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Overview of today’s lecture:

Formal Proofs

Inductively defined sets

Proofs by (structural) induction

How Formal a Proof Should Be?

Should be convincing!

Should not leave too much out

The validity of each step should be easily understood

Valid steps are for example:

Reduction to definition:

“x is a positive integer” is equivalent to “x > 0”

Use of hypothesis

Combining previous facts and known statements:

“Given A⇒ B and A we can conclude B by modus ponens”
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Form of Statements

Statements we want to prove are usually of the form

If H1 and H2 . . . and Hn then C1 and . . . and Cm

or

P1 and . . . and Pk iff Q1 and . . . and Qm

for n > 0; m, k > 1

Note: Observe that one proves the conclusion assuming the validity of
the hypotheses!
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Different Kinds of Proofs

Proofs by Contradiction

If H then C

is logically equivalent to

H and not C implies “something known to be false”

Example: If x 6= 0 then x2 6= 0.

Proofs by Contrapositive
“If H then C” is logically equivalent to “If not C then not H”

Proofs by Counterexample
We find an example that “breaks” what we want to prove.
Example: All natural numbers are odd.
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Proofs by Induction

How to prove an statement over the natural numbers?

Mathematical induction: When we want to prove a property P over all
natural numbers.
Given P(0) and ∀n ∈ N. P(n)⇒ P(n + 1) then
∀n ∈ N. P(n).

More generally: given P(i), P(i + 1), . . . ,P(j) for j > i , and
∀n > i . P(n)⇒ P(n + 1) then ∀n > i . P(n).

Course of value induction: Variant of mathematical induction.
Given P(i), P(i + 1), . . . ,P(j) for j > i and
∀i 6 m < n. P(m)⇒ P(n) then ∀n > i . P(n).
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Example: Proof by Induction

Proposition: Let f (0) = 0 and f (n + 1) = f (n) + n + 1. Then, ∀n ∈ N,
we have f (n) = n(n + 1)/2.

Proof: By induction on n where P(n) is f (n) = n(n + 1)/2.

Basis case: We prove that P(0) holds.

Inductive step: We prove that if for a given n > 0 P(n) holds, then
P(n + 1) also holds.
P(n) here is called our inductive hypothesis (IH).

Closure: Now we have established that for all n, P(n) is true!
In particular we know that P(0), P(1), P(2), . . . ,P(15), . . .
hold.
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Example: Proof by Induction

Proposition: If n > 8 then n can be written as a sum of 3’s and 5’s.

Proof: By course of value induction on n where P(n) is“n can be written
as a sum of 3’s and 5’s”.

Basis cases: P(7) does not hold but P(8), P(9) and P(10) hold.

Inductive step: Now we want to prove that if P(8), P(9), . . . ,P(n) hold
for n > 10 then P(n + 1) holds.

Observe that if n > 10 then n > n + 1− 3 > 8.
Hence by inductive hypothesis P(n + 1− 3) holds.
By adding an extra 3 then P(n + 1) holds as well.

Closure: ∀n > 8. P(n).
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Example: Proof by Induction

Proposition: All horses have the same colour.

Proof: Let P(n) be “in any set of n horses they all have the same colour”.

Basis cases: P(0) is not interesting in this example.
P(1) is clearly true.

Inductive step: Let us show that P(n) implies P(n + 1).
Let h1, h2, . . . , hn, hn+1 be a set of n + 1 horses.
Take h1, h2, . . . , hn. By IH they all have the same colour.
Take now h2, h3, . . . , hn, hn+1. Again, by IH they all have the
same colour.
Hence, by transitivity, all horses h1, h2, . . . , hn, hn+1 must
have the same colour.

Closure: ∀n. P(n) has n horses with the same colour.

March 13th 2012, Lecture 2 TMV026/DIT321 7/15



Mutual Induction

Sometimes we cannot prove a single statement P(n) but rather a group of
statements P1(n), P2(n), . . . ,Pk(n) simultaneously by induction on n.

This is very common in automata theory where we need an statement for
each of the states of the automata.

Example: Recall the on/off-switch from last lecture.
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Example: Proof by Mutual Induction

Let f , g , h : N→ {0, 1} be as follows:

f (0) = 0 g(0) = 1 h(0) = 0
f (n + 1) = g(n) g(n + 1) = f (n) h(n + 1) = 1− h(n)

Proposition: ∀n. h(n) = f (n).

