
Finite Automata and Formal Languages

TMV026/DIT321– LP4 2012

Lecture 1
Ana Bove

March 12th 2012

Overview of today’s lecture:

Course Organisation

Overview of the Course

Course Organisation

Level: This course is a bachelor course.

Lectures: Mondays 13.15–15, and Tuesdays 10–11:45
Weeks 1 and 6: Also Thursdays 10–11:45 in EA
Ana Bove, bove@chalmers.se

Exercise Sessions: Thursdays 13.15–15 in EL41
VERY important!!
Willard Rafnsson, willard.rafnsson@chalmers.se

Consultation Time: Thursdays 10–11.45 in 5205
NOT in weeks 1 and 6
Ana Bove

Exams: May 25th and August 31st.
No books or written help during the exam.

March 12th 2012, Lecture 1 TMV026/DIT321 1/21

Course Organisation (Cont.)

Assignments: Individual non-obligatory weekly assignments which
generate bonus points valid ONLY on the exams during 20112

Each assignment will be up to 10 pts. If a student has collected n pts in
assignments, this will correspond to n/10 points in the exam.
(Exams are usually 60 points.)

You MUST write your name, personal number and e-mail address when
you submit an assignment.

How to submit? On paper or via the Fire system.

Note: Be aware that assignments are part of the examination of the
course and they should be done individually!
Standard procedure will be followed if copied solutions are detected.

See the web page of the course for details on this!
March 12th 2012, Lecture 1 TMV026/DIT321 2/21

Course Organisation (Cont.)

Book: Introduction to Automata Theory, Languages, and Computation,
by Hopcroft, Motwani and Ullman. Addison-Wesley.
Both second and third edition are fine.
We will cover chapters 1 to 7 and a bit of chapter 8 (if time allows).

Web Page: http://www.cse.chalmers.se/edu/course/TMV026/
Accessible from Chalmers “studieportalen”.
Check it regularly for news!

Wikipedia: http://en.wikipedia.org/wiki/

March 12th 2012, Lecture 1 TMV026/DIT321 3/21

Course Organisation (Cont.)

Course Evaluation: I need 2 GU student representatives by Thursday
this week.

CTH student representatives
Daniel Bergqvist, danber@student.chalmers.se
Marika Hansson, hmarika@student.chalmers.se
Magnus Larsson, maglars@student.chalmers.se
Marcus Stigelid, stigelid@student.chalmers.se

See web page of the course for last year’s evaluation.

March 12th 2012, Lecture 1 TMV026/DIT321 4/21

Programming Bits in the Course

The course doesn’t require much programming tasks.

Still we will present several algorithms to translate between different
formalisations.

I will sometimes show a Haskell program simulating certain automaton or
implementing an algorithm.
(Most of you should know Haskell, if not I really recommend you learn it: it is very

elegant and nice!)

You are welcome to test your knowledge implementing things in your
favourite language!

March 12th 2012, Lecture 1 TMV026/DIT321 5/21

Automata

Dictionary definition:

Main Entry: au·tom·a·ton
Function: noun
Inflected Form(s): plural au·tom·atons or au·tom·a·ta
Etymology: Latin, from Greek, neuter of automatos
Date: 1645

1 : a mechanism that is relatively self-operating;
especially : robot

2 : a machine or control mechanism designed to follow
automatically a predetermined sequence of operations or
respond to encoded instructions

3 : an individual who acts in a mechanical fashion

Automata: Applications

Models for ...

Software for designing circuits

Lexical analyser in a compiler

Software for finding patterns in large bodies of text such as collection
of web pages

Software for verifying systems with a finite number of different states
such as protocols

Real machines like vending machines, telephones, street lights, ...

Application in linguistic, building of large dictionary, spell programs,
search

Application in genetics, regular pattern in the language of protein

March 12th 2012, Lecture 1 TMV026/DIT321 7/21

Example: on/off-switch

A simple non-trivial finite automaton:

OFF ON

Push

Push

States represented by “circles”.
One state is the starting state, indicated with an arrow into it.
Arcs between states are labelled by observable events.
Often we need one or more final states, indicated with a double circle.

p

March 12th 2012, Lecture 1 TMV026/DIT321 8/21

Functional Description of on/off-switch

Let us define 2 functions fOFF and fON representing the 2 states of the
automaton.

The input can be represented as a “finite list” give by N = 0 | P N.

The description of the automaton is: fOFF, fON : N → {Off, On}

fOFF 0 = Off fON 0 = On
fOFF (P n) = fON n fON (P n) = fOFF n

March 12th 2012, Lecture 1 TMV026/DIT321 9/21

Example: Vending Machines

A simple vending machine:

p q

5 kr

choc

A more complex vending machine:

p q r

10 kr

choc

big choc

5 kr 5 kr

What does it happen if we ask for a chocolate on p?
State q remembers it has already got 5 kr .
March 12th 2012, Lecture 1 TMV026/DIT321 10/21

Problem: The Man, the Wolf, the Goat and the Cabbage

A man with a wolf, a goat and a cabbage is on the left bank of a river.

There is a boat large enough to carry the man and only one of the other
three things. The man wish to cross everything to the right bank.

However if the man leaves the wolf and the goat unattended on either
shore, the wolf surely will eat the goat.

Similarly, if the goat and the cabbage are left unattended, the goat will eat
the cabbage.

