Finite Automata and Formal Languages

TMV026/DIT321-LP4 2012

Lecture 6 Ana Bove

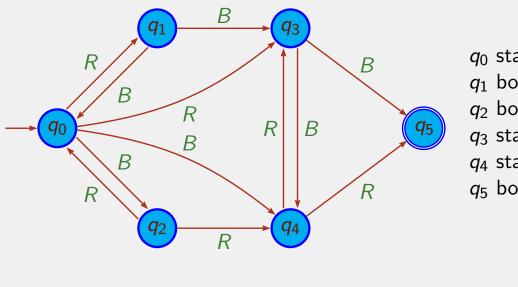
March 26th 2012

Overview of today's lecture:

- Equivalence between DFA and NFA
- NFA with
 e-Transitions

Example: NFA Representation of Gilbreath's Principle

This is a model of Gilbreath's principle when we shuffle 2 non-empty alternating decks of cards, one starting with a red card and one starting with a black one. Let $\Sigma = \{B, R\}$ represent a black or red card respectively.

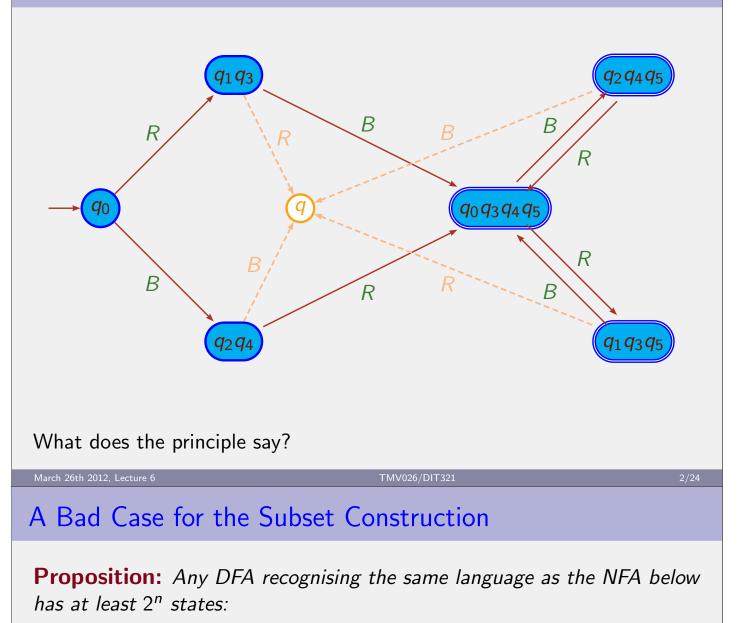


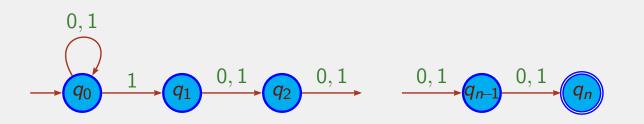
 q_0 starts with B and R q_1 both start with B q_2 both start with R q_3 starts with B and ϵ

 q_4 starts with R and ϵ q_5 both ϵ

What does the principle say? Let us build the corresponding DFA.

Example: DFA Representation of Gilbreath's Principle





This NFA recognises strings over $\{0,1\}$ such that the *n*th symbol from the end is a 1.

Proof: Let $\mathcal{L}_n = \{x \mid x \in \Sigma^*, u \in \Sigma^{n-1}\}$ and $D = (Q, \Sigma, \delta, q_0, F)$ a DFA.

We want to show that if $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

A Bad Case for the Subset Construction (Cont.)

Lemma: If $\Sigma = \{0,1\}$ and $|Q| < 2^n$ then there exists $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ such that $\hat{\delta}(q_0, x0u) = \hat{\delta}(q_0, y1v)$.