Proof: If P(n) is h(n) = f (n) it does not seem possible to prove
P(n)⇒ P(n + 1) directly.

We strengthen P(n) to P ′(n) as follows:
Let P ′(n) be h(n) = f (n) ∧ h(n) = 1− g(n).
We prove P ′(0), that is, h(0) = f (0) ∧ h(0) = 1− g(0).
Then we prove that P ′(n + 1) follows from P ′(n).
Now we know that ∀n. P ′(n) is true.
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Automaton Representation

We can think of f , g and h as a circuit.

The circuit can be represented as an automaton as follows:

The states are the possible values of s(n) = (f (n), g(n), h(n))

The transitions are from the states s(n) to the state s(n + 1)

Initial state is s(0) = (0, 1, 0)

One can check the invariant f (n) = h(n) on all the states accessible from
the initial state.
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Inductively Defined Sets

Natural Numbers: Basis case: 0 is a natural number;
Inductive step: If n is a natural number then n + 1 is a
natural number;
Closure: There is no other way to construct natural numbers.

Finite Lists: Basis case: [] is the empty list over any set A;
Inductive step: If a ∈ A and xs is a list over A then a : xs is
a list over A;
Closure: There is no other way to construct lists.

Finitely Branching Trees: Basis case: () is a tree over any set A;
Inductive step: If t1, . . . , tk are tree over the set A and
a ∈ A, then (a, t1, . . . , tk) is a tree over A;
Closure: There is no other way to construct trees.

. . .

Compare this with the definition of (recursive) data types in a
programming language! What can you say?
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Inductively Defined Sets (Cont.)

To define a set S by induction we need to specify:

Basis cases: Here we say which specific elements e1, . . . , em belong to S .

Inductive steps: Assuming that s1, . . . , sn belong to S , we indicate how to
use s1, . . . , sn in order to construct new elements of S
c1[s1, . . . , sn], . . . , ck[s1, . . . , sn].

Closure: There is no other way to construct elements in S .

Example: The set of simple Boolean expressions is defined as:
Basis cases: true and false are Boolean expressions
Inductive steps: if a and b are Boolean expressions then

(a) not a a and b a or b

are also Boolean expressions.
Closure: . . .
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Proofs by Structural Induction

Generalisation of mathematical induction to other inductively defined
object such as lists, trees, . . .

VERY useful in computer science since it allows to prove properties over
the (finite) elements in a data type!

Given an inductively defined set S , to prove ∀s ∈ S . P(s) then:

Basis cases: We prove that P holds for all base cases: P(e1), . . . ,P(em).

Inductive steps: Assuming that P(s1), . . . ,P(sn) hold, we prove that
P(c1[s1, . . . , sn]), . . . ,P(ck[s1, . . . , sn]) also hold.
Here, P(s1), . . . ,P(sn) are our inductive hypotheses (IH).

Closure: ∀s ∈ S . P(s).
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Example: Proof by Structural Induction

We can now use recursion to define functions over an inductively defined
set and then prove properties of these functions by structural induction.

Given the finite lists, let us (recursively) define the append and length
functions:

[] ++ ys = ys len [] = 0
(a : xs) ++ ys = a : (xs ++ ys) len (a : xs) = 1 + len xs

Proposition: ∀xs, ys. len (xs ++ ys) = len xs + len ys.

Proof: By structural induction on xs.
Basis case: We prove P[].
Inductive step: We show that P(xs) implies P(a : xs).
Closure: ∀xs. P(xs).
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Example: Proof by Structural Induction

Given the finitely branching trees, let us (recursively) define functions
counting the number of edges and of nodes:

ne() = 0 nn() = 1
ne(a, t1, . . . , tk) = k+ nn(a, t1, . . . , tk) = 1+

ne(t1) + . . . + ne(tk) nn(t1) + . . . + nn(tk)

Proposition: ∀t. nn(t) = 1 + ne(t).

Proof: By structural induction on t.
Basis case: We prove P().
Inductive step: We show that if P(t1), . . . ,P(tk) then P(a, t1, . . . , tk).
Closure: ∀t. P(t).
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