV026/DIT32

From FA to RE: Eliminating States in an Automaton A

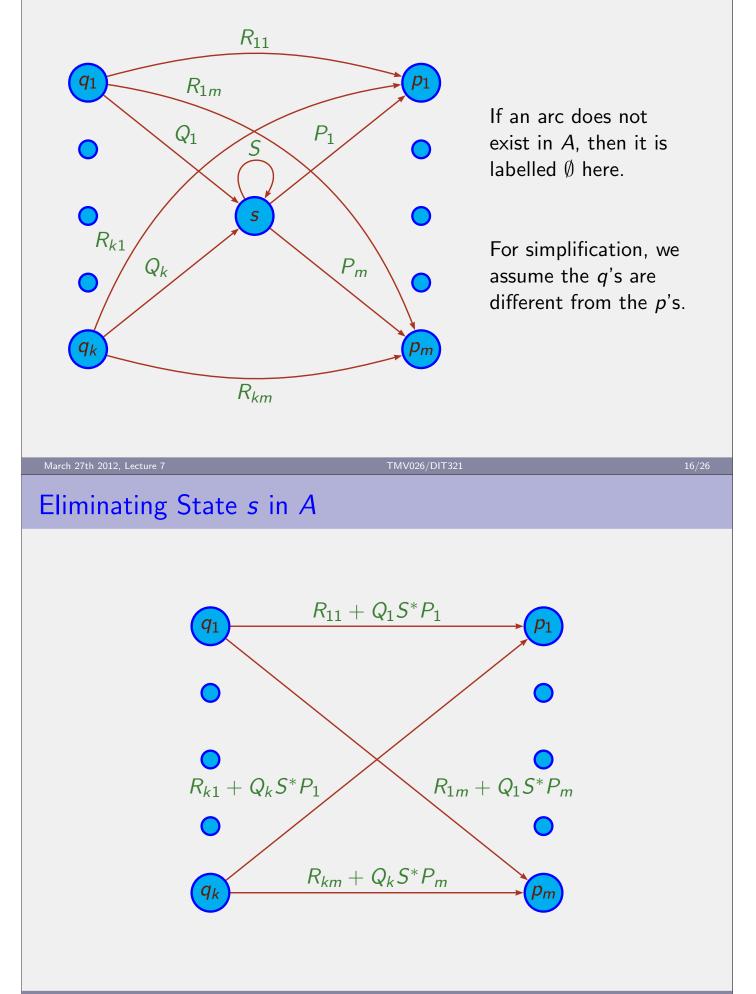
This method of constructing a RE from a FA involves eliminating states.

When we eliminate the state s, all the paths that went through s do not longer exists!

To preserve the language of the automaton we must include, on an arc that goes directly from q to p, the labels of the paths that went from q to p passing through s.

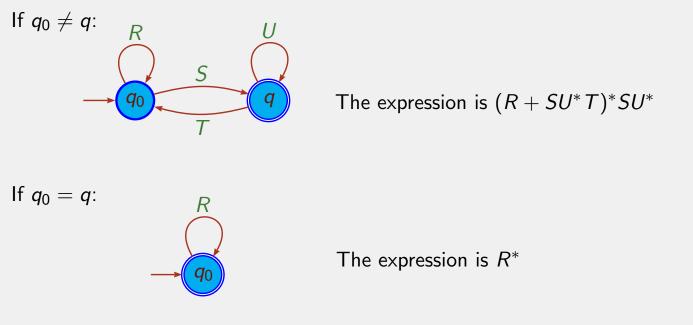
Labels now are not just symbols but (possible an infinite number of) strings: hence we will use RE as labels.

Eliminating State s in A



Eliminating States in A

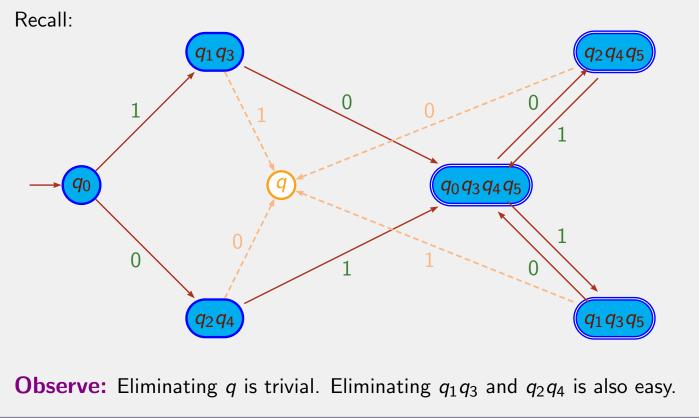
For *each accepting* state q we proceed as before until we have only q_0 and q left. For each accepting state q we have 2 cases: $q_0 \neq q$ or $q_0 = q$.