Proof: Let us define a map $\Sigma^n \to Q$ such that $z \mapsto \hat{\delta}(q_0, z)$. This map cannot be *injective* because $|Q| < 2^n = |\Sigma^n|$. Hence, we have $a_1 \dots a_n \neq b_1 \dots b_n$ such that

$$\hat{\delta}(q_0, a_1 \dots a_n) = \hat{\delta}(q_0, b_1 \dots b_n)$$

Let us assume that $a_i = 0$ and $b_i = 1$. Let $x = a_1 \dots a_{i-1}$, $y = b_1 \dots b_{i-1}$ and let $u = a_{i+1} \dots a_n 0^{i-1}$ and $v = b_{i+1} \dots b_n 0^{i-1}$. Recall that for a DFA, $\hat{\delta}(q, zw) = \hat{\delta}(\hat{\delta}(q, z), w)$ (slide 7, lecture 4) and hence:

$$\hat{\delta}(q_0, x 0 u) = \hat{\delta}(q_0, a_1 \dots a_n 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, a_1 \dots a_n), 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, b_1 \dots b_n), 0^{i-1}) = \hat{\delta}(q_0, b_1 \dots b_n 0^{i-1}) = \hat{\delta}(q_0, y 1 v)$$

March 26th 2012, Lecture 6

TMV026/DIT321

A Bad Case for the Subset Construction (Cont.)

Lemma: If $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

Proof: Assume $\mathcal{L}(D) = \mathcal{L}_n$.

Let $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ as in previous lemma.

Then we must have that $y1v \in \mathcal{L}(D)$ but $x0u \notin \mathcal{L}(D)$, That is, $\hat{\delta}(q_0, y1v) \in F$ but $\hat{\delta}(q_0, x0u) \notin F$.

However, this contradicts the previous lemma that says that $\hat{\delta}(q_0, x 0 u) = \hat{\delta}(q_0, y 1 v)$.

Product Construction for NFA

Definition: Given 2 NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ over the same alphabet Σ , we define the product $N_1 \times N_2 = (Q, \Sigma, \delta, q_0, F)$ as follows:

Q = Q₁ × Q₂;
δ((p₁, p₂), a) = δ₁(p₁, a) × δ₂(p₂, a);
q₀ = (q₁, q₂);
F = F₁ × F₂.

Lemma: $(t_1, t_2) \in \hat{\delta}((p_1, p_2), x)$ iff $t_1 \in \hat{\delta}_1(p_1, x)$ and $t_2 \in \hat{\delta}_2(p_2, x)$

Proof: By induction on *x*.

Proposition: $\mathcal{L}(N_1 \times N_2) = \mathcal{L}(N_1) \cap \mathcal{L}(N_2).$

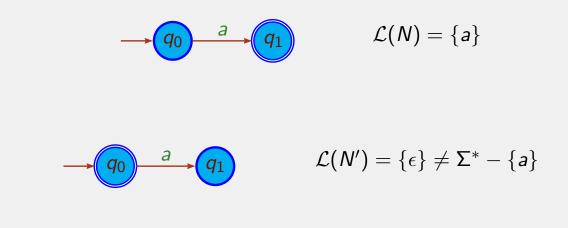
March 26th 2012, Lecture 6

TMV026/DIT321

Complement for NFA

OBS: Given NFA $N = (Q, \Sigma, \delta, q, F)$ and $N' = (Q, \Sigma, \delta, q, Q - F)$ we do *not* have in general that $\mathcal{L}(N') = \Sigma^* - \mathcal{L}(N)$.

