Finite Automata and Formal Languages

TMV026/DIT321- LP4 2012

Lecture 6
Ana Bove

March 26th 2012

Overview of today’s lecture:
o Equivalence between DFA and NFA
o NFA with e-Transitions

Example: NFA Representation of Gilbreath's Principle

This is a model of Gilbreath's principle when we shuffle 2 non-empty
alternating decks of cards, one starting with a red card and one starting

with a black one. Let ¥ = {B, R} represent a black or red card
respectively.

qo starts with B and R
g1 both start with B
g> both start with R
g3 starts with B and ¢
qs starts with R and €
gs both ¢

What does the principle say? Let us build the corresponding DFA.

March 26th 2012, Lecture 6 TMV026/DIT321 1/24

Example: DFA Representation of Gilbreath's Principle

What does the principle say?

March 26th 2012, Lecture 6 TMV026/DIT321 2/24

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below
has at least 2" states:

0,1
g 1 . 0,1 ‘0,1‘ 0,1" 0,1‘©

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let £, = {xlu | x € X*,uc X"} and D= (Q,%,6,qo, F) a
DFA.
We want to show that if |Q| < 2" then L(D) # L,.

March 26th 2012, Lecture 6 TMV026/DIT321 3/24

A Bad Case for the Subset Construction (Cont.)

Lemma: If¥X ={0,1} and |Q| < 2" then there exists x,y € ¥* and
u,v € X"t such that 0(qo, x0u) = 0(qo, y1v).

Proof: Let us define a map ¥ — Q such that z — d(qo, 2).
This map cannot be injective because |Q| < 2" = |X"|.

Hence, we have a;...a, # by ... b, such that

3((]0, at ... an) = 3(q0, b1 6 5 0 bn)
Let us assume that a; = 0 and b; = 1.

Let x=1a1...a;_1, y=b1...bj_1 and let
U= ajj+1... a,,O’_l and v=1>bj;1... bnO’_l.

Recall that for a DFA, §(g,zw) = 6(8(q, z), w) (slide 7, lecture 4) and
hence:

8(q07 XOU) — 8(q07 ar ... anoi_l) = 8(8((70, at ... an), Oi_l) =
S(S(qm bl e bn), Oi_l) = S(qo, b1 R bnOi_l) — g(qo,y]_v)

March 26th 2012, Lecture 6 TMV026/DIT321

A Bad Case for the Subset Construction (Cont.)

Lemma: If|Q| < 2" then L(D) # L.

Proof: Assume L(D) = L,.
Let x,y € ¥* and u,v € ¥"! as in previous lemma.

Then we must have that ylv € £(D) but x0u ¢ L(D),
That is, 6(qo, y1v) € F but d(qo, x0u) ¢ F.

However, this contradicts the previous lemma that says that
5(q0,XOu) = 5(qo,y1v).

March 26th 2012, Lecture 6 TMV026/DIT321

4/24

Product Construction for NFA

Definition: Given 2 NFA Ny = (Qq, %, 01, g1, F1) and
No = (@2, X, 62, 2, F2) over the same alphabet ¥, we define the product
/V1 X /V2 = (Q,Z,(S, qo, F) as follows:

0 Q=01 xQ;

o 0((p1, p2),a) = d1(p1,a) x d2(p2; a);
° qo = (91, q2);

o F= F1 X F2.

Lemma: (tl, t2) € 3((p1,p2),X) ifft; € Sl(pl,x) and tp € 82(p2,X)

Proof: By induction on x.

Proposition: L£(Ny x Ny) = L(Ny) N L(N>).
March 26th 2012, Lecture 6 TMV026/DIT321 6/24

Complement for NFA

OBS: Given NFA N = (Q,X,0,q,F) and N' = (Q,%,0,q9,Q — F) we do
not have in general that L(N') = £* — L(N).

Example: Let ¥ = {a} and N and N’ as follows:

@ @

L(N) = {a}

% L(N') = {e} £ * — {a}

March 26th 2012, Lecture 6 TMV026/DIT321

Another useful extension of automata that does not add more power is the

possibility to allow e-transitions, that is, transitions from one state to
another without reading any input symbol.

Example: The following e-NFA searches for the keyword web and ebay:

March 26th 2012, Lecture 6 TMV026/DIT321

Example: Let © = {1}.

March 26th 2012, Lecture 6 TMV026/DIT321 9/24

e-NFA Accepting Decimal Numbers

Example: A NFA accepting number with an optional + /- symbol and an
optional decimal part can be the following:

+,- . 0,1,..,9 €
—qo || {qi} | 0 0 {a1}
g1 0 0 {92} 0
2| 0 |{g}| {a} | {94}
as 0 0 {CI4} 0
€ *q4 0) {qa} 0

0,1,...,9‘

The uses of e-transitions represent the optional symbol + /- and the
optional decimal part.

March 26th 2012, Lecture 6 TMV026,/DIT321 10/24

NFA with e-Transitions

Definition: A NFA with e-transitions (e-NFA) is a 5-tuple (Q, X, d, qo, F)
consisting of:

Q A finite set Q of states;
Q A finite set L of symbols (alphabet);

Q A transition function § : Q X (X U {e}) — Pow(Q)
(“partial” function that takes as argument a state and a symbol or
the e-transition, and returns a set of states);

Q A start state qp € Q;
Q Aset F C Q of final or accepting states.

March 26th 2012, Lecture 6 TMV026/DIT321 11/24

Informally, the e-closure of a state q is the set of states we can reach by
only following paths labelled with e.
We recursively follow all transitions out of a state g that are labelled e.

Example: For the automaton

the e-closure of qo is {qo, g1, 92, 93, qa }.

