VHDL

o History

s VHDL = VHSIC Hardware Description Language
(VHSIC = Very High Speed Integrated Circuit)

» Ordered by US defence department

» Developed by Intermetrics, IBM and Texas
Instruments (1983)

s Standardized by IEEE (1987, 1993, and 2001) and
ANSI (1988)
Original goals
» Modelling and simulation
s Executable and unambiguous specifications
» Standardized way of describing circuits

#® Also used for
s Synthesis

VHDL 1 — p.26/51

Entities and Architectures

Designs are described using a number of modules,
consisting of entities and architectures.

An entity describes the interface of a module: names
and types of input ports, output ports, generic
parameters, eic.

An architecture describes how the module works
internally. Corresponds to the implementation or
function body in other programming languages.

Each module has exactly one entity, but may have
several architectures (for instance one behavioral and
one RTL implementation).

VHDL 1 —p.27/51

Examples of Entities

entity half_adder is
port (c_in, a : in bit;
s, c_out : out bit);
end entity half_adder;

entity d _flip flopis
port (I, clk : in bit;
o : out bit);
end entity d_flip_flop;

VHDL 1 — p.28/51

An Entity with an Architecture

entity d _flip_flop is
port (i, clk : in bit;
o : out bit);
end entity d flip_flop;

architecture behavioral of d_flip_flop is
begin
dff behavior : process is
begin
if clk’event and clk="1" then
0<=I;
end if;
wait on clk;
end process dff _behavior;
end architecture behavioral;

VHDL 1 — p.29/51

Three ways to write code in architectures

1. Structurally: Instantiate other modules and connect
them with signals (~wires)

2. Concurrently: Simple statements (e.g. assignments)
that are reexecuted every time signals they depend on
change

3. Sequentially: Sequential code (possibly in several
parallel processes), with loops etc

Higher abstraction levels usually contain more sequential
code, while lower levels contain more structural code.

It is possible to mix different kinds of code in the same
architecture.

VHDL 1 — p.30/51

Architecture with Concurrent Code

entity half_adder is
port (c_in, a : In bit;
s, c_out : out bit);
end entity half_adder;

architecture behavioral of half adder is
begin

S <=a Xor c_in;

c out<=aand c _in;
end architecture behavioral;

VHDL 1 — p.31/51

Structural architectures: example 1

Assuming that and_gate and xor_gate are implemented:
entity half_adder is
port (c_in, a : in bit;
s, c_out : out bit);
end entity half_adder;

architecture structural of half _adder is
begin
xor1 : entity work.xor_gate(behavioral)
port map(c in, a, s);
andi : entity work.and _gate(behavioral)
port map(c _in, a, c_out);
end architecture structural,

VHDL 1 — p.32/51

Structural architectures: example 2

entity full_adder is
port (c _in, a, b : in bit;
s, ¢_out : out bit);
end entity full _adder;

architecture structural of full adder is
signalc 1,c 2,s 1 : bit;
begin
hal : entity work.half _adder(structural)
port map(a,b,s 1,c 1);
ha2 : entity work.half _adder(structural)
port map(c in,s 1,s,¢c 2);
orl : entity work.or_gate(behavioral)
port map(c 1,c 2,c _out);
end architecture structural;

VHDL 1 — p.33/51

Architecture with Sequential Code

entity maxa3 is
port(i1, 12, I3 : in Integer; 0 : out integer);
end entity max3;

architecture behavioral of max3 is

begin
P : process is
begin
if(i1 >=i2 and i1 >=i3) then
0 <=11;
elsif(i2 >= i1 and i2 >= i3) then
0 <= 12;
else
0 <= 13;
end if;

wait on 11, 12, I3;
end process P,
end architecture behavioral;

VHDL 1 — p.34/51

e

e

More on Sequential VHDL

Sequential code is always written in processes
An architecture may contain several processes

Processes are implicit loops: when the last statement in
a process has been executed, the process is restarted

Processes communicate using s/ als

From a language point of view, signals resemble
variables (although important differences exist)

From a hardware point of view, signals resemble wires

VHDL 1 — p.35/51

ms
Text Box
gn

Sensitivity lists

entity half_adder is
port (c_in, a : in bit;
s, c_out : out bit);
end entity half_adder;

architecture behavioral of half adder is
begin
half_add_behavior : process(a, c_in) is
begin
S <=a Xor c _in;
c out<=aand c _in;
end process half _add behavior;
end architecture behavioral;

Sensitivity lists may not be combined with wait statements.

VHDL 1 — p.36/51

A simple clock generator

entity clock1MHz is
port (clk : out bit);
end entity clock1MHz;

architecture behavioral of clock1MHz is
begin
C . process Is
begin
clk <="0";
wait for 500 ns;
clk <="1";
wait for 500 ns;
end process c;
end architecture behavioral;

VHDL 1 — p.37/51

e

Time in VHDL

VHDL has a notion of time
Simulation time # actual running time

Certain events are scheduled to happen at specific
points in time

Time advances in discrete steps - when nothing more is
scheduled to happen at the current point in time, time is
advanced to the next point in time where there is a
scheduled event.

Time has two components:

s a number of (nano/micro/milli)seconds

s a number of deltas (9)
The minimal delay for a signal assignment is 16.

