
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 6
Ana Bove

March 26th 2012

Overview of today’s lecture:

Equivalence between DFA and NFA

NFA with ǫ-Transitions

Example: NFA Representation of Gilbreath’s Principle

This is a model of Gilbreath’s principle when we shuffle 2 non-empty
alternating decks of cards, one starting with a red card and one starting
with a black one. Let Σ = {B, R} represent a black or red card
respectively.

q0

q1

q2

q3

q4

q5

R

B

B

R

BR
R

B

B

R

B

R

q0 starts with B and R
q1 both start with B
q2 both start with R
q3 starts with B and ǫ
q4 starts with R and ǫ
q5 both ǫ

What does the principle say? Let us build the corresponding DFA.
March 26th 2012, Lecture 6 TMV026/DIT321 1/24

Example: DFA Representation of Gilbreath’s Principle

q0

q1q3

q2q4

q2q4q5

q1q3q5

q0q3q4q5q

R

B

B

R

B

R

B

R

R

B

B

R

What does the principle say?

March 26th 2012, Lecture 6 TMV026/DIT321 2/24

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below
has at least 2n states:

q0 q1 q2 qn−1 qn

0, 1

1 0, 1 0, 1 0, 1 0, 1

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let Ln = {x1u | x ∈ Σ∗, u ∈ Σn−1} and D = (Q, Σ, δ, q0, F) a
DFA.
We want to show that if |Q| < 2n then L(D) 6= Ln.

March 26th 2012, Lecture 6 TMV026/DIT321 3/24

A Bad Case for the Subset Construction (Cont.)

Lemma: If Σ = {0, 1} and |Q| < 2n then there exists x , y ∈ Σ∗ and
u, v ∈ Σn−1 such that δ̂(q0, x0u) = δ̂(q0, y1v).

Proof: Let us define a map Σn → Q such that z 7→ δ̂(q0, z).

This map cannot be injective because |Q| < 2n = |Σn|.
Hence, we have a1 . . . an 6= b1 . . . bn such that

δ̂(q0, a1 . . . an) = δ̂(q0, b1 . . . bn)

Let us assume that ai = 0 and bi = 1.

Let x = a1 . . . ai−1, y = b1 . . . bi−1 and let
u = ai+1 . . . an0

i−1 and v = bi+1 . . . bn0
i−1.

Recall that for a DFA, δ̂(q, zw) = δ̂(δ̂(q, z), w) (slide 7, lecture 4) and
hence:

δ̂(q0, x0u) = δ̂(q0, a1 . . . an0
i−1) = δ̂(δ̂(q0, a1 . . . an), 0

i−1) =

δ̂(δ̂(q0, b1 . . . bn), 0
i−1) = δ̂(q0, b1 . . . bn0

i−1) = δ̂(q0, y1v)

March 26th 2012, Lecture 6 TMV026/DIT321 4/24

A Bad Case for the Subset Construction (Cont.)

Lemma: If |Q| < 2n then L(D) 6= Ln.

Proof: Assume L(D) = Ln.

Let x , y ∈ Σ∗ and u, v ∈ Σn−1 as in previous lemma.

Then we must have that y1v ∈ L(D) but x0u /∈ L(D),
That is, δ̂(q0, y1v) ∈ F but δ̂(q0, x0u) /∈ F .

However, this contradicts the previous lemma that says that
δ̂(q0, x0u) = δ̂(q0, y1v).

March 26th 2012, Lecture 6 TMV026/DIT321 5/24

Product Construction for NFA

Definition: Given 2 NFA N1 = (Q1, Σ, δ1, q1, F1) and
N2 = (Q2, Σ, δ2, q2, F2) over the same alphabet Σ, we define the product
N1 × N2 = (Q, Σ, δ, q0, F) as follows:

Q = Q1 × Q2 ;

δ((p1, p2), a) = δ1(p1, a)× δ2(p2, a);

q0 = (q1, q2);

F = F1 × F2.

Lemma: (t1, t2) ∈ δ̂((p1, p2), x) iff t1 ∈ δ̂1(p1, x) and t2 ∈ δ̂2(p2, x)

Proof: By induction on x .

Proposition: L(N1 × N2) = L(N1) ∩ L(N2).

March 26th 2012, Lecture 6 TMV026/DIT321 6/24

Complement for NFA

OBS: Given NFA N = (Q, Σ, δ, q, F) and N ′ = (Q, Σ, δ, q, Q − F) we do
not have in general that L(N ′) = Σ∗ − L(N).

