Finite Automata and Formal Languages

TMV026/DIT321-LP4 2012

Lecture 11 Ana Bove

April 24th 2012

Overview of today's lecture:

- Context-Free Grammars
- Derivations
- Parse Trees

Context-Free Grammars

Not all languages are regular languages as we have seen.

Context-free grammars (CFG) define the so called context-free languages.

We have that (we will see this next lecture) regular languages \subset context-free languages

CFG play an important role in the description and design of programming languages and compilers, for example, for the implementation of parsers.

They have been developed in the mid-1950s by Noam Chomsky.

Example: Palindromes

Let us consider the language of *palindromes* over $\Sigma = \{0, 1\}$. That is, $\mathcal{L} = \{w \in \Sigma^* \mid w = \operatorname{rev}(w)\}.$

Example of palindromes over Σ are ϵ , 0110, 00011000, 010.

We can use the Pumping Lemma for RL to show that \mathcal{L} is not regular.

How can \mathcal{L} be defined?

We have that

- ϵ , 0 and 1 are in \mathcal{L}
- if $w \in \mathcal{L}$ then 0w0 and 1w1 are also in \mathcal{L}

April 24th 2012, Lecture 11

TMV026/DIT321

Example: Palindromes

The definition of palindromes as a CFG is the following

$$egin{array}{cccc} P & o & \epsilon \ P & o & 0 \ P & o & 1 \ P & o & 0P0 \ P & o & 1P1 \end{array}$$

The variable P represents the class of the strings that are palindromes. The rules say how to construct the strings in the language.

Example: Simple Expressions

Here we define 2 classes of strings: those representing simple numerical expressions and those representing Boolean expressions.

 $\begin{array}{rcccc} E & \to & 0 \\ E & \to & 1 \\ E & \to & E + E \\ E & \to & \text{if } B \text{ then } E \text{ else } E \\ B & \to & \text{True} \\ B & \to & \text{False} \\ B & \to & E < E \\ B & \to & E = = E \end{array}$

April 24th 2012, Lecture 11

TMV026/DIT321

Compact Notation

We can group all productions defining elements in a certain class to have a more compact notation.

Example: Palindromes can be defined as

 $P \rightarrow \epsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$

Example: The expressions can be defined as

Context-Free Grammars

Definition: A *context-free grammar* is a 4-tuple $G = (V, T, \mathcal{R}, S)$ where:

- V is a finite set of variables or non-terminals
 Each variable represents a language or set of strings;
- T is a finite set of symbols or terminals
 (Think of T as the alphabet of the language you are defining);
- \mathcal{R} is a finite set of *rules* or *productions* which recursively define the language. Each production consists of:
 - A variable being defined in the production;
 - The symbol " \rightarrow ";
 - A string of 0 or more terminals and variables called the *body* of the production;

TMV026/DIT321

• *S* is the *start variable* and represents the language we are defining Other variables define the auxiliary classes needed to define our language.

April 24th 2012, Lecture 11

Notation for Context-Free Grammars

We use the following convention when talking about CFG:

- *a*, *b*, *c*, ..., 0, 1, ..., (,), +, %, ... are terminal symbols;
- A, B, C, ... are variables (non-terminals);
- w, x, y, z, \ldots are strings of terminals;
- X, Y, \ldots are either a terminal or a variable;
- α, β, γ,... are strings of terminals and/or variables
 In particular, they can also represent strings with *only* variables.

Derivation Using Grammars

We use the productions of a CFG to infer that a string w is in the language of given variable. We can do it in 2 different (equivalent) ways:

Recursive inference: From body to head.

Example: We infer that 0110110 is a palindrome			palindrome
1)	0	is palindrome by rule	P ightarrow 0
2)	101	is palindrome using	1) and rule $P ightarrow 1P1$
3)	11011	is palindrome using	2) and rule $P ightarrow 1P1$
4)	0110110	is palindrome using	3) and rule $P \rightarrow 0P0$

Derivation: (Notation: \Rightarrow) From head to body.

Example: We infer that 0 == 0 + 1 is a Boolean expression

 $B \Rightarrow E == E \Rightarrow 0 == E \Rightarrow 0 == E + E \Rightarrow 0 == E + 1 \Rightarrow 0 == 0 + 1$

April 24th 2012, Lecture 11

TMV026/DIT321

Formal Definition of Derivation

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

Definition: Let $A \in V$ and $\alpha, \beta \in (V \cup T)^*$. Let $A \to \gamma \in \mathcal{R}$. Then $\alpha A\beta \Rightarrow \alpha \gamma \beta$ is one *derivation step* (alternative $\alpha A\beta \stackrel{\mathsf{G}}{\Rightarrow} \alpha \gamma \beta$).

