
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 4
Ana Bove

March 19th 2012

Overview of today’s lecture:

Deterministic Finite Automata

Deterministic Finite Automata

Definition: A deterministic finite automaton (DFA) is a 5-tuple
(Q, Σ, δ, q0, F) consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A transition function δ : Q × Σ → Q
(total function that takes as argument a state and a symbol and
returns a state);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

March 19th 2012, Lecture 4 TMV026/DIT321 1/27

Example: DFA

Let the DFA (Q, Σ, δ, q0, F) be given by:

Q = {q0, q1, q2}
Σ = {0, 1}
F = {q2}
δ : Q × Σ → Q

δ(q0, 0) = q1 δ(q1, 0) = q1 δ(q2, 0) = q2

δ(q0, 1) = q0 δ(q1, 1) = q2 δ(q2, 1) = q2

What does it do?

March 19th 2012, Lecture 4 TMV026/DIT321 2/27

How to Represent a DFA?

Transition Diagram: As we have seen before.

q0 q1 q2
0 1

1 0

0, 1

Transition Table:

δ 0 1

→ q0 q1 q0

q1 q1 q2

∗q2 q2 q2

The start state is indicated with →.
The final states are indicated with ∗.

March 19th 2012, Lecture 4 TMV026/DIT321 3/27

When Does a DFA Accept a Word?

When reading the word the automaton moves according to δ.

Definition: If after reading the input it stops in a final state, it accepts
the word.

Example:

q0 q1 q2 q3 q4

q5

t h e n

6= t 6= h 6= e 6= n a

a

Only the word “then” is accepted.
We have a (non-accepting) stop or dead state q5.
March 19th 2012, Lecture 4 TMV026/DIT321 4/27

Example: DFA

Let us build an automaton that accepts the words that contain 010 as a
subword.
That is, given Σ = {0, 1} we want to accept words in
L = {x010y | x , y ∈ Σ∗}.

Solution: ({q0, q1, q2, q3}, {0, 1}, δ, q0, {q3}) given by

q0 q1 q2 q3

1

0

0

1 0

1

0, 1

δ 0 1

→ q0 q1 q0

q1 q1 q2

q2 q3 q0

∗q3 q3 q3

March 19th 2012, Lecture 4 TMV026/DIT321 5/27

Extending the Transition Function to Strings

How can we compute what happens when we read a certain word?

Definition: We extend δ to strings as δ̂ : Q × Σ∗ → Q.
We define δ̂(q, x) by recursion on x .

δ̂(q, ǫ) = q

δ̂(q, ax) = δ̂(δ(q, a), x)

Note: δ̂(q, a) = δ(q, a) since the string a = aǫ.
δ̂(q, a) = δ̂(q, aǫ) = δ̂(δ(q, a), ǫ) = δ(q, a)

Example: In the previous example, what are δ̂(q0, 10101) and
δ̂(q0, 00110)?

March 19th 2012, Lecture 4 TMV026/DIT321 6/27

Some Properties

Proposition: For any words x and y, and for any state q we have that
δ̂(q, xy) = δ̂(δ̂(q, x), y).

Proof: We prove the result by induction on x .

Basis case: δ̂(q, ǫy) = δ̂(q, y) = δ̂(δ̂(q, ǫ), y).

Inductive step: Our IH is that δ̂(q, xy) = δ̂(δ̂(q, x), y) for any word y and
any state q. We should prove that δ̂(q, (ax)y) = δ̂(δ̂(q, ax), y).

δ̂(q, (ax)y) = δ̂(q, a(xy)) by def of concat

= δ̂(δ(q, a), xy) by def of δ̂

= δ̂(δ̂(δ(q, a), x), y) by IH

= δ̂(δ̂(q, ax), y) by def of δ̂

March 19th 2012, Lecture 4 TMV026/DIT321 7/27

Another Definition of δ̂

Recall that we have 2 descriptions of words: a(b(cd)) = ((ab)c)d .

We can define δ̂′ as follows:

δ̂′(q, ǫ) = q

δ̂′(q, xa) = δ(δ̂′(q, x), a)

Proposition: ∀x .∀q. δ̂(q, x) = δ̂′(q, x).

Proof: Observe that xa is a special case of xy where y = a.
Basis case is trivial.
The inductive step goes as follows:

δ̂(q, xa) = δ̂(δ̂(q, x), a) by previous prop

= δ(δ̂(q, x), a) by def of δ̂

= δ(δ̂′(q, x), a) by IH

= δ̂′(q, xa) by def of δ̂′
March 19th 2012, Lecture 4 TMV026/DIT321 8/27

Language Accepted by a DFA

Definition: The language accepted by the DFA (Q, Σ, δ, q0, F) is the set
L = {x | x ∈ Σ∗, δ̂(q0, x) ∈ F}.

