Finite Automata and Formal Languages TMV026/DIT321– LP4 2012

Lecture 3 Ana Bove

March 15th 2012

Overview of today's lecture:

- Some Concepts in Discrete Mathematics
- Central Concepts of Automata Theory

Sets

Definition: A *set* is a collection of well defined and distinct objects.

Some operations on sets:

Union: $S_1 \cup S_2 = \{x \mid x \in S_1 \text{ or } x \in S_2\}$

Intersection: $S_1 \cap S_2 = \{x \mid x \in S_1 \text{ and } x \in S_2\}$

Cartesian Product: $S_1 \times S_2 = \{(x, y) \mid x \in S_1 \text{ and } y \in S_2\}$ Observe this is a collection of ordered pairs!

Complement: S - A is the set of all elements in set S not in set A. When the set S is known, S - A is sometimes written \overline{A} .

Some Particular Sets

Empty set: \emptyset is the set with no elements. We have $\emptyset \subseteq S$ for all sets S. Singleton sets: Sets with only one element: $\{p_0\}, \{p_1\}$ Finite sets: Set with a finite number n of elements: $\{p_1, \ldots, p_n\} = \{p_1\} \cup \ldots \cup \{p_n\}$ Power sets: $\mathcal{P}ow(S)$ the set of all subsets of the set S. $\mathcal{P}ow(S) = \{A \mid A \subseteq S\}$. Observe that $\emptyset \in \mathcal{P}ow(S)$ and $S \in \mathcal{P}ow(S)$. Also, if |S| = n then $|\mathcal{P}ow(S)| = 2^n$.

March 15th 2012, Lecture 3

TMV026/DIT321

(Equivalent) Relations

Definition: A (binary) relation R between two sets A and B is a subset of $A \times B$, that is, $R \subseteq A \times B$.

Notation: $(a, b) \in R$, aRb, R(a, b), (a, b) satisfies R.

Definition: A relation *R* over a set *S*, that is $R \subseteq S \times S$, is Reflexive: $\forall a \in S$, aRa

Symmetric: $\forall a, b \in S, aRb \Rightarrow bRa$ Transitive: $\forall a, b, c \in S, aRb \land bRc \Rightarrow aRc$

Definition: A relation *R* over a set *S* that is reflexive, symmetric and transitive is called an *equivalence relation* over *S*.

Example of Relations

Let $S = \{1, 2, 3\}$. Which of these relations are reflexive, symmetric, transitive?

•
$$R_1 = \{(1,2)\}$$

• $R_2 = \{(1,2), (2,3)\}$
• $R_3 = \{(1,2), (2,3), (1,3)\}$
• $R_4 = \{(1,2), (2,1)\}$
• $R_5 = \{(1,2), (2,1), (1,1)\}$
• $R_6 = \{(1,2), (2,1), (1,1), (2,2)\}$
• $R_7 = \{(1,2), (2,1), (1,1), (2,2), (3,3)\}$

March 15th 2012, Lecture 3

TMV026/DIT321

Partitions

Definition: A set *P* is a *partition* over the set *S* if:

• Every element of P is a non-empty subset of S

$$\forall C \in P, \ C \neq \emptyset \land C \subseteq S$$

• Elements of P are pairwise disjoint

$$\forall C_1, C_2 \in P, \ C_1 \neq C_2 \Rightarrow C_1 \cap C_2 = \emptyset$$

• The union of the elements of P is equal to S

$$\bigcup_{C\in P} C = S$$

Equivalent Classes

Let R be an equivalent relation over S.

Definition: If $a \in S$, then the *equivalent class* of a in S is the set defined as $[a] = \{b \in S \mid aRb\}$.

Lemma: $\forall a, b \in S$, [a] = [b] iff aRb.

Theorem: The set of all equivalence classes in *S* with respect to *R* form a partition over *S*.

Note: This partition is called the *quotient* and it is denoted as S/R.

Example: The rational numbers \mathbb{Q} can be formally defined as the equivalence classes of the quotient set $\mathbb{Z} \times \mathbb{Z}^+ / \sim$, where \sim is the equivalence relation defined by $(m_1, n_1) \sim (m_2, n_2)$ iff $m_1 n_2 =_{\mathbb{Z}} m_2 n_1$.

March 15th 2012, Lecture 3

TMV026/DIT321

Central Concepts of Automata Theory: Alphabets

Definition: An *alphabet* is a finite, non-empty set of symbols, usually denoted by Σ . The number of symbols in Σ is denoted as $|\Sigma|$.

Type convention: We will use a, b, c, \ldots to denote symbols.

Note: Alphabets will represent the observable events of the automata.

Example: Some alphabets:

- on/off-switch: $\Sigma = \{Push\}$
- simple vending machine: $\Sigma = \{5 \ kr, choc\}$
- complex vending machine: $\Sigma = \{5 \ kr, 10 \ kr, choc, big choc\}$
- parity counter: $\Sigma = \{p_0, p_1\}$

Strings or Words

Definition: *Strings/Words* are finite sequence of symbols from some alphabet.