Puzzle: Is it possible to cross the river without the goat or cabbage being
eaten?

Solution: We write all the possible transitions, and look for possible
paths between two nodes.

March 12th 2012, Lecture 1 TMV026/DIT321 11/21

Solution: The Man, the Wolf, the Goat and the Cabbage

MWGC/ WC/MG MWC/G

C/MWG W/MGC

MGC/W MWG/C

/MWGC MG/WC G/MWC

MG

MG

M

M

MW

MW

MC

MC

MGMG MGMG

MC

MC

MW

MW

M

M

MG

MG

March 12th 2012, Lecture 1 TMV026/DIT321 11/21

Overview of the Course

Formal proofs

Regular languages

Context-free languages

(Turing machines)

March 12th 2012, Lecture 1 TMV026/DIT321 12/21

Formal Proofs

Many times you will need to prove that your program is “correct” (satisfies
a certain specification).

In particular, you won’t get a complex program right if you don’t
understand what is going on.

Different kind of formal proofs:

Deductive proofs

Proofs by contradiction

Proofs by counterexamples

Proofs by (structural) induction

March 12th 2012, Lecture 1 TMV026/DIT321 13/21

Example: Parity Counter

The states of an automaton can be thought of as the memory of the
machine.

even odd

p0

p0

p1

p1

Two events: p0 and p1.
The machine does nothing on the event p1.
The machine counts the parity of the number of p0’s.

A finite-state automaton has finite memory!

We now would like to prove that the automata is on state even iff an even
number of p0 were pressed.
March 12th 2012, Lecture 1 TMV026/DIT321 14/21

Functional Description: Parity Counter

Let us define 2 functions feven and fodd representing the 2 states of the
automaton.

The input can be represented by the data type T = 0 | p0 T | p1 T .

The description of the automaton is: feven, fodd : T → {Even, Odd}

feven 0 = Even fodd 0 = Odd
feven (p0 n) = fodd n fodd (p0 n) = feven n
feven (p1 n) = feven n fodd (p1 n) = fodd n

We now would like to prove that feven n = Even iff n contains an even
number of constructors p0.

March 12th 2012, Lecture 1 TMV026/DIT321 15/21

Example: on/off-switch

Recall the description of the on/off-switch.

We would like to prove that:
the automaton is in state OFF after n pushes iff n is even

and
the automaton is in state ON after n pushes iff n is odd.

Alternatively, we could prove that:
fOFF n = Off iff n is even

and
fON n = On iff n is odd.

March 12th 2012, Lecture 1 TMV026/DIT321 16/21

Regular Languages

Finite automata were originally proposed in the 1940’s as models of neural
networks.
Turned out to have many other applications!

In the 1950s, the mathematician Stephen Kleene described these models
using mathematical notation (regular expressions, 1956).
Ken Thompson used the notion of regular expressions introduced by
Kleene in the UNIX system.
(Observe that Kleene’s regular expressions are not really the same as UNIX’s regular

expressions.)

Both formalisms define the regular languages.

March 12th 2012, Lecture 1 TMV026/DIT321 17/21

Context-Free Languages

We can give a bit more power to finite automata by adding a stack that
contains data.
In this way we extend finite automata into a push down automata.

In the mid-1950s Noam Chomsky developed the context-free grammars.
Context-free grammars play a central role in description and design of
programming languages and compilers.

Both formalisms define the context-free languages.

March 12th 2012, Lecture 1 TMV026/DIT321 18/21

Church-Turing Thesis

In the 1930’s there has been quite a lot of work about the nature of
effectively computable (calculable) functions:

Recursive functions by Stephen Kleene

λ-calculus by Alonzo Church

Turing machines by Alan Turing

The three computational processes were shown to be equivalent by Church,
Kleene, (John Barkley) Rosser (1934—6) and Alan Turing (1936—7).

The Church-Turing thesis states that if an algorithm (a procedure that
terminates) exists then, there is an equivalent Turing machine, a
recursively-definable function, or a definable λ-function for that algorithm.

March 12th 2012, Lecture 1 TMV026/DIT321 19/21

Turing Machine (ca 1936–7)

Simple theoretical device that manipulates symbols contained on a strip of
tape.

It is as “powerful” as the computers we know today (in term of what they
can compute).

It allows the study of decidability: what can or cannot be done by a
computer (halting problem).

Computability vs complexity theory: we should distinguish between what
can or cannot be done by a computer, and the inherent difficulty of the
problem (tractable (polynomial)/intractable (NP-hard) problems).

March 12th 2012, Lecture 1 TMV026/DIT321 20/21

Learning Outcome of the Course

After completion of this course, the student should be able to:

Explain and manipulate the different concepts in automata theory and
formal languages;

Have a clear understanding about the equivalence between
(non-)deterministic finite automata and regular expressions;

Acquire a good understanding of the power and the limitations of
regular languages and context-free languages;

Prove properties of languages, grammars and automata with
rigorously formal mathematical methods;

Design automata, regular expressions and context-free grammars
accepting or generating a certain language;

Describe the language accepted by an automata or generated by a
regular expression or a context-free grammar;

Simplify automata and context-free grammars;

Determine if a certain word belongs to a language;

Define Turing machines performing simple tasks.
March 12th 2012, Lecture 1 TMV026/DIT321 21/21

