
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 3
Ana Bove

March 15th 2012

Overview of today’s lecture:

Some Concepts in Discrete Mathematics

Central Concepts of Automata Theory

Sets

Definition: A set is a collection of well defined and distinct objects.

Some operations on sets:

Union: S1 ∪ S2 = {x | x ∈ S1 or x ∈ S2}

Intersection: S1 ∩ S2 = {x | x ∈ S1 and x ∈ S2}

Cartesian Product: S1 × S2 = {(x , y) | x ∈ S1 and y ∈ S2}
Observe this is a collection of ordered pairs!

Complement: S − A is the set of all elements in set S not in set A.
When the set S is known, S − A is sometimes written A.

March 15th 2012, Lecture 3 TMV026/DIT321 1/22

Some Particular Sets

Empty set: ∅ is the set with no elements. We have ∅ ⊆ S for all sets S .

Singleton sets: Sets with only one element: {p0}, {p1}

Finite sets: Set with a finite number n of elements:
{p1, . . . , pn} = {p1} ∪ . . . ∪ {pn}

Power sets: Pow(S) the set of all subsets of the set S .

Pow(S) = {A | A ⊆ S}.
Observe that ∅ ∈ Pow(S) and S ∈ Pow(S).

Also, if |S | = n then |Pow(S)| = 2n.

March 15th 2012, Lecture 3 TMV026/DIT321 2/22

(Equivalent) Relations

Definition: A (binary) relation R between two sets A and B is a subset
of A× B, that is, R ⊆ A× B.

Notation: (a, b) ∈ R, aRb, R(a, b), (a, b) satisfies R.

Definition: A relation R over a set S , that is R ⊆ S × S , is

Reflexive: ∀a ∈ S , aRa

Symmetric: ∀a, b ∈ S , aRb ⇒ bRa

Transitive: ∀a, b, c ∈ S , aRb ∧ bRc ⇒ aRc

Definition: A relation R over a set S that is reflexive, symmetric and
transitive is called an equivalence relation over S .

March 15th 2012, Lecture 3 TMV026/DIT321 3/22

Example of Relations

Let S = {1, 2, 3}. Which of these relations are reflexive, symmetric,
transitive?

R1 = {(1, 2)}
R2 = {(1, 2), (2, 3)}
R3 = {(1, 2), (2, 3), (1, 3)}
R4 = {(1, 2), (2, 1)}
R5 = {(1, 2), (2, 1), (1, 1)}
R6 = {(1, 2), (2, 1), (1, 1), (2, 2)}
R7 = {(1, 2), (2, 1), (1, 1), (2, 2), (3, 3)}

March 15th 2012, Lecture 3 TMV026/DIT321 4/22

Partitions

Definition: A set P is a partition over the set S if:

Every element of P is a non-empty subset of S

∀C ∈ P, C 6= ∅ ∧ C ⊆ S

Elements of P are pairwise disjoint

∀C1,C2 ∈ P, C1 6= C2 ⇒ C1 ∩ C2 = ∅

The union of the elements of P is equal to S⋃
C∈P

C = S

March 15th 2012, Lecture 3 TMV026/DIT321 5/22

Equivalent Classes

Let R be an equivalent relation over S .

Definition: If a ∈ S , then the equivalent class of a in S is the set defined
as [a] = {b ∈ S | aRb}.

Lemma: ∀a, b ∈ S , [a] = [b] iff aRb.

Theorem: The set of all equivalence classes in S with respect to R form
a partition over S.

Note: This partition is called the quotient and it is denoted as S/R.

Example: The rational numbers Q can be formally defined as the
equivalence classes of the quotient set Z× Z+/ ∼, where ∼ is the
equivalence relation defined by (m1, n1) ∼ (m2, n2) iff m1n2 =Z m2n1.
March 15th 2012, Lecture 3 TMV026/DIT321 6/22

Central Concepts of Automata Theory: Alphabets

Definition: An alphabet is a finite, non-empty set of symbols, usually
denoted by Σ.
The number of symbols in Σ is denoted as |Σ|.