Type convention: We will use w, x, y, z, \ldots to denote words.

Note: A word will represent the *behaviour* of an automaton.

Example: Some behaviours:

- on/off-switch: Push Push Push Push ...
- simple vending machine: 5 kr choc 5 kr choc 5 kr choc ...
- parity counter: p_0p_1 or $p_0p_0p_0p_1p_1p_0$ or ...

March 15th 2012, Lecture 3

TMV026/DIT321

Inductive Definition of Σ^*

Definition: Σ^* is the set of all words for a given alphabet Σ . This can be described inductively in at least 2 different ways:

- 1. Basis case: the empty word ϵ is in Σ^* (notation: $\epsilon \in \Sigma^*$) Inductive step: if $a \in \Sigma$ and $x \in \Sigma^*$ then $ax \in \Sigma^*$
- 2. Basis case: $\epsilon \in \Sigma^*$ Inductive step: if $a \in \Sigma$ and $x \in \Sigma^*$ then $xa \in \Sigma^*$

We can (recursively) *define* functions over Σ^* and (inductively) *prove* properties about those functions.

Length

Definition: The *length* function $|_{-}| : \Sigma^* \to \mathbb{N}$ is defined as:

 $\begin{aligned} |\epsilon| &= 0\\ |ax| &= 1 + |x| \end{aligned}$

Example: $|p_0p_1p_1p_0p_0| = 5$

March 15th 2012, Lecture 3

TMV026/DIT32

Concatenation

Definition: Given the strings x and y, the *concatenation* xy is defined as:

$$\epsilon y = y$$

(ax) $y = a(xy)$

Example: Observe that in general $xy \neq yx$. If $x = p_0p_1p_1$ and $y = p_0p_0$ then $xy = p_0p_1p_1p_0p_0$ and $yx = p_0p_0p_0p_1p_1$.

Lemma: If Σ has more than one symbol then concatenation is not commutative.

Power

Intuitively, $rev(a_1 \dots a_n) = a_n \dots a_1$.

Definition: Formally we can define rev(x) as:

$$rev(\epsilon) = \epsilon$$

 $rev(ax) = rev(x)a$

Some Properties

The following properties can be proved by induction:

Lemma: Concatenation is associative: $\forall x, y, z. \ x(yz) = (xy)z.$ We shall simply write xyz.

Lemma: $\forall x, y. |xy| = |x| + |y|.$ Lemma: $\forall x, y. x\epsilon = \epsilon x = x.$ Lemma: $\forall x. |x^n| = n|x|.$ Lemma: $\forall \Sigma. |\Sigma^n| = |\Sigma|^n.$ Lemma: $\forall x, rev(rev(x)) = x.$ Lemma: $\forall x, y. rev(xy) = rev(y)rev(x).$

March 15th 2012, Lecture 3

TMV026/DIT321

Some Terminology

Definition: Given x and y words over a certain alphabet Σ :

- x is a *prefix* of y iff there exists z such that y = xz
- x is a suffix of y iff there exists z such that y = zx
- x is a *palindrome* iff x = rev(x)

Languages

Definition: Given an alphabet Σ , a *language* \mathcal{L} is a subset of Σ^* , that is, $\mathcal{L} \subseteq \Sigma^*$.

Note: If $\mathcal{L} \subseteq \Sigma^*$ and $\Sigma \subseteq \Delta$ then $\mathcal{L} \subseteq \Delta^*$.

Note: A language can be either finite or infinite.

Example: Some languages:

- Swedish, English, Spanish, French, ...
- Any programming language
- \emptyset , $\{\epsilon\}$ and Σ^* are languages over any Σ
- The set of prime natural numbers $\{1, 3, 5, 7, 11, \ldots\}$

March 15th 2012, Lecture 3

TMV026/DIT321

16/22

Some Operations on Languages

Definition: Given \mathcal{L} , \mathcal{L}_1 and \mathcal{L}_2 languages, we define the following languages:

Union, Intersection, ... : As for any set

Concatenation: $\mathcal{L}_1\mathcal{L}_2 = \{x_1x_2 \mid x_1 \in \mathcal{L}_1, x_2 \in \mathcal{L}_2\}$

Closure: $\mathcal{L}^* = \bigcup_{n \in \mathbb{N}} \mathcal{L}^n$ where $\mathcal{L}^0 = \{\epsilon\}$, $\mathcal{L}^{n+1} = \mathcal{L}^n \mathcal{L}$.

Note: We have then that $\emptyset^* = \{\epsilon\}$ and $\mathcal{L}^* = \mathcal{L}^0 \cup \mathcal{L}^1 \cup \mathcal{L}^2 \cup \ldots = \{\epsilon\} \cup \{x_1 \ldots x_n \mid n > 0, x_i \in \mathcal{L}\}$

Notation: $\mathcal{L}^+ = \mathcal{L}^1 \cup \mathcal{L}^2 \cup \mathcal{L}^3 \cup \ldots$ and $\mathcal{L}^2 = \mathcal{L} \cup \{\epsilon\}.$

How to Prove the Equality of Languages?