Example: Let Σ = {a} and N and N ′ as follows:

q0 q1
a L(N) = {a}

q0 q1
a L(N ′) = {ǫ} 6= Σ∗ − {a}

March 26th 2012, Lecture 6 TMV026/DIT321 7/24

NFA with ǫ-Transitions

Another useful extension of automata that does not add more power is the
possibility to allow ǫ-transitions, that is, transitions from one state to
another without reading any input symbol.

Example: The following ǫ-NFA searches for the keyword web and ebay:

q0

q1 q2 q3 q4

q5 q6 q7 q8 q9

a ∈ Σ
ǫ

w e b

ǫ

e b a y

March 26th 2012, Lecture 6 TMV026/DIT321 8/24

ǫ-NFA Accepting Words of Length Divisible by 3 or by 5

Example: Let Σ = {1}.

ǫ ǫ

1 1

1

1 1

1
1

1

March 26th 2012, Lecture 6 TMV026/DIT321 9/24

ǫ-NFA Accepting Decimal Numbers

Example: A NFA accepting number with an optional +/- symbol and an
optional decimal part can be the following:

q0 q1

q2

q3q4

ǫ, +,−

0, 1, . . . , 9

.

0, 1, . . . , 9

0, 1, . . . , 9

0, 1, . . . , 9

ǫ

+,- . 0,1,. . . ,9 ǫ

→ q0 {q1} ∅ ∅ {q1}
q1 ∅ ∅ {q2} ∅
q2 ∅ {q3} {q2} {q4}
q3 ∅ ∅ {q4} ∅
∗q4 ∅ ∅ {q4} ∅

The uses of ǫ-transitions represent the optional symbol +/- and the
optional decimal part.

March 26th 2012, Lecture 6 TMV026/DIT321 10/24

NFA with ǫ-Transitions

Definition: A NFA with ǫ-transitions (ǫ-NFA) is a 5-tuple (Q, Σ, δ, q0, F)
consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A transition function δ : Q × (Σ ∪ {ǫ}) → Pow(Q)
(“partial” function that takes as argument a state and a symbol or
the ǫ-transition, and returns a set of states);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

March 26th 2012, Lecture 6 TMV026/DIT321 11/24

ǫ-Closures

Informally, the ǫ-closure of a state q is the set of states we can reach by
only following paths labelled with ǫ.
We recursively follow all transitions out of a state q that are labelled ǫ.

Example: For the automaton

q0

q1 q2 q3

q4 q5 q6

ǫ

ǫ

ǫ
ǫ

a ǫ

b

the ǫ-closure of q0 is {q0, q1, q2, q3, q4}.

March 26th 2012, Lecture 6 TMV026/DIT321 12/24

ǫ-Closures

Definition: Formally, we define the ǫ-closure of a set of states with the
following 2 rules:

q ∈ S

q ∈ ECLOSE(S)

q ∈ ECLOSE(S) p ∈ δ(q, ǫ)

p ∈ ECLOSE(S)

Definition: We say that S is ǫ-closed iff S = ECLOSE(S).

March 26th 2012, Lecture 6 TMV026/DIT321 13/24

ǫ-Closures: Remarks

The ǫ-closure of a single state q can be computed as ECLOSE({q}).
ECLOSE(∅) = ∅.
S is ǫ-closed iff q ∈ S and p ∈ δ(q, ǫ) implies p ∈ S .

Intuitively, p ∈ ECLOSE(S) iff there exists q ∈ S and a sequence of
ǫ-transitions such that

q q1 qn pǫ ǫ ǫ ǫ

We can prove that ECLOSE(S) is the smallest subset of Q containing
S which is ǫ-closed.

March 26th 2012, Lecture 6 TMV026/DIT321 14/24

Functional Representation of ǫ-Closures

import List(union)

e_jump :: Q -> [Q]
e_jump Q0 = [Q1,Q4]
e_jump Q1 = [Q2]
e_jump Q2 = [Q3]
e_jump Q5 = [Q6]
e_jump _ = []

isSub :: [Q] -> [Q] -> Bool
isSub ps qs = and (map (\x -> elem x qs) ps)

closure :: [Q] -> [Q]
closure qs = let qs’ = qs >>= e_jump

in if isSub qs’ qs then qs
else closure (union qs qs’)

March 26th 2012, Lecture 6 TMV026/DIT321 15/24

Extending the Transition Function to Strings

Definition: Given an ǫ-NFA E = (Q, Σ, δ, q0, F) we define

δ̂ : Q × Σ∗ → [Q]

δ̂(q, ǫ) = ECLOSE({q})
δ̂(q, ax) =

⋃
p∈∆(ECLOSE({q}),a) δ̂(p, x)

where ∆(S , a) = ∪p∈Sδ(p, a)

Remark: By definition we have that
δ̂(q, a) = ECLOSE(∆(ECLOSE({q}), a)).