Type convention: We will use a, b, c , . . . to denote symbols.

Note: Alphabets will represent the observable events of the automata.

Example: Some alphabets:

on/off-switch: Σ = {Push}
simple vending machine: Σ = {5 kr , choc}
complex vending machine: Σ = {5 kr , 10 kr , choc, big choc}
parity counter: Σ = {p0, p1}

March 15th 2012, Lecture 3 TMV026/DIT321 7/22

Strings or Words

Definition: Strings/Words are finite sequence of symbols from some
alphabet.

Type convention: We will use w , x , y , z , . . . to denote words.

Note: A word will represent the behaviour of an automaton.

Example: Some behaviours:

on/off-switch: Push Push Push Push . . .

simple vending machine: 5 kr choc 5 kr choc 5 kr choc . . .

parity counter: p0p1 or p0p0p0p1p1p0 or . . .

March 15th 2012, Lecture 3 TMV026/DIT321 8/22

Inductive Definition of Σ∗

Definition: Σ∗ is the set of all words for a given alphabet Σ.
This can be described inductively in at least 2 different ways:

1. Basis case: the empty word ε is in Σ∗ (notation: ε ∈ Σ∗)
Inductive step: if a ∈ Σ and x ∈ Σ∗ then ax ∈ Σ∗

2. Basis case: ε ∈ Σ∗

Inductive step: if a ∈ Σ and x ∈ Σ∗ then xa ∈ Σ∗

We can (recursively) define functions over Σ∗ and (inductively) prove
properties about those functions.

March 15th 2012, Lecture 3 TMV026/DIT321 9/22

Length

Definition: The length function | | : Σ∗ → N is defined as:

|ε| = 0
|ax | = 1 + |x |

Example: |p0p1p1p0p0| = 5

March 15th 2012, Lecture 3 TMV026/DIT321 10/22

Concatenation

Definition: Given the strings x and y , the concatenation xy is defined as:

εy = y
(ax)y = a(xy)

Example: Observe that in general xy 6= yx .
If x = p0p1p1 and y = p0p0 then xy = p0p1p1p0p0 and yx = p0p0p0p1p1.

Lemma: If Σ has more than one symbol then concatenation is not
commutative.

March 15th 2012, Lecture 3 TMV026/DIT321 11/22

Power

Of a string: We define xn as follows:

x0 = ε
xn+1 = xxn

Example: (p0p1p0)3 = p0p1p0p0p1p0p0p1p0

Of an alphabet: We define Σn, the set of words over Σ with length n, as
follows:

Σ0 = {ε}
Σn+1 = {ax | a ∈ Σ, x ∈ Σn}

Example:
{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}.

Observe: Σ∗ = Σ0
⋃

Σ1
⋃

Σ2 . . . and
Σ+ = Σ1

⋃
Σ2

⋃
Σ3 . . .

March 15th 2012, Lecture 3 TMV026/DIT321 12/22

Reverse Function

Intuitively, rev(a1 . . . an) = an . . . a1.

Definition: Formally we can define rev(x) as:

rev(ε) = ε
rev(ax) = rev(x)a

March 15th 2012, Lecture 3 TMV026/DIT321 13/22

Some Properties

The following properties can be proved by induction:

Lemma: Concatenation is associative: ∀x , y , z . x(yz) = (xy)z.
We shall simply write xyz .

Lemma: ∀x , y . |xy | = |x |+ |y |.
Lemma: ∀x , y . xε = εx = x.

Lemma: ∀x . |xn| = n|x |.
Lemma: ∀Σ. |Σn| = |Σ|n.

Lemma: ∀x , rev(rev(x)) = x.

Lemma: ∀x , y . rev(xy) = rev(y)rev(x).

March 15th 2012, Lecture 3 TMV026/DIT321 14/22

Some Terminology

Definition: Given x and y words over a certain alphabet Σ:

x is a prefix of y iff there exists z such that y = xz

x is a suffix of y iff there exists z such that y = zx

x is a palindrome iff x = rev(x)

March 15th 2012, Lecture 3 TMV026/DIT321 15/22

Languages

Definition: Given an alphabet Σ, a language L is a subset of Σ∗, that is,
L ⊆ Σ∗.