Given the languages \mathcal{L} and \mathcal{M} , how can we prove that $\mathcal{L} = \mathcal{M}$?

A few possibilities:

- \bullet Languages are sets so we prove that $\mathcal{L}\subseteq \mathcal{M}$ and $\mathcal{M}\subseteq \mathcal{L}$
- We can reason about the elements in the language:

Example: $\{a(ba)^n \mid n \ge 0\} = \{(ab)^n a \mid n \ge 0\}$ can be proved by induction on n.

• Transitivity of equality: $\mathcal{L} = \mathcal{L}_1 = \ldots = \mathcal{L}_m = \mathcal{M}$

March 15th 2012, Lecture 3

TMV026/DIT32

Algebraic Laws for Languages

The following equalities hold for any languages \mathcal{L} , \mathcal{M} and \mathcal{N} :

- Associativity: $\mathcal{L} \cup (\mathcal{M} \cup \mathcal{N}) = (\mathcal{L} \cup \mathcal{M}) \cup \mathcal{N}$, $\mathcal{L} \cap (\mathcal{M} \cap \mathcal{N}) = (\mathcal{L} \cap \mathcal{M}) \cap \mathcal{N}$ and $\mathcal{L}(\mathcal{M}\mathcal{N}) = (\mathcal{L}\mathcal{M})\mathcal{N}$
- Commutative: $\mathcal{L} \cup \mathcal{M} = \mathcal{M} \cup \mathcal{L}$ and $\mathcal{L} \cap \mathcal{M} = \mathcal{M} \cap \mathcal{L}$
- In general, concatenation is not commutative: $\mathcal{LM} \neq \mathcal{ML}$
- Distributivity: $\mathcal{L}(\mathcal{M} \cup \mathcal{N}) = \mathcal{L}\mathcal{M} \cup \mathcal{L}\mathcal{N}$ and $(\mathcal{M} \cup \mathcal{N})\mathcal{L} = \mathcal{M}\mathcal{L} \cup \mathcal{N}\mathcal{L}$
- Identity (or neutral): $\mathcal{L} \cup \emptyset = \emptyset \cup \mathcal{L} = \mathcal{L}$ and $\mathcal{L}{\epsilon} = {\epsilon}\mathcal{L} = \mathcal{L}$
- Annihilator: $\mathcal{L}\emptyset = \emptyset \mathcal{L} = \emptyset$
- Idempotent: $\mathcal{L} \cup \mathcal{L} = \mathcal{L}, \mathcal{L} \cap \mathcal{L} = \mathcal{L}$
- $\emptyset^* = \{\epsilon\}^* = \{\epsilon\}$

•
$$\mathcal{L}^+ = \mathcal{L}\mathcal{L}^* = \mathcal{L}^*\mathcal{L}$$

•
$$(\mathcal{L}^*)^* = \mathcal{L}^*$$

Algebraic Laws for Languages (Cont.)

Note: While

$$\mathcal{L}(\mathcal{M}\cap\mathcal{N})\subseteq\mathcal{LM}\cap\mathcal{LN}\quad\text{and}\quad(\mathcal{M}\cap\mathcal{N})\mathcal{L}\subseteq\mathcal{ML}\cap\mathcal{NL}$$

both hold, in general

 $\mathcal{LM}\cap\mathcal{LN}\subseteq\mathcal{L}(\mathcal{M}\cap\mathcal{N}) \quad \text{and} \quad \mathcal{ML}\cap\mathcal{NL}\subseteq(\mathcal{M}\cap\mathcal{N})\mathcal{L}$

don't.

Example: Consider the case where

$$\mathcal{L} = \{\epsilon, a\}, \quad \mathcal{M} = \{a\}, \quad \mathcal{N} = \{aa\}$$

Then $\mathcal{LM} \cap \mathcal{LN} = \{aa\}$ but $\mathcal{L}(\mathcal{M} \cap \mathcal{N}) = \mathcal{L}\emptyset = \emptyset$.

March 15th 2012, Lecture 3

TMV026/DIT32

20/22

Functions between Languages

Definition: A function $f : \Sigma^* \to \Delta^*$ between 2 languages should be such that it satisfies

$$f(\epsilon) = \epsilon$$

$$f(xy) = f(x)f(y)$$

Intuitively, $f(a_1 \dots a_n) = f(a_1) \dots f(a_n)$. Notice that $f(a) \in \Delta^*$ if $a \in \Sigma$.

Definition: *f* is called *coding* iff *f* is *injective*.

Definition: $f(\mathcal{L}) = \{f(x) \mid x \in \mathcal{L}\}.$

Some Terminology

Definition: A *problem* is the question of deciding if a given string is a member of some particular language.

A "problem" can be expressed as membership in a language.

If $\mathcal L$ is a language over Σ then the problem $\mathcal L$ is:

given $w \in \Sigma^*$ decide whether or not w is in \mathcal{L} .

March 15th 2012, Lecture 3

FMV026/DIT321

22/22