
Temporal Induction and SAT-Solving

Niklas Sörensson

April 21, 2010

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 1 / 21



Simple Induction

s0 F

i0

ok?

(Base-case)

sn F F

in in+1

ok! ok?

(Step-case)

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 2 / 21



Reachability

State Space

Reachable
States

Init States

Bad States

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 3 / 21



Example: Simple Induction Fails

State Space

Reachable
States

Init States

Bad States

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 4 / 21



Induction with Depth (k=3)

s0 F F F

i0 i1 i2

ok? ok? ok?

(Base-case)

sn F F F F

in in+1 in+2 in+3

ok! ok! ok! ok?

(Step-case)

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 5 / 21



Correctness of Induction with Depth (k=3)

s0 s1 s2 s3 s4 s5 s6 . . .

ok ok ok ok ok ok

For any trace:

I First 3 states are ok
I 3 consecutive ok states must be succeeded by an ok state
I And so on

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 6 / 21



Correctness of Induction with Depth (k=3)

s0 s1 s2 s3 s4 s5 s6 . . .

ok ok ok

ok ok ok

For any trace:

I First 3 states are ok

I 3 consecutive ok states must be succeeded by an ok state
I And so on

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 6 / 21



Correctness of Induction with Depth (k=3)

s0 s1 s2 s3 s4 s5 s6 . . .

ok ok ok ok

ok ok

For any trace:

I First 3 states are ok
I 3 consecutive ok states must be succeeded by an ok state

I And so on

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 6 / 21



Correctness of Induction with Depth (k=3)

s0 s1 s2 s3 s4 s5 s6 . . .

ok ok ok ok ok

ok

For any trace:

I First 3 states are ok
I 3 consecutive ok states must be succeeded by an ok state
I And so on

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 6 / 21



Correctness of Induction with Depth (k=3)

s0 s1 s2 s3 s4 s5 s6 . . .

ok ok ok ok ok ok

For any trace:

I First 3 states are ok
I 3 consecutive ok states must be succeeded by an ok state
I And so on

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 6 / 21



Example: Induction with Depth Fails

State Space

Reachable
States

Init States

Bad States

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 7 / 21



Unique State Induction (k=3)

sn F F F F

in in+1 in+2 in+3

ok! ok! ok! ok?

All Different!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 8 / 21



Unique State Induction (k=3)

sn F F F F

in in+1 in+2 in+3

ok! ok! ok! ok?

All Different!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 8 / 21



Correctness of Unique State Induction

I Unique state induction proves that all loop-free paths are ok
I Why can paths with loops be ignored?

Example trace: s1 = s3, s4 = s5

s0 s1 s2 s3 s4 s5 s6

ok ok ok ok ok ok ¬ok

s1 s3s0 s3 s4 s5 s6

ok ok ok ok ¬ok

s4 s5s0 s3 s5 s6

ok ok ok ¬ok

Counter-examples with loops can always be made loop-free!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 9 / 21



Correctness of Unique State Induction

I Unique state induction proves that all loop-free paths are ok
I Why can paths with loops be ignored?

Example trace: s1 = s3, s4 = s5

s0 s1 s2 s3 s4 s5 s6

ok ok ok ok ok ok ¬ok

s1 s3s0 s3 s4 s5 s6

ok ok ok ok ¬ok

s4 s5s0 s3 s5 s6

ok ok ok ¬ok

Counter-examples with loops can always be made loop-free!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 9 / 21



Correctness of Unique State Induction

I Unique state induction proves that all loop-free paths are ok
I Why can paths with loops be ignored?

Example trace: s1 = s3, s4 = s5

s0 s1 s2 s3 s4 s5 s6

ok ok ok ok ok ok ¬ok

s1 s3

s0 s3 s4 s5 s6

ok ok ok ok ¬ok

s4 s5s0 s3 s5 s6

ok ok ok ¬ok

Counter-examples with loops can always be made loop-free!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 9 / 21



Correctness of Unique State Induction

I Unique state induction proves that all loop-free paths are ok
I Why can paths with loops be ignored?

Example trace: s1 = s3, s4 = s5

s0 s1 s2 s3 s4 s5 s6

ok ok ok ok ok ok ¬ok

s1 s3

s0 s3 s4 s5 s6

ok ok ok ok ¬ok

s4 s5s0 s3 s5 s6

ok ok ok ¬ok

Counter-examples with loops can always be made loop-free!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 9 / 21



Correctness of Unique State Induction

I Unique state induction proves that all loop-free paths are ok
I Why can paths with loops be ignored?