We can define a relation performing zero or more derivation steps.

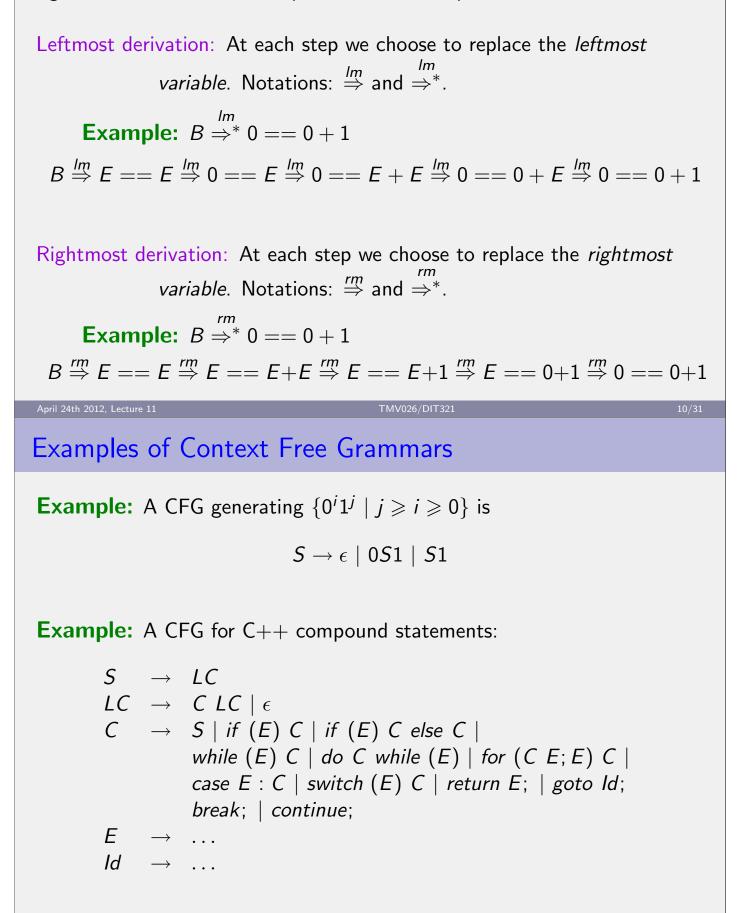
Definition: The *reflexive-transitive closure* of \Rightarrow is the relation \Rightarrow^* (alternative \Rightarrow^*) defined as follows:

$$\frac{\alpha \Rightarrow^* \beta \qquad \beta \Rightarrow \gamma}{\alpha \Rightarrow^* \gamma}$$

Example: We saw in the previous slide that $B \Rightarrow^* 0 == 0 + 1$.

Leftmost and Rightmost Derivations

At every derivation step we can choose to replace *any* variable by the right-hand side of one of its productions. Two particular derivations are:



Sentential Forms

Derivations from the start variable have an special role.

Definition: Let $G = (V, T, \mathcal{R}, S)$ be a CFG and let $\alpha \in (V \cup T)^*$. Then $S \Rightarrow^* \alpha$ is called a *sentential form*. (We talk of *left sentential form* if $S \Rightarrow^* \alpha$ and *right sentential form* if $S \Rightarrow^* \alpha$.)

Example: A sentential form: $B \Rightarrow^* 0 == E + 1$ since $B \Rightarrow E == E \Rightarrow 0 == E \Rightarrow 0 == E + E \Rightarrow 0 == E + 1$ A left sentential form: $B \Rightarrow^* E == 0 + 1$ since $B \Rightarrow^m E == E \Rightarrow^m 0 == E \Rightarrow^m 0 == E + E \Rightarrow^m 0 == 0 + E$ A right sentential form: $B \Rightarrow^* E == 0 + 1$ since $B \Rightarrow^m E == E \Rightarrow^m E == E + E \Rightarrow^m E == E + 1 \Rightarrow^m E == 0 + 1$

Observations on Derivations

Observe: If we have $A \Rightarrow^* \gamma$ then we also have $\alpha A \beta \Rightarrow^* \alpha \gamma \beta$.

The same sequence of steps that took us from A to γ will also take us from $\alpha A\beta$ to $\alpha\gamma\beta$.

