
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 5
Ana Bove

March 20th 2012

Overview of today’s lecture:

Non-deterministic Finite Automata

Equivalence between DFA and NFA

Non-deterministic Finite Automata

A non-deterministic finite automata (NFA) can be in several states at once.
That is, given a state and the next symbol, the automata can “move” to
many states.

q0

q1

q2

5 kr

5 kr

choc

coffee

Intuitively, the vending machine can choose between different states.

March 20th 2012, Lecture 5 TMV026/DIT321 1/27

When Does a NFA Accepts a Word?

The automaton accepts w iff there is at least one computation path
starting from the start state to an accepting state.
Intuitively, the automaton can guess a successful computation if there is
one.

NFA accepting words that end in 01

q0 q1 q2

0, 1

0 1

What are all possible computations for the string 10101?
Will 10101 be accepted by the NFA?

March 20th 2012, Lecture 5 TMV026/DIT321 2/27

NFA Accepting Words of Length Divisible by 3 or by 5

Let Σ = {1}.

1 1

1 1

1

1 1

1
1

1

The automaton guesses the right direction and then verifies that |w | is
correct!

What would be the equivalent DFA?
March 20th 2012, Lecture 5 TMV026/DIT321 3/27

Non-deterministic Finite Automata

Definition: A non-deterministic finite automaton (NFA) is a 5-tuple
(Q, Σ, δ, q0, F) consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A transition function δ : Q × Σ → Pow(Q)
(“partial” function that takes as argument a state and a symbol and
returns a set of states);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

March 20th 2012, Lecture 5 TMV026/DIT321 4/27

Example: NFA

Let us define an automaton accepting only the words such that the second
last symbol from the right is 1.

q0 q1 q2

0, 1

1 0, 1

0 1

→ q0 {q0} {q0, q1}
q1 {q2} {q2}
∗q2 ∅ ∅

The automaton guesses when the word finishes.

March 20th 2012, Lecture 5 TMV026/DIT321 5/27

Example: NFA Accepting the word “then”

q0 q1 q2 q3 q4
t h e n

Observe that we do not need a dead state here.

March 20th 2012, Lecture 5 TMV026/DIT321 6/27

Extending the Transition Function to Strings

As before, we want to be able to determine δ̂(q, x).
We define this by recursion on x .

Definition:
δ̂ : Q × Σ∗ → Pow(Q)

δ̂(q, ǫ) = {q}
δ̂(q, ax) =

⋃
p∈δ(q,a) δ̂(p, x)

That is, if δ(q, a) = {p1, . . . , pn} then

δ̂(q, ax) = δ̂(p1, x) ∪ . . . ∪ δ̂(pn, x)

March 20th 2012, Lecture 5 TMV026/DIT321 7/27

Language Accepted by a NFA

Definition: The language accepted by the NFA N = (Q, Σ, δ, q0, F) is
the set L(N) = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

That is, a word x is accepted if δ̂(q0, x) contains at least one accepting
state.

Note: Again, we could write a program that simulates a NFA and let it
tell us whether a certain string is accepted or not.

March 20th 2012, Lecture 5 TMV026/DIT321 8/27

Functional Representation of a NFA

Consider the following functions:

-- map f [x1, ... ,xn] = [f x1, ... ,f xn]
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

-- [x1,...,xn] ++ [y1,...,ym] = [x1,...,xn,y1,...,ym]
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys

-- concat [xs1,...,xsn] = xs1 ++ ... ++ xsn
concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

March 20th 2012, Lecture 5 TMV026/DIT321 9/27

Functional Representation of a NFA

data Q = ...
data S = ...

final :: Q -> Bool
...

delta :: S -> Q -> [Q] -- Observe change in the type
...

run :: [S] -> Q -> [Q] -- Idem
run [] q = [q]
run (a:xs) q = concat (map (run xs) (delta a q))

accepts :: [S] -> Bool
accepts xs = or (map final (run xs Q0))

March 20th 2012, Lecture 5 TMV026/DIT321 10/27

Functional Representation of a NFA

A nicer way is to use “monadic” lists, which is a clever notation for
programs using lists.

