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SAT-based verification now hot

• Used here in Sweden since 1989 mostly in safety
critical applications (railway control program 
verification)

• Bounded Model Checking a sensation in 1998

• SAT-based safety property verification in Lava since
1997

• Basic complete temporal induction method
described here invented by Stålmarck during a talk 
on inductive proofs of circuits by Koen Claessen

• SAT-based Induction (engine H) and BMC used in 
Jasper Gold. Also in IBM SixthSense, at Intel etc.



Bounded Model Checking 

(BMC)
• Look for bugs up to a certain length

• Proposed for use with SAT

• Used successfully in large companies, most often
for safety properties (Intel, IBM)

• Can be extended to give proofs and not just bug-
finding in the particular case of safety properties. 
(Stålmarck et al discovered this independently of 
the BMC people.)

• See also work by McMillan on SAT-based
unbounded model checking
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Representing circuit behaviour as 

formulas

I(q0,dack)  =  q0   dack

T((q0,dack),(q0’,dack’))   

=               (q0’     <-> dreq )          

(dack’  <-> dreq  (q0  (q0  dack)))
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Representing circuit behaviour as 

formulas

I(q0,dack)  =  q0   dack

T((q0,dack),(q0’,dack’))   

=               (q0’     <-> dreq )          

(dack’  <-> dreq  (q0  (q0  dack)))

new state depends also on input

Initial state(s)

Transition relation



Picturing transition relations

Draw   I (s)    as



Picturing transition relations

Draw   I (s)    as

Constraint is only on the state holding elements

not on inputs



Picturing transition relations

Draw   I (s)    as

Draw   T (s,s’)   as



Composing transitions into paths

Ti(s0, . . , si)   

=  T(s0, s1)  T(s1, s2)  ...  T(si-1,si)



Composing transitions into paths

Ti(s0, . . , si)   

=  T(s0, s1)  T(s1, s2)  ...  T(si-1,si)

i   copies

…



Representing the bad states

Similar to use of formula for initial states

B(q0,dack)  =  q0  dack



Drawing the bad states

B(s)



BMC for simple safety properties

Corresponding formula:

I(s0)  B(s0)

If the formula is satisfiable, we have a bug

already in the initial state!



BMC for simple safety properties

Corresponding formula:

I(s0) T(s0,s1)  B(s1)

Satisfiable => bug after one step



BMC for simple safety properties

Satisfiable => bug after two steps



BMC for simple safety properties

Satisfiable => bug after three steps



BMC for simple safety properties

Satisfiable => bug after four steps



BMC for simple safety properties

Forumula is   I(s0)  T4(s0, s1, s2, s3, s4)  B(s4)

Call this Base4 and generalise to Basei



Improvement: Start with bound n

Choose a bound n

If the formula

I(s0 )  Tn(s0, . . , sn)  (B(s0)  B(s1)  . . .  B(sn))

is satisfiable, then there is a bug somewhere in the 

first n steps through the transition system



BMC

Above description covers simple safety properties

Original BMC papers cover more complex properties

Note complete lack of quantifiers!

(Remember: BDDs support quantification; SAT doesn’t)











If system is bad

• Base0

• Base1

• Base2

and so on

• Finds a shortest countermodel

• Error trace for debugging



What if system is good?

When to stop iterating?

When I(s0)  Ti(s0, . . , si)

is UNSAT?



What if system is good?

When to stop iterating?

When I(s0)  Ti(s0, . . , si)

is UNSAT?

No, the system never gets stuck. Will eventually

come back to already visited states.

Need to check for absense of loops.