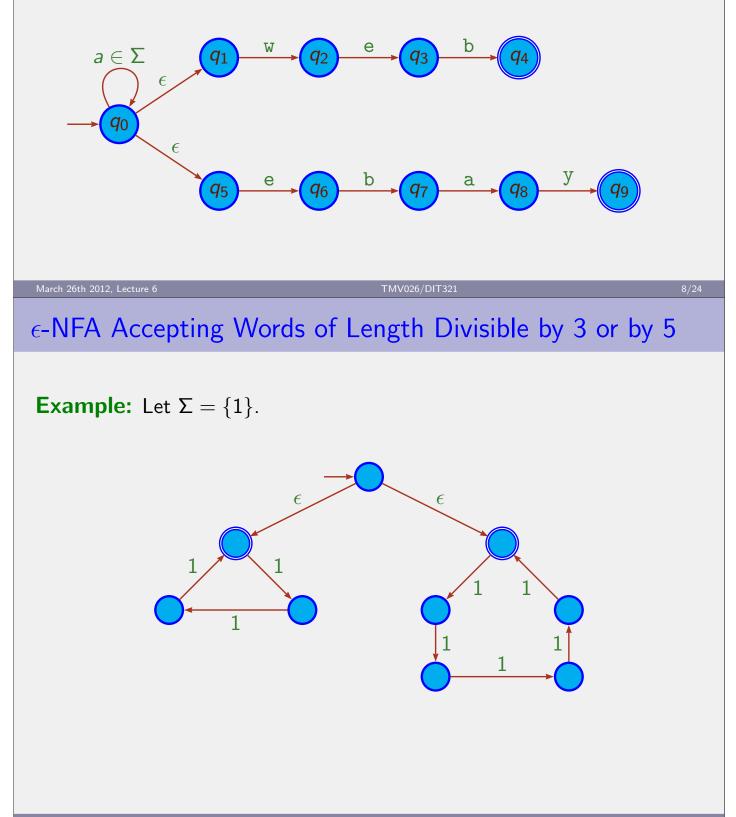
Example: Let $\Sigma = \{a\}$ and N and N' as follows:



NFA with ϵ -Transitions

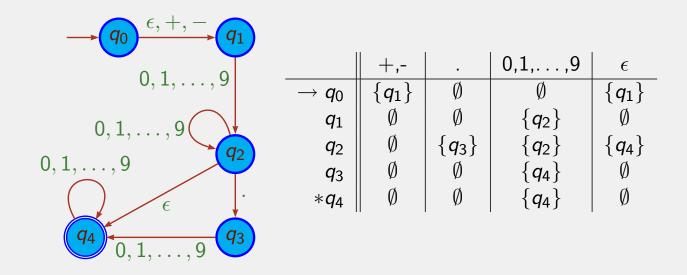
Another useful extension of automata that does not add more power is the possibility to allow ϵ -transitions, that is, transitions from one state to another *without* reading any input symbol.

Example: The following ϵ -NFA searches for the keyword web and ebay:



$\epsilon\text{-NFA}$ Accepting Decimal Numbers

Example: A NFA accepting number with an optional +/- symbol and an optional decimal part can be the following:



The uses of ϵ -transitions represent the *optional* symbol +/- and the *optional* decimal part.

March 26th 2012, Lecture 6

TMV026/DIT321

NFA with ϵ -Transitions

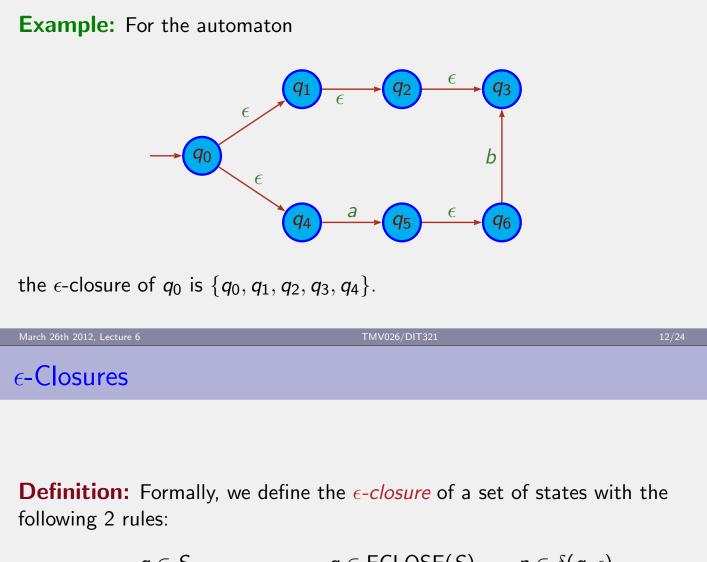
Definition: A *NFA with* ϵ *-transitions* (ϵ -NFA) is a 5-tuple ($Q, \Sigma, \delta, q_0, F$) consisting of:

- A finite set Q of *states*;
- **Q** A finite set Σ of *symbols* (alphabet);
- A transition function δ : Q × (Σ ∪ {ε}) → Pow(Q) ("partial" function that takes as argument a state and a symbol or the ε-transition, and returns a set of states);
- A start state $q_0 \in Q$;
- A set $F \subseteq Q$ of *final* or *accepting* states.