Note: If L ⊆ Σ∗ and Σ ⊆ ∆ then L ⊆ ∆∗.

Note: A language can be either finite or infinite.

Example: Some languages:

Swedish, English, Spanish, French, . . .

Any programming language

∅, {ε} and Σ∗ are languages over any Σ

The set of prime natural numbers {1, 3, 5, 7, 11, . . .}

March 15th 2012, Lecture 3 TMV026/DIT321 16/22

Some Operations on Languages

Definition: Given L, L1 and L2 languages, we define the following
languages:

Union, Intersection, ... : As for any set

Concatenation: L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}

Closure: L∗ =
⋃

n∈N Ln

where L0 = {ε}, Ln+1 = LnL.

Note: We have then that ∅∗ = {ε} and
L∗ = L0 ∪ L1 ∪ L2 ∪ . . . = {ε} ∪ {x1 . . . xn | n > 0, xi ∈ L}

Notation: L+ = L1 ∪ L2 ∪ L3 ∪ . . . and L? = L ∪ {ε}.

March 15th 2012, Lecture 3 TMV026/DIT321 17/22

How to Prove the Equality of Languages?

Given the languages L and M, how can we prove that L =M?

A few possibilities:

Languages are sets so we prove that L ⊆M and M⊆ L

We can reason about the elements in the language:

Example: {a(ba)n | n > 0} = {(ab)na | n > 0} can be proved by
induction on n.

Transitivity of equality: L = L1 = . . . = Lm =M

March 15th 2012, Lecture 3 TMV026/DIT321 18/22

Algebraic Laws for Languages

The following equalities hold for any languages L, M and N :

Associativity: L ∪ (M∪N) = (L ∪M) ∪N ,
L ∩ (M∩N) = (L ∩M) ∩N and L(MN) = (LM)N
Commutative: L ∪M =M∪L and L ∩M =M∩L
In general, concatenation is not commutative: LM 6=ML
Distributivity: L(M∪N) = LM∪LN and (M∪N)L =ML∪NL
Identity (or neutral): L ∪ ∅ = ∅ ∪ L = L and L{ε} = {ε}L = L
Annihilator: L∅ = ∅L = ∅
Idempotent: L ∪ L = L,L ∩ L = L
∅∗ = {ε}∗ = {ε}
L+ = LL∗ = L∗L
(L∗)∗ = L∗

March 15th 2012, Lecture 3 TMV026/DIT321 19/22

Algebraic Laws for Languages (Cont.)

Note: While

L(M∩N) ⊆ LM∩LN and (M∩N)L ⊆ML∩NL

both hold, in general

LM∩LN ⊆ L(M∩N) and ML∩NL ⊆ (M∩N)L

don’t.

Example: Consider the case where

L = {ε, a}, M = {a}, N = {aa}

Then LM∩LN = {aa} but L(M∩N) = L∅ = ∅.

March 15th 2012, Lecture 3 TMV026/DIT321 20/22

Functions between Languages

Definition: A function f : Σ∗ → ∆∗ between 2 languages should be such
that it satisfies

f (ε) = ε
f (xy) = f (x)f (y)

Intuitively, f (a1 . . . an) = f (a1) . . . f (an).
Notice that f (a) ∈ ∆∗ if a ∈ Σ.

Definition: f is called coding iff f is injective.

Definition: f (L) = {f (x) | x ∈ L}.

March 15th 2012, Lecture 3 TMV026/DIT321 21/22

Some Terminology

Definition: A problem is the question of deciding if a given string is a
member of some particular language.

A “problem” can be expressed as membership in a language.

If L is a language over Σ then the problem L is:

given w ∈ Σ∗ decide whether or not w is in L.

March 15th 2012, Lecture 3 TMV026/DIT321 22/22