-- return :: a -> [a]
return x = [x]

-- (>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)

run :: [S] -> Q -> [Q]
run [] q = return q
run (a:xs) q = delta a q >>= run xs

Note: The actual types of return and (>>=) are more general than
those above.
March 20th 2012, Lecture 5 TMV026/DIT321 11/27

Functional Representation of a NFA

Alternative notations for

run :: [S] -> Q -> [Q]
run [] q = return q
run (a:xs) q = delta a q >>= run xs

are

run :: [S] -> Q -> [Q]
run [] q = return q
run (a:xs) q = do p <- delta a q

run xs p

or

run :: [S] -> Q -> [Q]
run [] q = return q
run (a:xs) q = do p <- delta a q; run xs p

March 20th 2012, Lecture 5 TMV026/DIT321 12/27

Transforming a NFA into a DFA

We have seen that for same examples it is much simpler to define a NFA
than a DFA.
For example, the language with words of length divisible by 3 or by 5.

However, any language accepted by a NFA is also accepted by a DFA.
In general, the number of states of the DFA is about the number of states
in the NFA although it often has many more transitions.
In the worst case, if the NFA has n states, a DFA accepting the same
language might have 2n states.

The algorithm transforming a NFA into an equivalent DFA is called the
subset construction.

March 20th 2012, Lecture 5 TMV026/DIT321 13/27

The Subset Construction

Definition: Given a NFA N = (QN , Σ, δN , q0, FN) we will construct a
DFA D = (QD , Σ, δD , {q0}, FD) such that L(D) = L(N) as follows:

QD = Pow(QN);

δD : QD × Σ → QD (that is, δD : Pow(QN)× Σ → Pow(QN))
δD(X , a) =

⋃
q∈X δN(q, a);

FD = {S ⊆ QN | S ∩ FN 6= ∅}.

March 20th 2012, Lecture 5 TMV026/DIT321 14/27

Remarks: Subset Construction

If |QN | = n then |QD | = 2n.
If some of the states in QD are not accessible from the start state of
D we can safely remove them (we will see how to do this later on in
the course).

If X = {q1, . . . , qn} then δD(X , a) = δN(q1, a) ∪ . . . ∪ δN(qn, a).
In addition,

δD(∅, a) = ∅ δD({q}, a) = δN(q, a) δD(X , a) =
⋃
q∈X

δD({q}, a)

and
δD(X1 ∪ X2, a) = δD(X1, a) ∪ δD(X2, a)

Each accepting state (set) S in FD contains at least one accepting
state of N.

March 20th 2012, Lecture 5 TMV026/DIT321 15/27

Example: Subset Construction

Let us convert this NFA into a DFA
q0 q1 q2

0, 1

1 0, 1

The DFA we construct will start from {q0}. Only accessible states matter.

From {q0}, if we get 0, we can only go to the state q0 so
δD({q0}, 0) = {q0}.
From {q0}, if we get 1, we can go to q0 or to q1. We represent this by the
state {q0, q1} and the transaction δD({q0}, 1) = {q0, q1}.
From {q0, q1}, if we get 0, we can go to q0 or to q2. Then we get a new
state {q0, q2} and also δD({q0, q1}, 0) = {q0, q2}.
From {q0, q1}, if we get 1, we can go to q0 or q1 or q2. Then we get a
new state {q0, q1, q2} and also δD({q0, q1}, 1) = {q0, q1, q2}.
etc...
March 20th 2012, Lecture 5 TMV026/DIT321 16/27

Example: Subset Construction (cont.)

The complete (and simplified) DFA from the previous NFA is:

q0

q0, q1

q0, q2

q0, q1, q2

0 1

0

1

1

0 0

1

The DFA remembers the last two bits seen and accepts a word if the
next-to-last bit is 1.

March 20th 2012, Lecture 5 TMV026/DIT321 17/27

Example: Subset Construction

Let us apply the subset construction to the NFA

q0 q1 q2

0, 1

0 1

We obtain the following DFA: q0 q0, q1 q0, q2

1

0

0

1

0

1

By only computing the accessible states (from the start state) we are able
to keep the total number of states to 3 (and not 8).
March 20th 2012, Lecture 5 TMV026/DIT321 18/27

Application of Subset Construction: Text Search

Suppose we are given a set of words, called keywords, and we want to find
occurrences of any of these words in a text.

An useful way to proceed is to design a NFA that enters in an accepting
state when it has recognised one of the keywords.

Then we could implement the NFA, or we could transform it to a DFA and
get a deterministic (efficient) program.

We will prove the subset construction correct, then we know the DFA will
be correct (if the NFA is!).

This is a good example of a derivation of a program (the DFA) from a
specification (the NFA).

March 20th 2012, Lecture 5 TMV026/DIT321 19/27

Application of Subset Construction: Text Search

The following (easy to write) NFA searches for the keyword web and ebay:

A

B C D

E F G H

a ∈ Σ
w

e b

e

b a y

a ∈ Σ a ∈ Σ

If one applies the subset construction one obtains the DFA of page 71 in
the book.
Observe that the obtained DFA has the same number of states as the
NFA, but it is much more difficult to define directly!

