
SAT-based verification

temporal induction

Mary Sheeran, Chalmers
(Revised by Emil Axelsson)

SAT-based verification now hot

• Used here in Sweden since 1989 mostly in safety
critical applications (railway control program
verification)

• Bounded Model Checking a sensation in 1998

• SAT-based safety property verification in Lava since
1997

• Basic complete temporal induction method
described here invented by Stålmarck during a talk
on inductive proofs of circuits by Koen Claessen

• SAT-based Induction (engine H) and BMC used in
Jasper Gold. Also in IBM SixthSense, at Intel etc.

Bounded Model Checking

(BMC)
• Look for bugs up to a certain length

• Proposed for use with SAT

• Used successfully in large companies, most often
for safety properties (Intel, IBM)

• Can be extended to give proofs and not just bug-
finding in the particular case of safety properties.
(Stålmarck et al discovered this independently of
the BMC people.)

• See also work by McMillan on SAT-based
unbounded model checking

and

and

or

dreq

q0

dack

0

0

Representing circuit behaviour as

formulas

I(q0,dack) = q0   dack

T((q0,dack),(q0’,dack’))

= (q0’ <-> dreq) 

(dack’ <-> dreq  (q0  (q0  dack)))

Representing circuit behaviour as

formulas

I(q0,dack) = q0   dack

T((q0,dack),(q0’,dack’))

= (q0’ <-> dreq) 

(dack’ <-> dreq  (q0  (q0  dack)))

Initial state(s)

Transition relation

Representing circuit behaviour as

formulas

I(q0,dack) = q0   dack

T((q0,dack),(q0’,dack’))

= (q0’ <-> dreq) 

(dack’ <-> dreq  (q0  (q0  dack)))

new state depends also on input

Initial state(s)

Transition relation

Picturing transition relations

Draw I (s) as

Picturing transition relations

Draw I (s) as

Constraint is only on the state holding elements

not on inputs

Picturing transition relations

Draw I (s) as

Draw T (s,s’) as

Composing transitions into paths

Ti(s0, . . , si)

= T(s0, s1)  T(s1, s2)  ...  T(si-1,si)

Composing transitions into paths

Ti(s0, . . , si)

= T(s0, s1)  T(s1, s2)  ...  T(si-1,si)

i copies

…

Representing the bad states

Similar to use of formula for initial states

B(q0,dack) = q0  dack

Drawing the bad states

B(s)

BMC for simple safety properties

Corresponding formula:

I(s0)  B(s0)

If the formula is satisfiable, we have a bug

already in the initial state!

BMC for simple safety properties

Corresponding formula:

I(s0) T(s0,s1)  B(s1)

Satisfiable => bug after one step

BMC for simple safety properties

Satisfiable => bug after two steps

BMC for simple safety properties

Satisfiable => bug after three steps

BMC for simple safety properties

Satisfiable => bug after four steps

BMC for simple safety properties

Forumula is I(s0)  T4(s0, s1, s2, s3, s4)  B(s4)

Call this Base4 and generalise to Basei

Improvement: Start with bound n

Choose a bound n

If the formula

I(s0)  Tn(s0, . . , sn)  (B(s0)  B(s1)  . . .  B(sn))

is satisfiable, then there is a bug somewhere in the

first n steps through the transition system

BMC

Above description covers simple safety properties

Original BMC papers cover more complex properties

Note complete lack of quantifiers!

(Remember: BDDs support quantification; SAT doesn’t)

If system is bad

• Base0

• Base1

• Base2

and so on

• Finds a shortest countermodel

• Error trace for debugging

What if system is good?

When to stop iterating?

When I(s0)  Ti(s0, . . , si)

is UNSAT?

What if system is good?

When to stop iterating?

When I(s0)  Ti(s0, . . , si)

is UNSAT?

No, the system never gets stuck. Will eventually

come back to already visited states.

Need to check for absense of loops.