Example: We have $E \Rightarrow^* 0 + 1$ since $E \Rightarrow E + E \Rightarrow 0 + E \Rightarrow 0 + 1$.

This same derivation justifies $E == E \Rightarrow^* E == 0 + 1$ since

$$E == E \Rightarrow E == E + E \Rightarrow E == 0 + E \Rightarrow E == 0 + 1$$

Observations on Derivations

Observe: If we have $A \Rightarrow X_1 X_2 \dots X_k \Rightarrow^* w$, then we can break w into pieces w_1, w_2, \dots, w_k such that $X_i \Rightarrow^* w_i$. If X_i is a terminal then $X_i = w_i$.

This can be showed by proving (by induction on the length of the derivation) that if $X_1X_2...X_k \Rightarrow^* \alpha$ then all positions of α that come from expansion of X_i are to the left of all positions that come from the expansion of X_i if i < j.

To obtain $X_i \Rightarrow^* w_i$ from $A \Rightarrow^* w$ we need to remove all positions of the sentential form that are to the left and to the right of all the positions derived from X_i , and all steps not relevant for the derivation of w_i from X_i .

Example: Let $B \Rightarrow E == E \Rightarrow E == E + E \Rightarrow E == E + 0 \Rightarrow$ $E == E + E + 0 \Rightarrow E == 0 + E + 0 \Rightarrow 1 == 0 + E + 0 \Rightarrow 1 == 0 + 1 + 0.$

The derivation from the middle *E* in the sentential form E == E + E is $E \Rightarrow E + E \Rightarrow 0 + E \Rightarrow 0 + 1$.

April 24th 2012, Lecture 11

TMV026/DIT321

.4/31

Language of a Grammar

Definition: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. The language of G, denoted $\mathcal{L}(G)$ is the set of terminal strings that can be derived from the start variable, that is,

$$\mathcal{L}(G) = \{ w \in T^* \mid S \stackrel{G}{\Rightarrow}^* w \}$$

Definition: If a language \mathcal{L} is the language of a certain context-free grammar, then \mathcal{L} is said to be a *context-free language*.

Context-Free Grammars and Inductive Definitions

Each CFG can be seen as an inductive definition.

Example: Consider the grammar for palindromes in slide 3 (and 5). It can be seen as the following definition:

Base Cases: • The empty string is a palindrome;• 0 and 1 are palindromes.

Inductive Steps: If w is a palindrome, then so are 0w0 and 1w1.

A natural way then to do proofs on context-free languages is to follow this inductive structure.

April 24th 2012, Lecture 11

TMV026/DIT32

Proofs About a Grammar

When we want to prove something about a grammar we usually need to prove an statement for each of the variables in the grammar. (Compare this with proofs about FA where we needed statements for each state.)

Proofs about grammars are in general done:

- by induction on the length of a certain string of the language;
- by induction on the length of a derivation of a certain string;
- by induction on the structure of the strings in the language;
- by induction on the height of the parse tree (we shall see this later).

Example: Proof About a Grammar

Lemma: Let G be the grammar presented on slide 3. Then $\mathcal{L}(G)$ is the set of palindromes over $\{0, 1\}$.

Proof: We will prove that if $w \in \{0,1\}^*$, then $w \in \mathcal{L}(G)$ iff $w = \operatorname{rev}(w)$. **If**) Let w be a palindrome. We prove by induction on |w| that $w \in \mathcal{L}(G)$. **Base cases:** If |w| = 0 or |w| = 1 then w is ϵ , 0 or 1. We have productions $P \to \epsilon$, $P \to 0$ and $P \to 1$. Then $P \Rightarrow^* w$ so $w \in \mathcal{L}(G)$. **Inductive Steps:** Assume |w| > 1. Since $w = \operatorname{rev}(w)$ then w should start and finish with the same symbol. Then w = 0w'0 or w = 1w'1. Also, w' should be a palindrome. By inductive hypothesis then $P \Rightarrow^* w'$. If w = 0w'0 we have $P \Rightarrow 0P0 \Rightarrow^* 0w'0 = w$ so $w \in \mathcal{L}(G)$.

Similarly if w = 1w'1.

April 24th 2012, Lecture 11

TMV026/DIT321

8/31

Example: Proof About a Grammar (Cont.)

Only-if) Let $w \in \mathcal{L}(G)$, that is $P \Rightarrow^* w$.

We prove by induction on the number of steps in the derivation of w that w is a palindrome, that is, w = rev(w).