March 20th 2012, Lecture 5 TMV026/DIT321 20/27

Functional Representation of the Subset Construction

Given a (typed modified) δN function:

delta :: S -> Q -> [Q]

we can define the (typed modified) δD function:

pDelta :: S -> [Q] -> [Q]
pDelta a qs = concat (map (delta a) qs)

or (with the monadic notation)

pDelta a qs = qs >>= delta a

or

pDelta a qs = do p <- qs; delta a p

March 20th 2012, Lecture 5 TMV026/DIT321 21/27

Functional Representation of the Subset Construction

pFinal :: [Q] -> Bool
pFinal qs = or (map final qs)

pRun :: [S] -> [Q] -> [Q]
pRun [] qs = qs
pRun (a:xs) qs = pRun xs (pDelta a qs)

pAccepts :: [S] -> Bool
pAccepts xs = pFinal (pRun xs [Q0])

March 20th 2012, Lecture 5 TMV026/DIT321 22/27

Testing the Correction of the Subset Construction

test :: [S] -> Bool
test xs = run xs Q0 == pRun xs [Q0] -- run @ slides 10/11

Informally, let xs be [x1,...,xn]. Then:

run [x1,...,xn] q = delta x1 q >>= run [x2,...,xn]
= delta x1 q >>= (\p -> delta x2 p >>= run [...,xn])
= delta x1 q >>= (\p ->...>>= (\r -> delta xn r >>= return)...)
= delta x1 q >>= delta x2 >>= .. >>= delta xn

pRun [x1,...,xn] [q] = pDelta xn (... (pDelta x1 [q])...)
= [q] >>= delta x1 >>= ... >>>= delta xn
= delta x1 q >>= delta x2 >>= .. >>= delta xn

March 20th 2012, Lecture 5 TMV026/DIT321 23/27

Towards the Correction of the Subset Construction

Formally we have that

Proposition: ∀x .∀q. δ̂N(q, x) = δ̂D({q}, x).

Proof: By induction on x . Base case is trivial.

The inductive step is:

δ̂N(q, ax) =
⋃

p∈δN(q,a) δ̂N(p, x) by definition of δ̂N

=
⋃

p∈δN(q,a) δ̂D({p}, x) by IH

= δ̂D(δN(q, a), x) see lemma below

= δ̂D(δD({q}, a), x) remark on slide 15

= δ̂D({q}, ax) by definition of δ̂D

Lemma: For all words x and set of states S, δ̂D(S , x) =
⋃

p∈S δ̂D({p}, x).

March 20th 2012, Lecture 5 TMV026/DIT321 24/27

Correction of the Subset Construction

Theorem: Given a NFA N, if D is the DFA constructed from N by the
subset construction then L(N) = L(D).

Proof: x ∈ L(N) iff δ̂N(q0, x) ∩ FN 6= ∅ iff δ̂N(q0, x) ∈ FD .

By the previous proposition, this is equivalent to δ̂D({q0}, x) ∈ FD .

Since {q0} is the starting state in D the above is equivalent to x ∈ L(D).

March 20th 2012, Lecture 5 TMV026/DIT321 25/27

Equivalence between DFA and NFA

Theorem: A language L is accepted by some DFA iff L is accepted by
some NFA.

Proof: The “if” part is the result of the previous theorem (correctness of
subset construction).

For the “only if” part we need to transform the DFA into a NFA.

Intuitively, each DFA can be seen as a NFA where there exists only one
choice at each stage.

Formally, given D = (Q, Σ, δD , q0, F) we define N = (Q, Σ, δN , q0, F) such
that, if δD(q, a) = p then δN(q, a) = {p}.
That is δN(q, a) = {δD(q, a)}.
It only remains to show (by induction on x) that if δ̂D(q0, x) = p then
δ̂N(q0, x) = {p}.

March 20th 2012, Lecture 5 TMV026/DIT321 26/27

Regular Languages

Recall: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the
alphabet Σ such that L = L(D).

Proposition: A language L ⊆ Σ∗ is regular iff there exists a NFA N such
that L = L(N).

Proof: If L is regular then L = L(D) for some DFA D. To any DFA D we
can associate a NFA ND such that L(D) = L(ND) as in previous theorem.

In the other direction, if L = L(N) for some NFA N then, the subset
construction gives a DFA D such that L(N) = L(D) so L is regular.

March 20th 2012, Lecture 5 TMV026/DIT321 27/27