ϵ -Closures

Informally, the ϵ -closure of a state q is the set of states we can reach by only following paths labelled with ϵ .

We recursively follow all transitions out of a state q that are labelled ϵ .



$$\frac{q \in S}{q \in \mathsf{ECLOSE}(S)} \qquad \qquad \frac{q \in \mathsf{ECLOSE}(S) \qquad p \in \delta(q, \epsilon)}{p \in \mathsf{ECLOSE}(S)}$$

Definition: We say that S is ϵ -closed iff S = ECLOSE(S).

ϵ -Closures: Remarks

• The ϵ -closure of a single state q can be computed as ECLOSE($\{q\}$).

- S is ϵ -closed iff $q \in S$ and $p \in \delta(q, \epsilon)$ implies $p \in S$.
- Intuitively, p ∈ ECLOSE(S) iff there exists q ∈ S and a sequence of *ϵ*-transitions such that

 We can prove that ECLOSE(S) is the smallest subset of Q containing S which is ε-closed.

```
March 26th 2012, Lecture 6
```

Functional Representation of ϵ -Closures

Extending the Transition Function to Strings

Definition: Given an ϵ -NFA $E = (Q, \Sigma, \delta, q_0, F)$ we define

$$\begin{split} \hat{\delta} &: Q \times \Sigma^* \to [Q] \\ \hat{\delta}(q, \epsilon) &= \mathsf{ECLOSE}(\{q\}) \\ \hat{\delta}(q, ax) &= \bigcup_{p \in \Delta(\mathsf{ECLOSE}(\{q\}), a)} \hat{\delta}(p, x) \\ & \text{where } \Delta(S, a) = \cup_{p \in S} \delta(p, a) \end{split}$$

Remark: By definition we have that $\hat{\delta}(q, a) = \text{ECLOSE}(\Delta(\text{ECLOSE}(\{q\}), a)).$

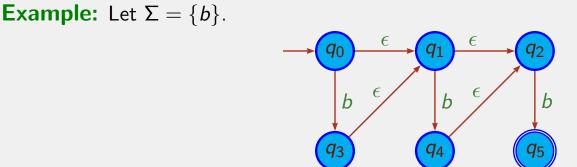
Remark: We can prove by induction on x that all sets $\hat{\delta}(q, x)$ are ϵ -closed.

This result uses that the union of ϵ -closed sets is also a ϵ -closed set.

March 26th 2012, Lecture 6

Language Accepted by a ϵ -NFA

Definition: The *language* accepted by the ϵ -NFA $(Q, \Sigma, \delta, q_0, F)$ is the set $\mathcal{L} = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$



The automaton accepts the language $\{b, bb, bbb\}$.

Note: Yet again, we could write a program that simulates a ϵ -NFA and let the program tell us whether a certain string is accepted or not.

Functional Representation of an ϵ -NFA

Let us implement the ϵ -NFA that recognises numbers (slide 10).

```
data Q = Q0 | Q1 | Q2 | Q3 | Q4 deriving (Eq,Show)
final :: Q -> Bool
final Q4 = True
final _ = False
e_jump :: Q -> [Q]
e_jump QO = [Q1]
e_jump Q2 = [Q4]
e_jump _ = []
isSub :: [Q] -> [Q] -> Bool
closure :: [Q] \rightarrow [Q]
Functional Representation of an \epsilon-NFA (cont.)
delta :: Char \rightarrow Q \rightarrow [Q]
delta a QO | elem a "+-" = [Q1]
delta a Q1 | elem a "0123456789" = [Q2]
delta a Q2 | elem a "0123456789" = [Q2]
delta '.' Q2 = [Q3]
```

```
delta a Q3 | elem a "0123456789" = [Q4]
delta a Q4 | elem a "0123456789" = [Q4]
delta _ _ = []
```

```
run :: String -> Q -> [Q]
run [] q = closure [q]
run (a:xs) q = closure [q] >>= delta a >>= run xs
```

```
accepts :: String -> Bool
accepts xs = or (map final (run xs Q0))
```