Base case: If the derivation is in one step then we should have $P \Rightarrow \epsilon$, $P \Rightarrow 0$ and $P \Rightarrow 1$. In all cases w is a palindrome.

Inductive Step: Our IH is that if $P \Rightarrow^* w'$ in n > 0 steps then w' is a palindrome. Suppose we have a derivation with n + 1 steps. Then it must be of the form $P \Rightarrow 0P0 \Rightarrow^* 0w'0 = w$ or $P \Rightarrow 1P1 \Rightarrow^* 1w'1 = w$.

Observe that we should have that $P \Rightarrow^* w'$ in n > 0 steps. Hence by IH w' is a palindrome and then so is w.

Parse Trees

Parse trees are a way to represent derivations.

A parse tree reflects the internal structure of a word of the language.

That is, using parse trees it becomes very clear which is the variable that was replaced at each step.

In addition, it becomes clear which terminal symbols where generated/derived form a particular variable.

Parse trees are very important in compiler theory. In a compiler, a *parser* takes the source code into its parse tree. This parse tree is the structure of the program.

April 24th 2012, Lecture 11

TMV026/DIT321

Parse Trees

Definition: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. The *parse trees* for G are trees with the following conditions:

- Nodes are labelled with a variable;
- Leaves are either variables, terminals or ϵ ;
- If a node is labelled A and it has children labelled X_1, X_2, \ldots, X_n respectively from left to right, then it must exist in \mathcal{R} a production of the form $A \rightarrow X_1 X_2 \ldots X_n$.

Note: If a leaf is ϵ it should be the only child of its parent A and there should be a production $A \rightarrow \epsilon$.

Note: Of particular importance are the parse trees with root *S*.

Example: Construct the parse trees for 0 = E + 1 and for 001100.

Height of a Parse Tree

Definition: The *height* of a parse tree is the maximum length of a path from the root of the tree to one of its leaves.

Observe: We count the *edges* in the tree, and not the number of nodes and the leaf in the path.

A path consisting simply of a leaf is 0.

Example: The height of the parse tree for 0 == E + 1 is 3 and the one for 001100 is 4.

April 24th 2012, Lecture 11

FMV026/DIT321

Yield of a Parse Tree

Definition: A *yield* of a parse tree is the string resulted from concatenating all the leaves of the tree from left to right.

Observations:

- We will show later than the yield of a tree is a string derived from the root of the tree;
- Of particular importance are the yields that consist of only terminals; that is, the leaves are either terminals or ε;
- When, in addition, the root is S then we have a parse tree for a string in the language of the grammar;
- We will see that yields can be used to describe the language of a grammar.

Inference, Derivations and Parse Trees

Given a CFG $G = (V, T, \mathcal{R}, S)$ we will show the following equivalences:

- The recursive inference procedure determines that string w is in the language of the variable A;
- $A \Rightarrow^* w;$

$$A \Rightarrow^* w$$

- There is a parse tree with root A and yield w.

Note: The equivalences of 2-5 are also valid when the string w contains variables.

Note: Showing $3 \Rightarrow 2$ and $4 \Rightarrow 2$ is trivial. To show the equivalences we will prove $1 \Rightarrow 5$, $5 \Rightarrow 3$, $5 \Rightarrow 4$ and $2 \Rightarrow 1$.

April 24th 2012, Lecture 11

From Recursive Inference to Parse Trees $(1 \Rightarrow 5)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

If the recursive inference tells us that w is in the language of A then there is a parse tree with root A and yield w.

Proof: By induction on the number of steps in the recursive inference.

Base case: 1 step: Then we have a production $A \rightarrow w$ and it is trivial to build the tree.

Inductive Step: n + 1 steps: Our IH is that the statement is true for strings x and variables B such that x is in the language of B can be inferred in at most n steps.

Suppose the last step in the inference of w uses the production $A \rightarrow X_1 X_2 \dots X_k$.

We break w up as $w_1 w_2 \ldots w_k$ where \ldots

From Recursive Inference to Parse Trees $(1 \Rightarrow 5)$ (Cont.)

We break w up as $w_1 w_2 \dots w_k$ where:

- If X_i is a terminal then $w_i = X_i$;
- If X_i is a variable then w_i is the string which was inferred to be in the language of X_i. This inference took at most n steps and we can apply IH. Then we have a tree with root X_i and yield w_i.

We can now construct a a tree with root A, first line of children X_1, X_2, \ldots, X_k , and the trees given by the IH when X_i is a variable or the corresponding terminal when X_i is a terminal.

