	Overview of the lecture
Specification of Anthentication of Hardware Hardware Databalan Dat	 More VHDL stuff: More delta delays and simulation cycle details The multivalued std_logic type Arithmetic on n-bit binary numbers Generic entities Testbenches The VHDL lab Short Jasper Gold demo
 Different abstraction levels of hardware description Transistor level (not used in this course) Transistor level (not used in this course) Transistor level Transfer level Belavioral level Enocional level Basic verification 	Previous lecture (cont) • VHDL • VHDL • The finite of (sub)circuits • Entities: interface of (sub)circuits • Architectures: implementation of (sub)circuits • Architectures: implementation of (sub)circuits • Architectures: implementation of (sub)circuits • Processes, algoritms, loops, assignments • Processes, algoritms,

⇒

Simulation cycle	Delta cycles
 Simulation time is advanced to the time of the next scheduled event (can be a signal assignment, or a wait). Signal assignments are carried out. Processes resume execution if they are sensitive to signals that were affected, or are scheduled to wait until the current time point The processes continue to run until they all reach wait statements. New events that the processes create are put in the event queue. 	 As long as there are more events scheduled at the current time, we add 1δ. We can never refer to the different δ-cycles in the futur (no such thing as wait for 2 ns + 5 δ). If there are always more delta cycles, the real time will never advance (processes without wait-statements, feedback loops without flip flops) Add the keyword postponed before process to force process to be executed when no more delta cycles are scheduled.
VHQL 2 -D5/22	*
Our simplified model	Two equivalent architectures?
 In reality, gates introduce delays If we model an and-gate with <= i1 and i2; <= i1 and i2; It he signal is propagated through it in one δ (no real time) In our model, everything happens within infinitely short time (only a number of δ) after positive clock edge. Then the circuit does nothing until the next positive clock edge. After synthesis, timing problems must be taken care of. 	entity and3 is port(i1, i2, i3 : in bit; o : out bit); end entity and3; architecture behavioral of and3 is begin o <= i1 and i2 and i3; end architecture behavioral; architecture structural of and3 is signal s : bit; begin a1 : entity work.and_gate(behavioral) port map(i1, i2, s end architecture structural; bedin a2 : entity work.and_gate(behavioral) port map(s, i3, o end architecture structural;

⇒

A testbench	Delta delays
<pre>architecture arch of testbench is signal i1, i2, i3, o1, o2 : bit; begin a1 : entity work.and3(behavioral) port map (i1, i2, i3, o1); a2 : entity work.and3(structural) port map (i1, i2, i3, o2); assert o1 = o2 report "Mismatch!";</pre>	 During simulation, Mismatch! is displayed And3.behavioral propagates values in 1δ, and3.structural in 2δ. Hence the two architectures are not completely equivalent, even though they clearly represent the same circuit.
stimuli : process is begin i1 <= '0'; i2 <= '0'; i3 <= '0'; wait for 1 ms; i1 <= '1'; i2 <= '1'; i3 <= '1'; wait for 1 ms; i1 <= '0'; i2 <= '1'; i3 <= '1'; wait; end process stimuli; end architecture arch;	 Functional equivalence does not depend on <i>δ</i> delays. Combinational circuits: use sequential asserts, only require equivalence after wait statements Sequential circuits: only require equivalence when clock is low: assert clk='1' or o1 = o2;
std_logic	std_logic vs. std_ulogic
 Include the following lines before all entites: library ieee; use ieee.std_logic_arith.all; use ieee.std_logic_arith.all; use ieee.std_logic_arith.all; Declare signals of type std_logic instead of bit Has the following values: 'U' uninitialized 'W' weak unknown 'X' forcing unknown 'L' weak 0 '0' forcing 0 'H' weak 1 '1' forcing 1 '-' don't care 'Z' high impedance 	 In some cases, one wants to have multiple drivers of a wire. Example: a data bus. To allow multiple drivers for a signal in VHDL, one mu define a <i>resolution function</i>, that tells what happens if different processes assigns different values in the sam simulation cycle. std_logic has a predefined resolution function std_ulogic has no predefined resolution function