Example: In the example on slide 5, 10101 is accepted but 00110 is not.

Note. We could write a program that simulates a DFA and let the
program tell us whether a certain string is accepted or not.

March 19th 2012, Lecture 4 TMV026/DIT321 9/27

Functional Representation of a DFA Accepting x010y

data Q = Q0 | Q1 | Q2 | Q3
data S = O | I

final :: Q -> Bool
final Q3 = True
final _ = False

delta :: Q -> S -> Q
delta Q0 O = Q1
delta Q0 I = Q0
delta Q1 O = Q1
delta Q1 I = Q2
delta Q2 O = Q3
delta Q2 I = Q0
delta Q3 _ = Q3

March 19th 2012, Lecture 4 TMV026/DIT321 10/27

Functional Representation of a DFA Accepting x010y

run :: Q -> [S] -> Q
run q [] = q
run q (a:xs) = run (delta q a) xs

accepts :: [S] -> Bool
accepts xs = final (run Q0 xs)

Alternatively, given that

run q [x1,...,xn] = delta (... (delta Q0 x1) ...) xn

then

run :: Q -> [S] -> Q
run = foldl delta

accepts :: [S] -> Bool
accepts = final . run Q0

March 19th 2012, Lecture 4 TMV026/DIT321 11/27

Accepting by End of String

Sometimes we use an automaton to identify properties of a certain string.
In these cases, the important thing is the state the automaton is in when
we finish reading the input.
Here, the the set of final states is actually not needed and can be omitted.

Example: The following automaton determines whether a binary number
is even or odd.

even odd

0
1

0

1

March 19th 2012, Lecture 4 TMV026/DIT321 12/27

Example: Product of Automata

Given an automaton that determines whether the number of p0’s is even
or odd

A B

p0

p0

p1

p1

and an automaton that determines whether the number of p1’s is even or
odd

C D

p1

p1

p0

p0

How can we combine them to keep track of the parity of both p0 and p1?

March 19th 2012, Lecture 4 TMV026/DIT321 13/27

Product Construction

Definition: Given two DFA D1 = (Q1, Σ, δ1, q1, F1) and
D2 = (Q2, Σ, δ2, q2, F2) with the same alphabet Σ, we can define the
product D = D1 × D2 as follows:

Q = Q1 × Q2

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

F = F1 × F2

Proposition: δ̂((r1, r2), x) = (δ̂1(r1, x), δ̂2(r2, x)).

Proof: By induction on x .

March 19th 2012, Lecture 4 TMV026/DIT321 14/27

Example: Product of Automata (cont.)

The product automaton that keeps track of the parity of both p0 and p1 is:

AC BC

AD BD

p0

p0

p0

p0

p1p1 p1p1

If after reading the word w we are in the state AD we know that w
contains an even number of p0’s and an odd number of p1’s.

March 19th 2012, Lecture 4 TMV026/DIT321 15/27

Example: Product of Automata

Let us model a system where users have three states: idle, requesting and
using.
Let us assume we have 2 users.
Each user is represented by a simple automaton, for k = 1, 2:

rk

ik

uk

March 19th 2012, Lecture 4 TMV026/DIT321 16/27

Example: Product of Automata (cont.)

The complete system is represented by the product of these 2 automata
and it has 3 * 3 = 9 states.

i1i2 r1i2 u1i2

i1r2 r1r2 u1r2

i1u2 r1u2 u1u2

March 19th 2012, Lecture 4 TMV026/DIT321 17/27

Language Accepted by a Product Automaton

Proposition: Given two DFA D1 and D2, then
L(D1 × D2) = L(D1) ∩ L(D2).

Proof: δ̂(q0, x) = (δ̂1(q1, x), δ̂2(q2, x)) ∈ F iff δ̂1(q1, x) ∈ F1 and
δ̂2(q2, x) ∈ F2, that is, x ∈ L(D1) and x ∈ L(D2) so x ∈ L(D1) ∩ L(D2).

Example: Let Mk be an automaton that accepts multiples of k such that
L(Mk) = {an | k divides n}.
Then M6 ×M9 is M18 (6 divides k and 9 divides k iff 18 divides k .)

Note: It can be quite difficult to directly build an automaton accepting
the intersection of two languages.

Example: Build a DFA for the language that contains the subword abb
twice and an even number of a’s.

March 19th 2012, Lecture 4 TMV026/DIT321 18/27

Variation of the Product

Definition: We define D1 ⊕ D2 similarly to D1 × D2 but with a different
notion of accepting state:

a state (r1, r2) is accepting iff r1 ∈ F1 or r2 ∈ F2

Proposition: Given two DFA D1 and D2, then
L(D1 ⊕ D2) = L(D1) ∪ L(D2).

Example: We define the automaton accepting multiples of 3 or of 5 by
taking M3 ⊕M5.