VHDL 1 — p.38/51

A small example

ProcC . process is
begin
a<=0;
b <=0;
wait for O NS;
a<=a+l;
b <= a;
wait for O NS;
- - Here, a=1, b=0!
wait;
end process PIOC;

VHDL 1 — p.39/51

Example: Counting Bits, Attempt 1

entity count_ones is
port(arr : in bit_vector; result : out integer);
end entity count_ones;

architecture attempt_1 of count_ones is
begin
p1 : process(arr) is
begin
result <= 0;
for | in arr'range loop
if(arr(i) = '1’°) then
result <= result+1;
end if,
end loop;
end process p1;
end architecture attempt_1;

Compilation error: “Cannot read output: result”

VHDL 1 — p.40/51

Example: Counting Bits, Attempt 2

architecture attempt_2 of count_ones is
signal tempSum : integer;
begin
p1 : process(arr) is
begin
tempSum <= 0;
for 1 in arr'range loop
if(arr(i) = '1°) then
tempSum <= tempSum+1;
end if;
end loop;
result <= tempSum;
end process p1;
end architecture attempt_2;

Testing reveals strange values on result.

VHDL 1 —p.41/51

Example: Counting Bits, Correct Version

architecture correct of count_ones is
begin
p1 : process(arr) is
variable tempSum : integer;
begin
tempSum := 0;
for | in arr'range loop
if(arr(i) = '1’) then
tempSum = tempSum+1;
end if,
end loop,
result <= tempSum;
end process pP1;
end architecture correct;

VHDL 1 —p.42/51

Simulation cycle

1. Simulation time is advanced until the next scheduled
event (can be a signal assignment, or a wait).

2. Scheduled signal assignments are carried out.

3. Processes resume execution if they
are sensitive to signals that was affected, or
are scheduled to wait until the current time point

4. The processes continue to run until they all reach wait
statements. New events that the processes create are
put in the event queue. Events to happen after a delay
of length 0 are scheduled to happen in the next delta
cycle. Events to happen after a positive time are
scheduled at that time +09.

VHDL 1 — p.43/51

Variables vs. signals

Variables

Used in algorithms
Immediate assignments (:=)
Belong to a process

Used only within a process

Signals

Represent physical wires
Delayed assignments (<=)
Belong to an architecture
Communicate betw procs/entts
Different attributes (‘event etc)
Sensitivity lists and wait on

VHDL 1 — p.44/51

Example: Variables

entity count_pos_edges is
port (i : in bit; ¢ : out integer);
end entity count_pos_edges;

architecture behavioral of count_pos edges is
begin
p1 . process(i) is
variable counter : integer := 0;
begin
if 'event and i="1" then
counter := counter + 1;
C <= counter;
end if;
end process p1;
end architecture behavioral;

VHDL 1 — p.45/51

Delayed Signal Assignments

Signal assignments can be delayed:

s 0 <=1 after 2 ns;

s test_input <=0,
1 after 1 ms,
2 after 2 ms,
3 after 3 mS;

The smallest possible clock generator:
s clk <= not clk after 50 us;
(concurrent assignment)

The value is evaluated upon execution of assignment
statement, not when the assignment is carried out.

VHDL 1 — p.46/51

Assert statements

assert e;
Gives a warning if e evaluates to false.

assert e report str;
Prints the message str if e evaluates to false.

assert e report str severity sev;

Sev can be one of: note, warning, error, failure.
Simulator can be set to stop simulation at given
severities

An assert statement in an architecture is concurrent:

property should always hold

An assert statement in a process is sequential:
property should hold when the assert is executed

VHDL 1 —p.47/51

More wait statements

wait; (halts process)

wait for 100 ms;

wait on in1, in2, in3; (wait for events on signals)
wait until a="1";

wait on clk until reset =’0’;

wait until a = "1’ for 150 ns;

© o o o o 0

A wait statement always causes a process to wait. If we
write wait until a="1", and a="1", then the process will wait
until an event that changes a’s value to "1’ happens. Wait

for O ns; will cause the process to wait one é.

VHDL 1 — p.48/51

More signal attributes

A transaction is when a value is assigned to a signal. An
event is when a transaction causes a signal to change
value.

© o o o o o @

‘event: event has occured last (simulation) cycle
‘active: transaction has occured last cycle
'stable(t): no event has occured for t time units
‘quiet(t): no transaction has occured for t time units
‘last_value: value before last event

‘last_event: time since last event

'delayed(t): implicit signal, delays the original signal
with t time units.

VHDL 1 — p.49/51

Declaring Your Own Types

Types are usually declared in packages:

package my_types is
type int_array is array (integer range<>) of integer;
type int_pair is record
first : integer;
second : integer;
end record,
end package my_types;

Packages must be imported before all entities that use
them:
use wWork.my_types.all;

VHDL 1 — p.50/51

Guidelines for writing architectures

Processes that are sensitive to the clock signal implicitly
introduces flipflops. Architectures usually becomes easiest
to write and maintain if they are divided into two parts:

1. One single process which is sensitive only to the clock
signal (and possibly an asynchronous reset signal)

2. One or more processes that are sensitive to any input
signals or internal signals, except the clock

The only thing the first process does is to update the
internal state (i.e. the flipflops). The other parts includes all
logic.

notes (see Literature page)

More about this in Jiri Gaisler’s

VHDL 1 — p.51/51

ms
Text Box
notes (see Literature page)

	 VHDL
	Entities and Architectures
	 Examples of Entities
	An Entity with an Architecture
	Three ways to write code in architectures
	Architecture with Concurrent Code
	 Structural architectures: example 1
	 Structural architectures: example 2
	Architecture with Sequential Code
	More on Sequential VHDL
	 Sensitivity lists
	 A simple clock generator
	Time in VHDL
	A small example
	Example: Counting Bits, Attempt 1
	Example: Counting Bits, Attempt 2
	Example: Counting Bits, Correct Version
	Simulation cycle
	Variables vs. signals
	Example: Variables
	 Delayed Signal Assignments
	Assert statements
	More wait statements
	More signal attributes
	Declaring Your Own Types
	Guidelines for writing architectures

