SAT-based verification
temporal induction

Mary Sheeran, Chalmers
(Revised by Emil Axelsson)

SAT-based verification now hot

Used here in Sweden since 1989 mostly in safety
critical applications (railway control program
verification)

Bounded Model Checking a sensation in 1998

SAT-based safety property verification in Lava since
1997

Basic complete temporal induction method
described here invented by Stalmarck during a talk
on inductive proofs of circuits by Koen Claessen

SAT-based Induction (engine H) and BMC used In
Jasper Gold. Also in IBM SixthSense, at Intel etc.

Bounded Model Checking
(BMC)

ook for bugs up to a certain length
Proposed for use with SAT

Used successfully in large companies, most often
for safety properties (Intel, IBM)

Can be extended to give proofs and not just bug-
finding in the particular case of safety properties.
(Stalmarck et al discovered this independently of
the BMC people.)

See also work by McMillan on SAT-based
unbounded model checking

dreg

or

and

dack

and

Representing circult behaviour as
formulas

1(q0,dack) = —g0 A — dack

T((g0,dack),(q0’,dack”))

= (0> <->dreq) A
(dack’ <->dreq A (g0 v (—q0 A dack)))

Representing circuit behaviour as
formulas

1(g0,dack) = —g0 A — dack 4 Initial state(s)]

Transiti lati]
T((q0,dack),(q0" dack™)) 4 ransition relation

= (g0 <->dreq) A
(dack’ <->dreq A (q0 v (—q0 A dack)))

Representing circuit behaviour as
formulas

1(g0,dack) = —g0 A — dack 4 Initial state(s)]

Transiton rlaton
T((qO,dack),(qO’,dack’)) 4[ransition relation

= (g0 <->dreq) A
(dack’ <->dreq A (q0 v (—q0 A dack)))

new state [depends also on input

Picturing transition relations

Draw |(s) as a

VAR

Picturing transition relations

Draw | (s) as a

22

Constraint is only on the state holding elements
not on Inputs

Picturing transition relations

Draw 1(s) as

Draw T (s,5’) as

a

22

Composing transitions into paths

TI(Sy, . ., S)
= T(Sy, Sy) A T(S11 S) A e A T(Si1,57)

Composing transitions into paths

Tie, .,s)
ZET(SO, S) A T(S1yS) A oo A T(S11,5))

—> >
E ;...
—> >

| copies

Representing the bad states

Similar to use of formula for initial states

B(g0,dack) = —g0 A dack

Drawing the bad states

:4.3> B(s)

BMC for simple safety properties

Corresponding formula:

1(sy) A B(Sp)

If the formula is satisfiable, we have a bug
already in the initial state!

BMC for simple safety properties
l

_/-\% h
N N
N N

Corresponding formula:

1(Sp) AT(S0,81) A B(S,)

Satisfiable => bug after one step

BMC for simple safety properties
l l

_/-\% b
N N
N N

Satisfiable => bug after two steps

BMC for simple safety properties
l l l

_/-\% b
N N
N N

Satisfiable => bug after three steps

BMC for simple safety properties
l l l l

_/-\% b
N N
N N

Satisfiable => bug after four steps

BMC for simple safety properties
l l l l

_/-\% >
N N
N N

Forumulais 1(s;) A T4(Sy, Sy, Sy, S3,S4) A B(S,)

Call this Base, and generalise to Base;

Improvement: Start with bound n

Choose a bound n
If the formula

1(Sg) A T"(Sg, - -, Sp) A (B(Sg) vB(S) v ...vB(s,))

IS satisfiable, then there Is a bug somewhere in the
first n steps through the transition system

BMC

Above description covers simple safety properties

Original BMC papers cover more complex properties

Note complete lack of quantifiers!
(Remember: BDDs support quantification; SAT doesn’t)

If system Is bad

+ Base,
- Base,
 Base,
and so on

* Finds a shortest countermodel
* Error trace for debugging

What If system Is good?

When to stop iterating?

When 1(sy) A Ti(s,, . ., S;)
IS UNSAT?

What if system iIs good?

When to stop iterating?

When 1(sy) A Ti(s,, . ., S;)
IS UNSAT?

No, the system never gets stuck. Will eventually
come back to already visited states.

Need to check for absense of loops.