The yield of the tree is the concatenation of the yields of the children of A which is $w_1w_2...w_k = w$.

April 24th 2012, Lecture 11

TMV026/DIT321

From Trees to Leftmost Derivations $(5 \Rightarrow 3)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. If there is a parse tree with root A and yield w then $A \Rightarrow^* w$ in G.

Proof: By induction in the height of the tree.

Base case: Height 1: There must be a production $A \to w$ and then $A \stackrel{lm}{\Rightarrow} w$ and $A \stackrel{lm}{\Rightarrow}^* w$.

Inductive Step: Height n > 1: Let X_1, X_2, \ldots, X_k be the children of the root A. Note that there must be a production $A \to X_1 X_2 \ldots X_k$. Now:

- If X_i is a terminal, define $w_i = X_i$;
- If X_i is a variable, then it is the root of a subtree. Let w_i be the yield of X_i. This subtree has height less than n and then by IH X_i ⇒^{*} w_i.
 Observe that w = w₁w₂...w_k.

From Trees to Leftmost Derivations $(5 \Rightarrow 3)$ (Cont.)

To construct a leftmost derivation for w we start at $A \stackrel{lm}{\Rightarrow} X_1 X_2 \dots X_k$. By induction on *i* we show that $A \Rightarrow^* w_1 w_2 \dots w_{i-1} X_i X_{i+1} \dots X_k$. Base case: For i = 0 we already have $A \stackrel{lm}{\Rightarrow} X_1 X_2 \dots X_k$. Inductive Step: Assume $A \Rightarrow^* w_1 w_2 \dots w_{i-1} X_i X_{i+1} \dots X_k$. • If X_i is a terminal we do nothing. So $A \stackrel{''''}{\Rightarrow} w_1 w_2 \dots w_{i-1} w_i X_{i+1} \dots X_k.$ ② If X_i is a variable, by IH we have that $X_i \stackrel{lm}{\Rightarrow} \alpha_1 \stackrel{lm}{\Rightarrow} \alpha_2 \dots \stackrel{lm}{\Rightarrow} w_i$. Apply this sequence of derivations to go from $A \Rightarrow^{*} w_1 w_2 \dots w_{i-1} X_i X_{i+1} \dots X_k$ to $A \Rightarrow^* w_1 w_2 \dots w_{i-1} w_i X_{i+1} \dots X_k.$ Observe that each step is a leftmost derivation! When i = k then we have constructed a leftmost derivation $A \stackrel{''''}{\Rightarrow} w_1 w_2 \dots w_{i-1} w_i w_{i+1} \dots w_k.$ April 24th 2012, Lecture 11 TMV026/DIT32 From Trees to Rightmost Derivations $(5 \Rightarrow 4)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. If there is a parse tree with root A and yield w then $A \Rightarrow^* w$ in G.

Proof: The proof is similar to that of the previous theorem. The difference is that we first need to expand X_k then X_{k-1} and so on until we get to X_1 .

From Derivations to Recursive Inference $(2 \Rightarrow 1)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. If $A \Rightarrow^* w$ then the recursive inference procedure applied to G determines that w is in the language of A.

Proof: By induction on the length of the derivation of $A \Rightarrow^* w$.

Base case: 1 step: Then $A \rightarrow w$ is a production and the base part of the recursive inference will find that w is in the language of A.

Inductive Step: n + 1 steps: Our IH is that the statement holds for any derivation of at most n steps.

Let $A \Rightarrow X_1 X_2 \dots X_k \Rightarrow^* w$ be the first step. Now, we can break w as $w = w_1 w_2 \dots w_k$ where \dots

April 24th 2012, Lecture 11

TMV026/DIT32

From Derivations to Recursive Inference $(2 \Rightarrow 1)$ (Cont.)

Now, we can break w as $w = w_1 w_2 \dots w_k$ where:

- If X_i is a terminal then $X_i = w_i$;
- ② If X_i is a variable then $X_i \Rightarrow^* w_i$. This derivation takes at most *n* steps and then by IH w_i is inferred to be in the language of X_i .

If $A \Rightarrow X_1 X_2 \dots X_k \Rightarrow^* w$ then there must be a production $A \rightarrow X_1 X_2 \dots X_k$ and we know that each w_i is either X_i or belongs to the language of X_i .

The last step of the recursive inference procedure must use these facts to obtain that $w_1w_2...w_k$ is in the language of A.