Eliminating ϵ -Transitions

Definition: Given an ϵ -NFA $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$ we define a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ as follows:

•
$$Q_D = \{ \mathsf{ECLOSE}(S) \mid S \in \mathcal{P}ow(Q_E) \}$$

- $\delta_D(S, a) = \mathsf{ECLOSE}(\Delta(S, a))$ with $\Delta(S, a) = \cup_{p \in S} \delta(p, a)$
- $q_D = \text{ECLOSE}(\{q_E\})$

•
$$F_D = \{ S \in Q_D \mid S \cap F_E \neq \emptyset \}$$

Note: This construction is similar to the subset construction but now we need to ϵ -close after each step.

March 26th 2012, Lecture 6

TMV026/DIT321

Eliminating ϵ -Transitions

Let *E* be an ϵ -NFA and *D* the corresponding DFA.

Lemma: $\forall x \in \Sigma^*$. $\hat{\delta}_E(q_E, x) = \hat{\delta}_D(q_D, x)$.

Proof: By induction on *x*.

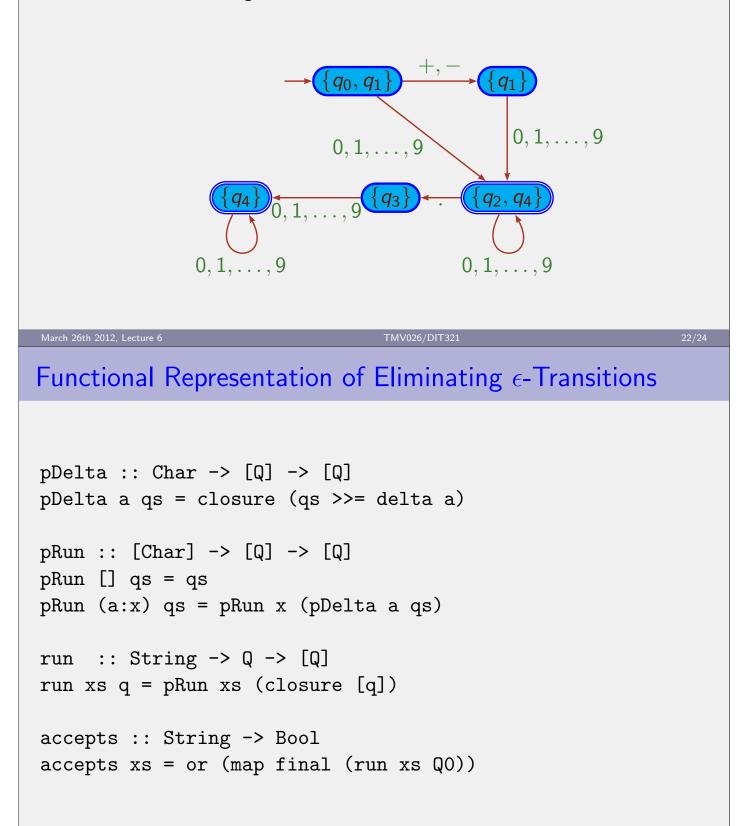
Proposition: $\mathcal{L}(E) = \mathcal{L}(D)$.

Proof: $x \in \mathcal{L}(E)$ iff $\hat{\delta}_E(q_E, x) \cap F_E \neq \emptyset$ iff $\hat{\delta}_E(q_E, x) \in F_D$ iff (by previous lemma) $\hat{\delta}_D(q_D, x) \in F_D$ iff $x \in \mathcal{L}(D)$.

Example: Eliminating *c*-Transitions

Let us eliminate the ϵ -transitions in ϵ -NFA that recognises numbers in slide 10.

We obtain the following DFA:



Finite Automata and Regular Languages

We have shown that DFA, NFA and $\epsilon\text{-NFA}$ are equivalent in the sense that we can transform one to the other.

Hence, a language is *regular* iff there exists a finite automaton (DFA, NFA or ϵ -NFA) that accepts the language.

March 26th 2012, Lecture 6

TMV026/DIT321

24/24