Remark: We can prove by induction on x that all sets δ̂(q, x) are
ǫ-closed.
This result uses that the union of ǫ-closed sets is also a ǫ-closed set.

March 26th 2012, Lecture 6 TMV026/DIT321 16/24

Language Accepted by a ǫ-NFA

Definition: The language accepted by the ǫ-NFA (Q, Σ, δ, q0, F) is the
set L = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

Example: Let Σ = {b}.
q0 q1 q2

q3 q4 q5

ǫ ǫ

ǫ ǫ
b b b

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a ǫ-NFA and
let the program tell us whether a certain string is accepted or not.

March 26th 2012, Lecture 6 TMV026/DIT321 17/24

Functional Representation of an ǫ-NFA

Let us implement the ǫ-NFA that recognises numbers (slide 10).

data Q = Q0 | Q1 | Q2 | Q3 | Q4 deriving (Eq,Show)

final :: Q -> Bool
final Q4 = True
final _ = False

e_jump :: Q -> [Q]
e_jump Q0 = [Q1]
e_jump Q2 = [Q4]
e_jump _ = []

isSub :: [Q] -> [Q] -> Bool

closure :: [Q] -> [Q]

March 26th 2012, Lecture 6 TMV026/DIT321 18/24

Functional Representation of an ǫ-NFA (cont.)

delta :: Char -> Q -> [Q]
delta a Q0 | elem a "+-" = [Q1]
delta a Q1 | elem a "0123456789" = [Q2]
delta a Q2 | elem a "0123456789" = [Q2]
delta ’.’ Q2 = [Q3]
delta a Q3 | elem a "0123456789" = [Q4]
delta a Q4 | elem a "0123456789" = [Q4]
delta _ _ = []

run :: String -> Q -> [Q]
run [] q = closure [q]
run (a:xs) q = closure [q] >>= delta a >>= run xs

accepts :: String -> Bool
accepts xs = or (map final (run xs Q0))

March 26th 2012, Lecture 6 TMV026/DIT321 19/24

Eliminating ǫ-Transitions

Definition: Given an ǫ-NFA E = (QE , Σ, δE , qE , FE) we define a DFA
D = (QD , Σ, δD , qD , FD) as follows:

QD = {ECLOSE(S) | S ∈ Pow(QE)}
δD(S , a) = ECLOSE(∆(S , a)) with ∆(S , a) = ∪p∈Sδ(p, a)

qD = ECLOSE({qE})
FD = {S ∈ QD | S ∩ FE 6= ∅}

Note: This construction is similar to the subset construction but now we
need to ǫ-close after each step.

March 26th 2012, Lecture 6 TMV026/DIT321 20/24

Eliminating ǫ-Transitions

Let E be an ǫ-NFA and D the corresponding DFA.

Lemma: ∀x ∈ Σ∗. δ̂E (qE , x) = δ̂D(qD , x).

Proof: By induction on x .

Proposition: L(E) = L(D).

Proof: x ∈ L(E) iff δ̂E (qE , x)∩ FE 6= ∅ iff δ̂E (qE , x) ∈ FD iff (by previous
lemma) δ̂D(qD , x) ∈ FD iff x ∈ L(D).

March 26th 2012, Lecture 6 TMV026/DIT321 21/24

Example: Eliminating ǫ-Transitions

Let us eliminate the ǫ-transitions in ǫ-NFA that recognises numbers in slide
10.

We obtain the following DFA:

{q0, q1} {q1}

{q2, q4}{q3}{q4}

+,−

0, 1, . . . , 90, 1, . . . , 9

.
0, 1, . . . , 9

0, 1, . . . , 90, 1, . . . , 9

March 26th 2012, Lecture 6 TMV026/DIT321 22/24

Functional Representation of Eliminating ǫ-Transitions

pDelta :: Char -> [Q] -> [Q]
pDelta a qs = closure (qs >>= delta a)

pRun :: [Char] -> [Q] -> [Q]
pRun [] qs = qs
pRun (a:x) qs = pRun x (pDelta a qs)

run :: String -> Q -> [Q]
run xs q = pRun xs (closure [q])

accepts :: String -> Bool
accepts xs = or (map final (run xs Q0))

March 26th 2012, Lecture 6 TMV026/DIT321 23/24

Finite Automata and Regular Languages

We have shown that DFA, NFA and ǫ-NFA are equivalent in the sense that
we can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA
or ǫ-NFA) that accepts the language.

March 26th 2012, Lecture 6 TMV026/DIT321 24/24