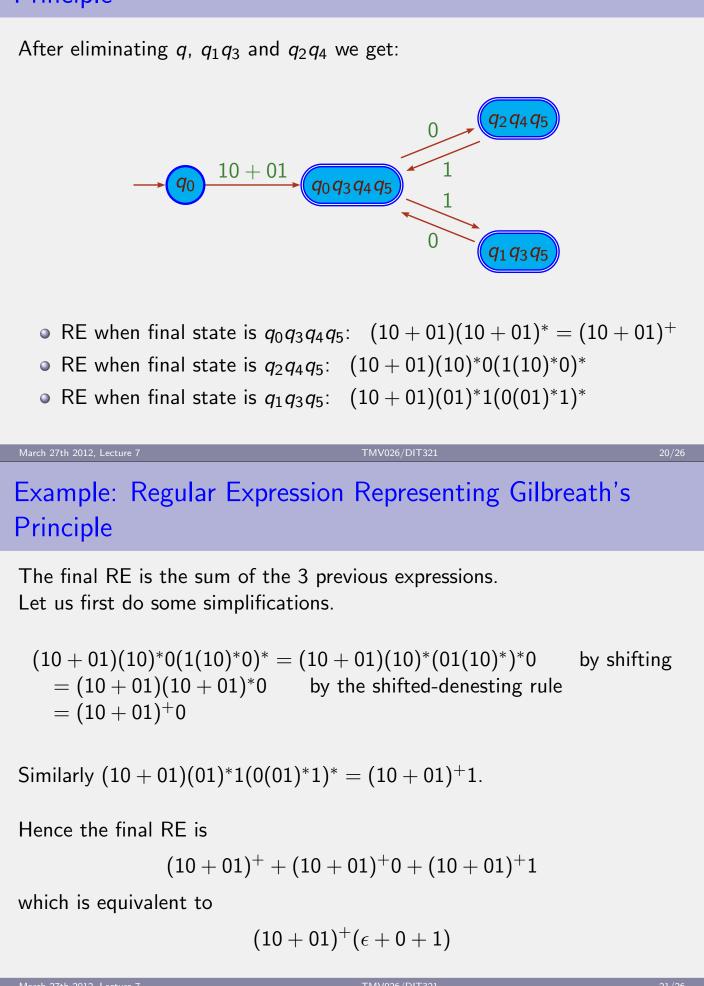
The final expression is the sum of the expressions derived for each final state.

March 27th 2012, Lecture

Example: Regular Expression Representing Gilbreath's Principle



Example: Regular Expression Representing Gilbreath's Principle



TMV026/DIT321

From FA to RE: Linear Equation System

To any automaton we associate a system of equations such that the solution will be regular expressions.

At the end we get a regular expression for the language recognised by the automaton. This works for DFA, NFA and ϵ -NFA.

To every state q_i we associate a variable E_i .

Each E_i represents the set $\{x \in \Sigma^* \mid \hat{\delta}(q_i, x) \in F\}$ (for DFA). Then E_0 represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each variable E_i .

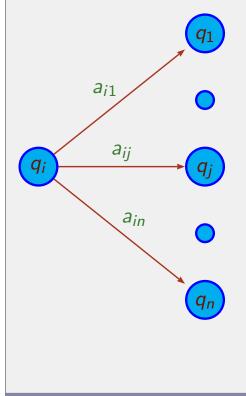
Then the solution for E_0 is the RE generating the same language that is accepted by the FA.

March 27th 2012, Lecture 7

TMV026/DIT321

Constructing the Linear Equation System

Consider a state q_i and all the transactions coming out if it:



Then we have the equation $E_i = a_{i1}E_1 + \ldots + a_{ij}E_j + \ldots + a_{in}E_n$

If E_i is final then we add ϵ $E_i = \epsilon + a_{i1}E_1 + \ldots + a_{ij}E_j + \ldots + a_{in}E_n$

If there is no arrow coming out of q_i then $E_i = \emptyset$ if q_i is not final or $E_i = \epsilon$ if q_i is final

Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is $X = R^*S$. Furthermore, if $\epsilon \notin \mathcal{L}(R)$ then this is the only solution to the equation X = RX + S.

Proof: We have that $R^* = RR^* + \epsilon$. Hence $R^*S = RR^*S + S$ and then $X = R^*S$ is a solution to X = RX + S.

One should also prove that:

- Any solution to X = RX + S contains at least R^*S ;
- If $\epsilon \notin \mathcal{L}(R)$ then R^*S is the only solution to the equation X = RX + S (that is, no solution is "bigger" than R^*S).

Note: See for example Theorem 6.1, pages 185–186 of *Theory of Finite Automata, with an introduction to formal languages* by John Carroll and Darrell Long, Prentice-Hall International Editions.

March 27th 2012, Lecture 7

TMV026/DIT321

24/26

Example: Regular Expression Representing Gilbreath's Principle

We obtain the following system of equations (see slide 19):

$E_0 = 1E_{13} + 0E_{24}$	$E_{0345} = \epsilon + 0E_{245} + 1E_{135}$
$E_{13} = 0E_{0345} + 1E_q$	$E_{245} = \epsilon + 1E_{0345}$
$E_{24} = 1E_{0345} + 0E_q$	$E_{135} = \epsilon + 0E_{0345}$
	$E_{a} = \emptyset$

This can be simplified to:

$E_0 = 1E_{13} + 0E_{24}$	$E_{0345} = \epsilon + 0E_{245} + 1E_{135}$
$E_{13} = 0E_{0345}$	$E_{245} = \epsilon + 1E_{0345}$
$E_{24} = 1E_{0345}$	$E_{135} = \epsilon + 0E_{0345}$

Example: Regular Expression Representing Gilbreath's Principle

And further to:

$$E_0 = (10 + 01)E_{0345}$$
$$E_{0345} = (10 + 01)E_{0345} + \epsilon + 0 + 1$$

Then a solution to E_{0345} is

$$(10+01)^*(\epsilon+0+1)$$

and the RE which is the solution to the problem is

 $(10+01)(10+01)^*(\epsilon+0+1)$

or

$$(10+01)^+(\epsilon+0+1)$$

March 27th 2012, Lecture 7

FMV026/DIT321

26/26