std_logic_vector	Example: 4-bit adder
 Can be used for arithmetics There are two identical types: <i>unsigned</i> and <i>signed</i>, with different operations Each bit can easily be accessed 	<pre>entity add4bit is port(a, b : in unsigned(3 downto 0); s : out unsigned(3 downto 0)); end entity add4bit;</pre>
Examples in the following slides	architecture behavioral of add4bit is begin s <= a + b; end architecture behavioral;
VHD.2-p.1322	ΗΛ
Structural architecture of add4bit	A testbench
<pre>architecture structural of add4bit is signal c_0, c_1, c_2, c_3, c_4 : std_logic := '0';</pre>	architecture arch of add_tester is signal a, b : unsigned (3 downto 0):= "0000";
begin fa1:entity work.full_adder(structural) port map (c_0, a(0), b(0), s(0), c_1);	signal S1, S2 : unsigned (3 downto U); begin a str : entity work.add4bit(structural) port map (a, b, s1)
fa2 : entity work.full_adder(structural) port map (c_1, a(1), b(1), s(1), c_2);	a_beh : entity work.add4bit(behavioral) port map (a, b, s stimuli : process is
<pre>iao : enury work.tun_adder(situctural) port map (c_2, a(2), b(2), s(2), c_3); fa4 : entity work.full_adder(structural) port map (c_3, a(3), b(3), s(3), c_4);</pre>	acyline a <= "0000"; b <= "0000"; wait for 1 us; assert s1=s2; a <= "0010"; b <= "0010"; wait for 1 us; assert s1=s2; a <= "1011"; b <= "0001"; wait for 1 us; assert s1=s2;
end architecture structural; This is the ripple carry adder shown in the previous lecture.	<pre>a <= "1011"; b <= "0101"; wait for 1 us; assert s1=s2; wait; end process stimuli; end architecture arch;</pre>

VHDL 2 -p.15/22

Η

Generic Parameters	Generic Parameters
library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all;	<pre>architecture test of test_add_constant is signal i, 0 : Signed(7 downto 0); begin addc : entity work.add_constant(behav) .</pre>
<pre>entity add_constant is generic(const : integer; bits : natural);</pre>	generic map(10, δ) port map(i, 0); stimuli : process is bedin
<pre>port(i : in signed(bits-1 downto 0);</pre>	i <= conv_signed(0, 8), conv_signed(5, 8) after 1 ms, conv_signed(100, 8) after 2 ms,
architecture behav of add_constant is begin 0 <= conv_signed(const + conv_integer(i), bits); end architecture behav;	conv_signed(120, 8) after 3 ms, conv_signed(-50, 8) after 4 ms; wait for 5 ms; assert false report "Simulation ends" severity failure; end process stimuli; end architecture test;
More VHDL	The VHDL lab
 VHDL has a lot more features, examples can be found in course literature: For-, while-, and until-loops For-, while-, and until-loops Case statements Case statements Eunctions and procedures Arrays Arrays Enumerated types and subtypes Packages Generic structurally implemented circuits (generate) 	 Construction and verification of a stopwatch Standard stopwatch with a start/stop button and a lap/reset button, and a 6 digits display One top level entity with two architectures: one behavioral and one RTL Behavioral: verify that it really implements the stopwatch (using testbenches) RTL: verify that it is functionally equivalent to the behavioral Formal verification of counter elements Write a short report on the verification

Η

Guidelines

- Guidelines for design and verification available in the "Labs and Exams" section in the course page.
- Hints:
- Don't use structure in the behavioral model think software
- Use Gaisler's two-process method (see lecture 4) in the RTL components
 - Use the guidelines on the course page

About the verification report

- Generally: Motivate why we should trust your circuit
- Use the guidelines on the course page
- Explain the choices you have made, and why
- Explain what properties you have checked
- Was some particular test especially hard? Did you find any bugs?

VHDL 2 - p.21/22

¥