March 19th 2012, Lecture 4 TMV026/DIT321 19/27

Complement

Definition: Given the automaton D = (Q, Σ, δ, q0, F) we define the
complement D of D as the automaton D = (Q, Σ, δ, q0, Q − F).

Proposition: Given a DFA D we have that L(D) = Σ∗ − L(D).

Remark: We have that D1 ⊕ D2 = D1 × D2.

March 19th 2012, Lecture 4 TMV026/DIT321 20/27

Accessible Part of a DFA

Consider the DFA ({q0, . . . , q3}, {0, 1}, δ, q0, {q1}) given by

q0 q1 q2 q3

1

0

0

1

1

0

0

1

This is clearly equivalent to the DFA

q0 q1

1

0

0

1

which is the accessible part of the DFA. The states q2 and q3 are not
accessible from the start state and can be removed.
March 19th 2012, Lecture 4 TMV026/DIT321 21/27

Accessible States

Definition: The set Acc = {δ̂(q0, x) | x ∈ Σ∗} is the set of accessible
states (from the state q0).

Proposition: If D = (Q, Σ, δ, q0, F) is a DFA, then
D ′ = (Q ∩ Acc, Σ, δ′, q0, F ∩ Acc), where δ′ is the function δ restricted to
the states in Q ∩ Acc, is a DFA such that L(D) = L(D ′).

Proof: Notice that D ′ is well defined and that L(D ′) ⊆ L(D).
If x ∈ L(D) then δ̂(q0, x) ∈ F . Observe that by definition δ̂(q0, x) ∈ Acc.
Hence δ̂(q0, x) ∈ F ∩ Acc and then x ∈ L(D ′).

March 19th 2012, Lecture 4 TMV026/DIT321 22/27

Regular Languages

Recall: Given an alphabet Σ, a language L is a subset of Σ∗, that is,
L ⊆ Σ∗.

Definition: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the
alphabet Σ such that L = L(D).

Proposition: If L1 and L2 are regular languages then so are L1 ∩ L2,
L1 ∪ L2 and Σ∗ − L1.

Proof: . . .

March 19th 2012, Lecture 4 TMV026/DIT321 23/27

Automatic Theorem Proving

Recall the example f , g , h : N→ {0, 1} such that:

f (0) = 0 g(0) = 1 h(0) = 0
f (n + 1) = g(n) g(n + 1) = f (n) h(n + 1) = 1− h(n)

We can prove ∀n. h(n) = f (n) automatically using a DFA.

Q = {0, 1} × {0, 1} × {0, 1}
Σ = {1} (The number n is represented by 1n and 0 by 10 = ǫ)

q0 = (f (0), g(0), h(0)) = (0, 1, 0).

δ̂((0, 1, 0), 1n) = (f (n), g(n), h(n))
A transition goes from (f (n), g(n), h(n)) to
(f (n + 1), g(n + 1), h(n + 1)) and then δ((a, b, c), s) = (b, a, 1− c)

We check that all accessible states (a, b, c) satisfy a = c , that is, the
property a = c is an invariant for each transition of the automata

March 19th 2012, Lecture 4 TMV026/DIT321 24/27

Automatic Theorem Proving

A more complex example:

f (0) = 0 f (1) = 1 f (n + 2) = f (n) + f (n + 1)− 2f (n)f (n + 1)

We have

f (0) = 0 f (1) = 1 f (2) = 1 f (3) = 0 f (4) = 1 f (5) = 1 . . .

Show that f (n + 3) = f (n) by using

Q = {0, 1} × {0, 1} × {0, 1}
Σ = {1}
q0 = (f (0), f (1), f (2)) = (0, 1, 1)

δ((a, , b, c), s) = (b, c , b + c − 2bc)

March 19th 2012, Lecture 4 TMV026/DIT321 25/27

Application: Automatic Theorem Proving

Assume Σ = {a, b}.
Let L be the set of x ∈ Σ∗ such that any a in x is followed by a b.
Let L′ be the set of x ∈ Σ∗ such that any b in x is followed by a a.

How to prove that L ∩ L′ = {ǫ}?

Intuitively:

if x 6= ǫ in L we have that if x = . . . a . . . then it should actually be
x = . . . a . . . b . . .

if x 6= ǫ in L′ we have that if x = . . . b . . . then it should actually be
x = . . . b . . . a . . .

Hence a non-empty word in L ∩ L′ should be infinite.

March 19th 2012, Lecture 4 TMV026/DIT321 26/27

Application: Automatic Theorem Proving (cont.)

Formally we can automatically prove that L∩L′ = {ǫ} with an automaton.

Define a DFA D such that L(D) = L.
Define a DFA D ′ such that L(D ′) = L′.

Now we can compute D × D ′ and check that

L ∩ L′ = L(D × D ′) = {ǫ}

March 19th 2012, Lecture 4 TMV026/DIT321 27/27

