Lecture 3
Ana Bove

March 15th 2012

Overview of today’s lecture:
o Some Concepts in Discrete Mathematics
o Central Concepts of Automata Theory

Definition: A set is a collection of well defined and distinct objects.
Some operations on sets:

Union: S US, ={x | x € 51 or x € 55}
Intersection: SN Sy = {x | x € S; and x € S5}

Cartesian Product: §1 X S, ={(x,y) | x € 51 and y € S5}
Observe this is a collection of ordered pairs!

Complement: S — A is the set of all elements in set S not in set A.

March 15th 2012, Lecture 3 TMV026/DIT321

When the set S is known, S — A is sometimes written A.

1/22

Some Particular Sets

Empty set: () is the set with no elements. We have () C S for all sets S.
Singleton sets: Sets with only one element: {po}, {p1}

Finite sets: Set with a finite number n of elements:
{p1,.-.spn} ={p} U ... U {pn}

Power sets: Pow(S) the set of all subsets of the set S.
Pow(S)={A| ACS}.
Observe that () € Pow(S) and S € Pow(S).
Also, if |S| = n then [Pow(S)| = 2".

March 15th 2012, Lecture 3 TMV026/DIT321

(Equivalent) Relations

Definition: A (binary) relation R between two sets A and B is a subset
of Ax B, thatis, RC A x B.

Notation: (a, b) € R, aRb, R(a, b), (a, b) satisfies R.

Definition: A relation R over aset S, thatis RC S x S, is

Reflexive: Va € S, aRa
Symmetric: Va,b € S, aRb = bRa
Transitive: Va,b,c € S, aRb N\ bRc = aRc

Definition: A relation R over a set S that is reflexive, symmetric and
transitive is called an equivalence relation over S.

March 15th 2012, Lecture 3 TMV026/DIT321 3/22

Let S = {1,2,3}. Which of these relations are reflexive, symmetric,
transitive?

Ri ={(1,2)}

R, ={(1,2),(2,3)}

Rs ={(1,2),(2,3),(1,3)}

Ra ={(1,2),(2,1)}

Rs ={(1,2),(2,1),(1,1)}

Re ={(1,2),(2,1),(1,1),(2,2)}

Rr ={(1,2),(2,1),(1,1),(2,2),(3,3)}

© 06 06 66 o o o

March 15th 2012, Lecture 3 TMV026/DIT321

Definition: A set P is a partition over the set S if:

o Every element of P is a non-empty subset of S
VCeP, CAEONCCS
o Elements of P are pairwise disjoint
VG,GeP, GEG=0GNG=10

o The union of the elements of P is equal to $§

March 15th 2012, Lecture 3 TMV026/DIT321

Equivalent Classes

Let R be an equivalent relation over S.

Definition: If a2 € S, then the equivalent class of ain S is the set defined
as [a] = {b € S | aRb}.

Lemma: Va, b e S, [a] = [b] iff aRb.

Theorem: The set of all equivalence classes in S with respect to R form
a partition over S.

Note: This partition is called the quotient and it is denoted as S/R.

Example: The rational numbers Q) can be formally defined as the
equivalence classes of the quotient set Z x Z*/ ~, where ~ is the
equivalence relation defined by (my, ny) ~ (mg, np) iff myny =7 mony.

March 15th 2012, Lecture 3 TMV026/DIT321 6/22

Central Concepts of Automata Theory: Alphabets

Definition: An alphabet is a finite, non-empty set of symbols, usually
denoted by .
The number of symbols in X is denoted as |X|.

Type convention: We will use a, b, c, ... to denote symbols.
Note: Alphabets will represent the observable events of the automata.

Example: Some alphabets:
o on/off-switch: ¥ = {Push}
o simple vending machine: ¥ = {5 kr, choc}
o complex vending machine: ¥ = {5 kr, 10 kr, choc, big choc}
o parity counter: ¥ = {pp, p1}

March 15th 2012, Lecture 3 TMV026/DIT321 7/22

Strings or Words

Definition: Strings/Words are finite sequence of symbols from some
alphabet.

Type convention: We will use w, x, y, z,... to denote words.
Note: A word will represent the behaviour of an automaton.

Example: Some behaviours:
o on/off-switch: Push Push Push Push ...

o simple vending machine: 5 kr choc 5 kr choc 5 kr choc ...

@ parity counter: pgop1 or poPoPoP1P1PO OF ...

March 15th 2012, Lecture 3 TMV026/DIT321 8/22

Inductive Definition of 2*

Definition: X* is the set of all words for a given alphabet X.
This can be described inductively in at least 2 different ways:

1. Basis case: the empty word € is in ¥* (notation: € € ¥¥)
Inductive step: if a € X and x € X* then ax € L*

2. Basis case: e € X*
Inductive step: if a € X and x € X* then xa € L*

We can (recursively) define functions over ¥* and (inductively) prove
properties about those functions.

March 15th 2012, Lecture 3 TMV026/DIT321 9/22

Definition: The /ength function |_| : ¥* — N is defined as:

el =0
|ax| =1+ |x|

Example: |pop1p1popo| =5

March 15th 2012, Lecture 3 TMV026/DIT321

Definition: Given the strings x and y, the concatenation xy is defined as:
ey =Yy
(ax)y = a(xy)

Example: Observe that in general xy # yx.
If x = pop1p1 and y = popo then xy = pop1p1popo and yx = popopop1pi-

Lemma: If ¥ has more than one symbol then concatenation is not
commutative.