Example trace: s1 = s3, s4 = s5

s0 s1 s2 s3 s4 s5 s6

ok ok ok ok ok ok ¬ok

s1 s3

s0 s3 s4 s5 s6

ok ok ok ok ¬ok

s4 s5

s0 s3 s5 s6

ok ok ok ¬ok

Counter-examples with loops can always be made loop-free!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 9 / 21



Correctness of Unique State Induction

I Unique state induction proves that all loop-free paths are ok
I Why can paths with loops be ignored?

Example trace: s1 = s3, s4 = s5

s0 s1 s2 s3 s4 s5 s6

ok ok ok ok ok ok ¬ok

s1 s3s0 s3 s4 s5 s6

ok ok ok ok ¬ok

s4 s5

s0 s3 s5 s6

ok ok ok ¬ok

Counter-examples with loops can always be made loop-free!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 9 / 21



Correctness of Unique State Induction

I Unique state induction proves that all loop-free paths are ok
I Why can paths with loops be ignored?

Example trace: s1 = s3, s4 = s5

s0 s1 s2 s3 s4 s5 s6

ok ok ok ok ok ok ¬ok

s1 s3s0 s3 s4 s5 s6

ok ok ok ok ¬ok

s4 s5

s0 s3 s5 s6

ok ok ok ¬ok

Counter-examples with loops can always be made loop-free!

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 9 / 21



Property Generalization

State Space

Reachable
States

Init States

Bad States

Bad States

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 10 / 21



Property Generalization

State Space

Reachable
States

Init States

Bad States

Bad States

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 10 / 21



Induction in Practice

I Complete

I Increase depth until proof goes through (or counter example is
found)

I Necessary depth can be very large (exponential)
I Induction may be strengthened by:

I Multiple properties
I Manual generalization
I Automatic generalization

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 11 / 21



Induction in Practice

I Complete
I Increase depth until proof goes through (or counter example is

found)

I Necessary depth can be very large (exponential)
I Induction may be strengthened by:

I Multiple properties
I Manual generalization
I Automatic generalization

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 11 / 21



Induction in Practice

I Complete
I Increase depth until proof goes through (or counter example is

found)
I Necessary depth can be very large (exponential)

I Induction may be strengthened by:

I Multiple properties
I Manual generalization
I Automatic generalization

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 11 / 21



Induction in Practice

I Complete
I Increase depth until proof goes through (or counter example is

found)
I Necessary depth can be very large (exponential)
I Induction may be strengthened by:

I Multiple properties
I Manual generalization
I Automatic generalization

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 11 / 21



Induction in Practice

I Complete
I Increase depth until proof goes through (or counter example is

found)
I Necessary depth can be very large (exponential)
I Induction may be strengthened by:

I Multiple properties

I Manual generalization
I Automatic generalization

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 11 / 21



Induction in Practice

I Complete
I Increase depth until proof goes through (or counter example is

found)
I Necessary depth can be very large (exponential)
I Induction may be strengthened by:

I Multiple properties
I Manual generalization

I Automatic generalization

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 11 / 21



Induction in Practice

I Complete
I Increase depth until proof goes through (or counter example is

found)
I Necessary depth can be very large (exponential)
I Induction may be strengthened by:

I Multiple properties
I Manual generalization
I Automatic generalization

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 11 / 21



Satisfiability (SAT) in BMC and Induction

F

x0x1x2x3x4

ok?

I Find values for inputs x0 . . . xn such that ok becomes false
I Or, prove that no such set of values exists

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 12 / 21



Satisfiability (SAT) in BMC and Induction

F

x0x1x2x3x4

ok?

I Find values for inputs x0 . . . xn such that ok becomes false

I Or, prove that no such set of values exists

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 12 / 21



Satisfiability (SAT) in BMC and Induction

F

x0x1x2x3x4

ok?

I Find values for inputs x0 . . . xn such that ok becomes false
I Or, prove that no such set of values exists

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 12 / 21



Why is it hard?

x0 x1 x2 x3 ok
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

I Enumeration does not work
I Given k inputs there are 2k

combinations

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 13 / 21



Conjunctive Normal Form

Variables: a, b, c, . . .
Literals: a,¬a, b,¬b, c,¬c, . . .