Extra formulas for loop-free

”the unique states condition”

Uk(s0, . . , sk) =  (si ≠ sj)
0 ≤ i < j ≤ k

Quadratic number of

comparisons

States are vectors of bits, so

if s=(a,b,c,d) then

s0 ≠ s1 is  (a0 <-> a1) 

 (b0 <-> b1) 

 (c0 <-> c1) 

 (d0 <-> d1)

We can stop if

I(s0)  Ti(s0, . . , si)  Ui(s0, . . , si)

is UNSAT

…

All different

We can stop if

I(s0)  Ti(s0, . . , si)  Ui(s0, . . , si)

is UNSAT

…

All different

No loop-free paths of length i

starting from inital states

Optimization: Only consider

shortest paths

• Don’t want to go back to an initial state

• Draw non-initial as

…

All different

Backwards termination condition

We can also terminate when we are sure

that there are no longer paths leading to

a bad state.

Backwards termination condition

Ti(s0, . . , si)  Ui(s0, . . , si)  B(si)

is UNSAT

…

All different

Backwards termination condition

Ti(s0, . . , si)  Ui(s0, . . , si)  B(si)

is UNSAT

…

All different

No loop-free paths of length

i ending in a bad state

Optimization: Only interested in

shortest paths

…

All different

Draw Good = not Bad (B) as

This is a much better choice (may terminate much more quickly)

What do we have?

A BMC formula:

I(s0)  Ti(s0, …, si)  B(si)

Two different termination conditions:

Ti(s0, . . , si)  Ui(s0, …, si)  B(si)

I(s0)  Ti(s0, . . , si)  Ui(s0, …, si)

Define

Basek = I(s0)  Tk(s0, …, sk)  B(sk)

Step1k = Ti(s0, . . , si)  Ui(s0, …, si)  B(si)

Step2k = I(s0)  Ti(s0, . . , si)  Ui(s0, …, si)

Alternatively

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 

Step2k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤ j ≤ k

B(sj)  B(sk+1)


1≤ j ≤ k+1

I(sj)I(s0) 

Alternatively

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 

Step2k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤ j ≤ k

B(sj)  B(sk+1)


1≤ j ≤ k+1

I(sj)I(s0) 
Won’t be needed if

there is only one

initial state

Starts to look like induction!

UNSAT (Step1k) means:

“If we have visited i+1 unique good states, the

next state is guaranteed to be good.”

UNSAT (Step2k) means:

“If we have visited i+1 unique non-initial states,

the state state i+2 cycles ago is guaranteed to be

non-initial.”

Induction

UNSAT (Basek) and (UNSAT (Step1k) or UNSAT (Step1k))

=> Property holds (cannot reach a bad state

from an initial state), by induction

Induction

UNSAT (Basek) and (UNSAT (Step1k) or UNSAT (Step1k))

=> Property holds (cannot reach a bad state

from an initial state), by induction

But:

SAT (Basek) and not (UNSAT (Step1k) or UNSAT (Step1k))

=> ??

Then we need to increase k.

Temporal induction (Stålmarck)

k=0

while True do {

if Sat(Basek) return False (and counter example)

if Unsat(Step1k) or Unsat(Step2k) return True

k=k+1

}

Will terminate eventually!

Temporal induction

Most presentations consider only the Step1 case but I

like to keep things symmetrical

Much overlap between formulas in different iterations.

Was part of the inspiration behind the development (here at

Chalmers) of the incremental SAT-solver miniSAT (open source,

see minisat.se)

(see paper by Een and Sörensson in the list later)

In reality need to think hard about what formulas to give the

SAT-solver.

Temporal induction

The method is sound and complete (see papers)

Gives the right answer. Gives proof, not just bug-finding.

Algorithm given above leads to a shortest counter-example

May also want to take bigger steps and sacrifice this property

(though this may make less sense when using an incremental

SAT-solver)

The method can be strengthened further (still ongoing research).

Definitely met with scepticism initially

Conclusion

BMC: the work-horse of formal hardware verification

SAT-based temporal induction is also much used

See our tutorial paper for info. on the history and the

necessary development of SAT-solvers

Much research now concentrates on raising the level of

abstraction at which formal reasoning is done

Satisfiability Module Theories (SMT) is the hot topic