March 26th 2012, Lecture 6 TMV026/DIT321

Definition: Formally, we define the e-closure of a set of states with the
following 2 rules:

ge s g € ECLOSE(S) p € d(q,¢)
g € ECLOSE(S) p € ECLOSE(S)

Definition: We say that S is e-closed iff S = ECLOSE(S).

March 26th 2012, Lecture 6 TMV026/DIT321 13/24

e-Closures: Remarks

@ The e-closure of a single state g can be computed as ECLOSE({q}).
o ECLOSE(0) = 0.
o Sis e-closed iff g € S and p € 6(q, €) implies p € S.

o Intuitively, p € ECLOSE(S) iff there exists g € S and a sequence of
e-transitions such that

@@ @ e

@ We can prove that ECLOSE(S) is the smallest subset of @ containing
S which is e-closed.

March 26th 2012, Lecture 6 TMV026,/DIT321 14/24

Functional Representation of e-Closures

import List(union)

e_jump :: Q@ —> [Q]
e_jump Q0 = [Q1,Q4]
e_jump Q1 = [Q2]
e_jump Q2 = [Q3]
e_jump Q5 = [Q6]
e_jump _ = []

isSub :: [Q] -> [Q] -> Bool
isSub ps gs = and (map (\x -> elem x gs) ps)

closure :: [Q] —> [Q]
closure gs = let gs’ = gs >>= e_jump
in if isSub gs’ gs then gs
else closure (union gs gs’)

March 26th 2012, Lecture 6 TMV026/DIT321

Extending the Transition Function to Strings

Definition: Given an e-NFA E = (Q, %, 6, qo, F) we define

§:QxX*— [Q]
6(q,€) = ECLOSE({q})

6(q, ax) = UpeA(ECLOSE({q}),a) o(p, x)
where A(S, a) = Upesé(p, a)

Bemark: By definition we have that
0(qg,a) = ECLOSE(A(ECLOSE({q}), a)).

Remark: We can prove by induction on x that all sets S(q,x) are
e-closed.
This result uses that the union of e-closed sets is also a e-closed set.

March 26th 2012, Lecture 6 TMV026,/DIT321 16/24

Language Accepted by a e-NFA

Definition: The /anguage accepted by the e-NFA (Q, %, 4, qo, F) is the
set L={x€X*]|d(qo,x)NF #0}.

Example: Let © = {b}.

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a e-NFA and
let the program tell us whether a certain string is accepted or not.

March 26th 2012, Lecture 6 TMV026/DIT321 17/24

Functional Representation of an e-NFA

Let us implement the e-NFA that recognises numbers (slide 10).
data Q = Q0 | Q1 | Q2 | Q3 | Q4 deriving (Eq,Show)

final :: Q -> Bool
final Q4 = True
final = False

e_jump :: Q@ —> [Q]
e_jump QO = [Q1]
e_jump Q2 = [Q4]
e_jump _ = []

isSub :: [Q] -> [Q] -> Bool

closure :: [Q] —> [Q]
March 26th 2012, Lecture 6 TMV026,/DIT321 18/24

Functional Representation of an e-NFA (cont.)

delta :: Char -> Q —> [Q]

delta a Q0 | elem a "+-" = [Q1]

delta a Q1 | elem a "0123456789" = [Q2]
delta a Q2 | elem a "0123456789" = [Q2]
delta ’.’ Q2 = [Q3]

delta a Q3 | elem a "0123456789" = [Q4]
delta a Q4 | elem a "0123456789" = [Q4]
delta _ _ = []

run :: String -> Q -> [Q]
run [] q = closure [q]
run (a:xs) q = closure [q] >>= delta a >>= run xs

accepts :: String -> Bool
accepts xs = or (map final (run xs Q0))

March 26th 2012, Lecture 6 TMV026/DIT321

Eliminating e-Transitions

Definition: Given an e-NFA E = (Qg, %, dg, g, FE) we define a DFA
D = (QD, Z, (50, apo, FD) as follows:

o Qp = {ECLOSE(S) | S € Pow(QE)}

© 0p(S,a) = ECLOSE(A(S, a)) with A(S, a) = Upesd(p, a)
© gp = ECLOSE({qE})

o Fp={Se€Qp|SNFe#0}

Note: This construction is similar to the subset construction but now we

need to e-close after each step.

March 26th 2012, Lecture 6 TMV026,/DIT321 20/24

Eliminating e-Transitions

Let E be an e-NFA and D the corresponding DFA.

Lemma: Vx € ¥*. §£(qe, x) = dp(qp, x).

Proof: By induction on x.

Proposition: £(E) = L(D).

Proof: x € L(E) iff 0g(qe, x) N Fe # 0 iff e(qe, x) € Fp iff (by previous
lemma) d6p(qgp, x) € Fp iff x € L(D).

March 26th 2012, Lecture 6 TMV026/DIT321 21/24

Example: Eliminating e-Transitions

Let us eliminate the e-transitions in e-NFA that recognises numbers in slide
10.

We obtain the following DFA:

March 26th 2012, Lecture 6 TMV026/DIT321 22/24

Functional Representation of Eliminating e-Transitions

pDelta :: Char -> [Q] -> [Q]
pDelta a gs = closure (gs >>= delta a)

pRun :: [Char] -> [Q] -> [Q]
pRun [] gs = gs
pRun (a:x) gs = pRun x (pDelta a gs)

run :: String -> Q -> [Q]
run xs q = pRun xs (closure [q])

accepts :: String -> Bool
accepts xs = or (map final (run xs Q0))

March 26th 2012, Lecture 6 TMV026/DIT321 23/24

We have shown that DFA, NFA and e-NFA are equivalent in the sense that
we can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA
or e-NFA) that accepts the language.

March 26th 2012, Lecture 6 TMV026/DIT321