Clauses: Disjunctions of literals

Ex: (¬a ∨ b,¬c)

CNF: Conjunction of clauses

Ex: (¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬a ∨ ¬b ∨ c)

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 14 / 21



SAT-Problem Definition

I A CNF is satisfiable if there is a variable assignment that
evaluates all clauses to true

I (i.e. each clause contains at least one true literal)
I If no satisfying assignment exists, the CNF is unsatisfiable

Example

(a ∨ b)
(¬a ∨ ¬b)

I a = 1, b = 1 is not a satisfying assignment
I a = 1, b = 0 is a satisfying assignment

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 15 / 21



SAT-Problem Definition

I A CNF is satisfiable if there is a variable assignment that
evaluates all clauses to true

I (i.e. each clause contains at least one true literal)
I If no satisfying assignment exists, the CNF is unsatisfiable

Example

(a ∨ b)
(¬a ∨ ¬b)

I a = 1, b = 1 is not a satisfying assignment
I a = 1, b = 0 is a satisfying assignment

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 15 / 21



SAT-Problem Definition

I A CNF is satisfiable if there is a variable assignment that
evaluates all clauses to true

I (i.e. each clause contains at least one true literal)
I If no satisfying assignment exists, the CNF is unsatisfiable

Example

(a ∨ b)
(¬a ∨ ¬b)

I a = 1, b = 1 is not a satisfying assignment

I a = 1, b = 0 is a satisfying assignment

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 15 / 21



SAT-Problem Definition

I A CNF is satisfiable if there is a variable assignment that
evaluates all clauses to true

I (i.e. each clause contains at least one true literal)
I If no satisfying assignment exists, the CNF is unsatisfiable

Example

(a ∨ b)
(¬a ∨ ¬b)

I a = 1, b = 1 is not a satisfying assignment
I a = 1, b = 0 is a satisfying assignment

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 15 / 21



Translating from Circuits into CNF

I Give fresh (SAT) variables for each input/gate
I Define clauses that establish input/output relationship of each gate

a b
(¬b ∨ ¬a)
(a ∨ b)

a
b c

(¬c ∨ a)
(¬c ∨ b)
(¬a ∨ ¬b ∨ c)

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 16 / 21



Translating from Circuits into CNF

I Give fresh (SAT) variables for each input/gate
I Define clauses that establish input/output relationship of each gate

a b
(¬b ∨ ¬a)
(a ∨ b)

a
b c

(¬c ∨ a)
(¬c ∨ b)
(¬a ∨ ¬b ∨ c)

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 16 / 21



Translating from Circuits into CNF

I Give fresh (SAT) variables for each input/gate
I Define clauses that establish input/output relationship of each gate

a b
(¬b ∨ ¬a)
(a ∨ b)

a
b c

(¬c ∨ a)
(¬c ∨ b)
(¬a ∨ ¬b ∨ c)

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 16 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Backtracking Search

I Branch on some variable
I Solve each branch recursively
I Backtrack when some clause is falsified

⊥

¬b

⊥

¬c

⊥

c

b

¬a

⊥

¬c

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 17 / 21



DPLL Algorithm: Unit Propagation

I Extend partial assignment with necessary implied assignments
I Avoids branching and reduces search space

Example

(¬a ∨ b)
(¬a ∨ c)
(¬b ∨ ¬c ∨ d)

a = 1
b = 1
c = 1
d = 1

⊥

¬c

⊥

c
b

¬a

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 18 / 21



DPLL Algorithm: Unit Propagation

I Extend partial assignment with necessary implied assignments
I Avoids branching and reduces search space

Example

(¬a ∨ b)
(¬a ∨ c)
(¬b ∨ ¬c ∨ d)

a = 1
b = 1
c = 1
d = 1

⊥

¬c

⊥

c
b

¬a

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 18 / 21



DPLL Algorithm: Unit Propagation

I Extend partial assignment with necessary implied assignments
I Avoids branching and reduces search space

Example

(¬a ∨ b)
(¬a ∨ c)
(¬b ∨ ¬c ∨ d)

a = 1

b = 1
c = 1
d = 1

⊥

¬c

⊥

c
b

¬a

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 18 / 21



DPLL Algorithm: Unit Propagation

I Extend partial assignment with necessary implied assignments
I Avoids branching and reduces search space