Extra formulas for loop-free

”the unique states condition”

Uk(s0, . . , sk)    =  (si ≠ sj)
0 ≤ i < j ≤  k

Quadratic number of

comparisons



States are vectors of bits, so

if s=(a,b,c,d)   then

s0 ≠ s1 is     (a0 <-> a1) 

 (b0 <-> b1) 

 (c0 <-> c1) 

 (d0 <-> d1)



We can stop if

I(s0)  Ti(s0, . . , si)  Ui(s0, . . , si) 

is UNSAT

…

All different



We can stop if

I(s0)  Ti(s0, . . , si)  Ui(s0, . . , si) 

is UNSAT

…

All different

No loop-free paths of length i

starting from inital states



Optimization: Only consider

shortest paths

• Don’t want to go back to an initial state

• Draw  non-initial as  

…

All different



Backwards termination condition

We can also terminate when we are sure 

that there are no longer paths leading to 

a bad state.



Backwards termination condition
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Backwards termination condition

Ti(s0, . . , si)  Ui(s0, . . , si)  B(si) 

is UNSAT

…

All different

No loop-free paths of length

i ending in a bad state



Optimization: Only interested in 

shortest paths

…

All different

Draw    Good   =   not Bad (B) as

This is a much better choice (may terminate much more quickly)



What do we have?

A BMC formula:

I(s0)  Ti(s0, …, si)  B(si)

Two different termination conditions:

Ti(s0, . . , si)  Ui(s0, …, si)  B(si)

I(s0)  Ti(s0, . . , si)  Ui(s0, …, si)



Define

Basek = I(s0)  Tk(s0, …, sk)  B(sk)

Step1k = Ti(s0, . . , si)  Ui(s0, …, si)  B(si)

Step2k = I(s0)  Ti(s0, . . , si)  Ui(s0, …, si)



Alternatively

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 

Step2k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤  j ≤  k

B(sj )  B(sk+1) 


1≤  j ≤  k+1

I(sj )I(s0) 



Alternatively

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 

Step2k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤  j ≤  k

B(sj )  B(sk+1) 


1≤  j ≤  k+1

I(sj )I(s0) 
Won’t be needed if

there is only one

initial state



Starts to look like induction!

UNSAT (Step1k)  means:

“If we have visited i+1 unique good states, the 

next state is guaranteed to be good.”

UNSAT (Step2k)  means:

“If we have visited i+1 unique non-initial states, 

the state state i+2 cycles ago is guaranteed to be 

non-initial.”



Induction

UNSAT (Basek) and (UNSAT (Step1k) or UNSAT (Step1k))

=> Property holds (cannot reach a bad state

from an initial state), by induction



Induction

UNSAT (Basek) and (UNSAT (Step1k) or UNSAT (Step1k))

=> Property holds (cannot reach a bad state

from an initial state), by induction

But:

SAT (Basek) and not (UNSAT (Step1k) or UNSAT (Step1k))

=> ??

Then we need to increase k.



Temporal induction (Stålmarck)

k=0

while True do {

if Sat(Basek) return False (and counter example)

if Unsat(Step1k)  or Unsat(Step2k) return True

k=k+1

}

Will terminate eventually!



Temporal induction

Most presentations consider only the Step1 case but I

like to keep things symmetrical

Much overlap between formulas in different iterations.

Was part of the inspiration behind the development (here at 

Chalmers) of the incremental SAT-solver miniSAT (open source, 

see minisat.se)

(see paper by Een and Sörensson in the list later)

In reality need to think hard about what formulas to give the 

SAT-solver.



Temporal induction

The method is sound and complete (see papers)

Gives the right answer. Gives proof, not just bug-finding.

Algorithm given above leads to a shortest counter-example

May also want to take bigger steps and sacrifice this property

(though this may make less sense when using an incremental

SAT-solver)

The method can be strengthened further (still ongoing research).

Definitely met with scepticism initially



Conclusion

BMC: the work-horse of formal hardware verification

SAT-based temporal induction is also much used

See our tutorial paper for info. on the history and the 

necessary development of SAT-solvers

Much research now concentrates on raising the level of 

abstraction at which formal reasoning is done

Satisfiability Module Theories (SMT) is the hot topic