March 15th 2012, Lecture 3 TMV026/DIT321 11/22

Of a string: We define x" as follows:

XOZG

XML — xx"

Example: (pop1po)® = pop1popop1Popop1po

Of an alphabet: We define X", the set of words over ¥ with length n, as

follows:

20 = {¢}

Yl =Jlax|ae X, xe X"}
Example:
{0,1}3 = {000, 001,010,011, 100,101,110, 111}.

Observe: ** =¥ y¥!(Jx2... and
Tt=ylJx2se...

March 15th 2012, Lecture 3 TMV026/DIT321

Intuitively, rev(a; ... ap) = a,... a1.

Definition: Formally we can define rev(x) as:

rev(e) =€
rev(ax) = rev(x)a

March 15th 2012, Lecture 3 TMV026/DIT321 13/22

Lemma:
Lemma:
Lemma:
Lemma:
Lemma:

Lemma:

The following properties can be proved by induction:

Lemma: Concatenation is associative: Vx,y,z. x(yz) = (xy)z.
We shall simply write xyz.

Vx,y. |xy| = x|+ |y|.

VX, y. Xe = ex = X.
Vx. |x"| = n|x|.
VI X = X",
Vx, rev(rev(x)) = x.

Vx, y. rev(xy) = rev(y)rev(x).

March 15th 2012, Lecture 3 TMV026/DIT321

Definition: Given x and y words over a certain alphabet X:
o x is a prefix of y iff there exists z such that y = xz

o x is a suffix of y iff there exists z such that y = zx

o x is a palindrome iff x = rev(x)

March 15th 2012, Lecture 3 TMV026/DIT321

15/22

Languages

Definition: Given an alphabet X, a language L is a subset of ¥*, that is,
L CY*

Note: If LC ¥* and X C A then £ C A*.

Note: A language can be either finite or infinite.

Example: Some languages:
o Swedish, English, Spanish, French, ...
o Any programming language
o (), {€} and X* are languages over any ¥
o The set of prime natural numbers {1,3,5,7,11,...}

March 15th 2012, Lecture 3 TMV026/DIT321 16/22

Some Operations on Languages

Definition: Given £, £; and L5 languages, we define the following
languages:

Union, Intersection, ... : As for any set
Concatenation: L£1L, = {x1x2 | x1 € L1, x2 € L}

Closure: L£* = J,en £”
where £0 = {e}, L1 = L"L.

Note: We have then that 0* = {e} and
£r=L0uctuL’u...={du{xx...x, | n>0,x; € L}

Notation: £T =£'uL?2uL3U... and L?=LU{e}.

March 15th 2012, Lecture 3 TMV026/DIT321 17/22

How to Prove the Equality of Languages?

Given the languages £ and M, how can we prove that £ = M?

A few possibilities:

o Languages are sets so we prove that L C M and M C L

o We can reason about the elements in the language:

Example: {a(ba)” | n > 0} = {(ab)"a | n > 0} can be proved by
induction on n.

o Transitivity of equality: L=L1=... =L, =M

March 15th 2012, Lecture 3 TMV026/DIT321

Algebraic Laws for Languages

The following equalities hold for any languages £, M and N

o Associativity: LU(MUN) =(LUM)UN,
LAMNON)=(LAM)NN and LMN) = (LM)N
Commutative: LUM=MULand LOM=MnNL
In general, concatenation is not commutative: LM #= ML
Distributivity: L(MUN) =LMULN and (MUN)L = MLUNL
Identity (or neutral): LUD=0UL =L and L{e} ={e}L =L
Annihilator: L) = 0L =0
ldempotent: LUL=L,LNL=L
0 ={e}* = {e}
LT =LL=L*L

Q
Qo
Q
Q
Qo
Q
Q
Q
Qo

March 15th 2012, Lecture 3 TMV026/DIT321

Algebraic Laws for Languages (Cont.)

Note: While

LMNON)CLMNLN and (MNN)LCMLNNL
both hold, in general

LMNLN CLMNN) and MLNANLC(MNN)L

don't.

Example: Consider the case where
L={ea}l, M={a}, N ={aa}
Then LM N LN = {aa} but LM NN) = LD = 0.

March 15th 2012, Lecture 3 TMV026/DIT321

Functions between Languages

Definition: A function f : X* — A* between 2 languages should be such

that it satisfies
f(e) =€

f(xy) = f(x)f(y)

Intuitively, f(a1...an) = f(a1)...f(an).
Notice that f(a) € A* if a € L.

Definition: f is called coding iff f is injective.

Definition: (L) = {f(x) | x € L}.

March 15th 2012, Lecture 3 TMV026/DIT321 21/22

Definition: A problem is the question of deciding if a given string is a
member of some particular language.

A “problem” can be expressed as membership in a language.

If £ is a language over X then the problem L is:

given w € X* decide whether or not w is in L.

March 15th 2012, Lecture 3 TMV026/DIT321