Example

(¬a ∨ b)
(¬a ∨ c)
(¬b ∨ ¬c ∨ d)

a = 1
b = 1

c = 1
d = 1

⊥

¬c

⊥

c
b

¬a

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 18 / 21



DPLL Algorithm: Unit Propagation

I Extend partial assignment with necessary implied assignments
I Avoids branching and reduces search space

Example

(¬a ∨ b)
(¬a ∨ c)
(¬b ∨ ¬c ∨ d)

a = 1
b = 1
c = 1

d = 1

⊥

¬c

⊥

c
b

¬a

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 18 / 21



DPLL Algorithm: Unit Propagation

I Extend partial assignment with necessary implied assignments
I Avoids branching and reduces search space

Example

(¬a ∨ b)
(¬a ∨ c)
(¬b ∨ ¬c ∨ d)

a = 1
b = 1
c = 1
d = 1

⊥

¬c

⊥

c
b

¬a

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 18 / 21



DPLL Algorithm: Unit Propagation

I Extend partial assignment with necessary implied assignments
I Avoids branching and reduces search space

Example

(¬a ∨ b)
(¬a ∨ c)
(¬b ∨ ¬c ∨ d)

a = 1
b = 1
c = 1
d = 1

⊥

¬c

⊥

c
b

¬a

Model

c

a

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 18 / 21



DPLL Algorithm: Further Topics

I Pure literal rule (not used nowadays)

I Efficient Unit Propagation (Watched Literals)
I Variable Order Heuristics
I Non-chronological Backtracking
I Learning
I Restarts

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 19 / 21



DPLL Algorithm: Further Topics

I Pure literal rule (not used nowadays)
I Efficient Unit Propagation (Watched Literals)

I Variable Order Heuristics
I Non-chronological Backtracking
I Learning
I Restarts

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 19 / 21



DPLL Algorithm: Further Topics

I Pure literal rule (not used nowadays)
I Efficient Unit Propagation (Watched Literals)
I Variable Order Heuristics

I Non-chronological Backtracking
I Learning
I Restarts

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 19 / 21



DPLL Algorithm: Further Topics

I Pure literal rule (not used nowadays)
I Efficient Unit Propagation (Watched Literals)
I Variable Order Heuristics
I Non-chronological Backtracking

I Learning
I Restarts

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 19 / 21



DPLL Algorithm: Further Topics

I Pure literal rule (not used nowadays)
I Efficient Unit Propagation (Watched Literals)
I Variable Order Heuristics
I Non-chronological Backtracking
I Learning

I Restarts

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 19 / 21



DPLL Algorithm: Further Topics

I Pure literal rule (not used nowadays)
I Efficient Unit Propagation (Watched Literals)
I Variable Order Heuristics
I Non-chronological Backtracking
I Learning
I Restarts

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 19 / 21



SAT Research

I SAT algorithms

I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT

I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures

I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT

I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science

I Stimulated by annual SAT-competition
I Applications of SAT

I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT

I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT

I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT
I Planning

I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT
I Planning
I FPGA routing

I Puzzles (Sudoku etc)
I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT
I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT
I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT

I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT
I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT
I 0-1 Integer Linear Programming

I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT
I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT
I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)

I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



SAT Research

I SAT algorithms
I Heuristics & Data-structures
I Some would say more engineering than science
I Stimulated by annual SAT-competition

I Applications of SAT
I Planning
I FPGA routing
I Puzzles (Sudoku etc)

I Extensions to SAT
I 0-1 Integer Linear Programming
I Satisfiability Modulo Theories (SMT)
I Model Finding

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 20 / 21



MiniSat

Developed during my PhD studies together with Niklas Een

I Simple
I Efficient
I Incremental
I Successful in SAT-competitions
I Widespread use in academia

Download

http://minisat.se

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 21 / 21

http://minisat.se


MiniSat

Developed during my PhD studies together with Niklas Een

I Simple
I Efficient
I Incremental
I Successful in SAT-competitions
I Widespread use in academia

Download

http://minisat.se

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 21 / 21

http://minisat.se


MiniSat

Developed during my PhD studies together with Niklas Een

I Simple
I Efficient
I Incremental
I Successful in SAT-competitions
I Widespread use in academia

Download

http://minisat.se

Niklas Sörensson Temporal Induction and SAT-Solving April 21, 2010 21 / 21

http://minisat.se

	Induction
	SAT-Solving