Extra formulas for loop-free
’the unigue states condition”

UK(Sgr ... S)) = A(S % S)

0<i<j< k

Quadratic number of
comparisons

States are vectors of bits, so

If s=(a,b,c,d) then

SgFS; IS —=(ap<->a)v
— (by <->by) v
—(Co<->¢Cy) Vv
1 (do <=2 dl)

We can stop If

1(sg) AT(Sy, .., S) A Ul(sy,..,S)

l l l l

>

SN N1 —

All different

IS UNSAT

We can stop If

~
' No loop-free paths of length i
I(SO) A TI(SO’ L Si) starting from inital states |
_/
l l
S\ N\] S —

All different

IS UNSAT

Optimization: Only consider
shortest paths

« Don’t want to go back to an initial state
 Draw non-initial as O

l l l l

v U

All different

Backwards termination condition

We can also terminate when we are sure
that there are no longer paths leading to
a bad state.

Backwards termination condition
T'(Sg, . -, S) A U'(sy, .., S) AB(S)

~ N\

’

N,

S

All different

IS UNSAT

Ba(;kwatds_temealLQn condition

No loop-free paths of length
| ending in a bad state

~ N\

N,

N

5) A B(S))

’

S

All different

IS UNSAT

Optimization: Only interested In
shortest paths

Draw Good = notBad (—B) as .

H AR

All different

This is a much better choice (may terminate much more quickly)

What do we have?

A BMC formula:
1(Sg) A T'(Sg, ..., Si) A B(S))

Two different termination conditions:
T'(Sg, - -, S;) AU(Sg, ..., s;) A B(S)
1(Sg) A T'(Sg, - -, S;) A UI(S, ..., Si)

Define

Base, = 1(Sy) A TX(sg, ..., S,) A B(S,)
Stepl, = T'(Sg, . ., S;) A UI(S, ..., s;) A B(S)

Step2, = 1(sy) A T'(Sy, - ., S)) A UI(S,, ..., ;)

Alternatively

Stepl, = T<*Y(s,, . . , Spar) A UKT(s,, . .

N =B(S;) A B(Sys1)

0<j<k

Step2, = T<*Y(sy, . ., Sper) A UKT(S,, . .

1(S)) A A-I(S))

1< j< k+1

, Sk+1) N

' Sk+1) N

Alternatively

Stepl, = T<*Y(s,, . ., Spag) A UK(S,, . ., Sig) A

N =B(S;) A B(Sys1)

0<j<k

Step2, = T<*Y(s,, . ., Speg) A UX(sy, .., S) A

1(So) A —=I(S;) Won’t be needed If
0/ A -)
1< j < k+l : the_re_|§ only one
Initial state

/

Starts to look like induction!

UNSAT (Stepl,) means:

“If we have visited 1+1 unique good states, the
next state 1s guaranteed to be good.”

UNSAT (Step2,) means:

“If we have visited i+1 unique non-initial states,
the state state 1+2 cycles ago Is guaranteed to be
non-initial.”

Induction

UNSAT (Base,) and (UNSAT (Stepl,) or UNSAT (Stepl,))

=> Property holds (cannot reach a bad state
from an initial state), by induction

Induction

UNSAT (Base,) and (UNSAT (Stepl,) or UNSAT (Stepl,))

=> Property holds (cannot reach a bad state
from an initial state), by induction

But:
SAT (Base,) and not (UNSAT (Stepl,) or UNSAT (Stepl,))

=> 77

Then we need to increase K.

Temporal induction (Stalmarck)

k=0

while True do {
If Sat(Base,) return False (and counter example)
If Unsat(Stepl,) or Unsat(Step2,) return True
k=k+1

Will terminate eventually!

Temporal induction

Most presentations consider only the Stepl case but |
like to keep things symmetrical

Much overlap between formulas in different iterations.

Was part of the inspiration behind the development (here at
Chalmers) of the incremental SAT-solver miniSAT (open source,
see minisat.se)

(see paper by Een and Sérensson in the list later)

In reality need to think hard about what formulas to give the
SAT-solver.

Temporal induction

The method is sound and complete (see papers)
Gives the right answer. Gives proof, not just bug-finding.

Algorithm given above leads to a shortest counter-example

May also want to take bigger steps and sacrifice this property
(though this may make less sense when using an incremental
SAT-solver)

The method can be strengthened further (still ongoing research).

Definitely met with scepticism initially

Conclusion

BMC: the work-horse of formal hardware verification
SAT-based temporal induction is also much used

See our tutorial paper for info. on the history and the
necessary development of SAT-solvers

Much research now concentrates on raising the level of
abstraction at which formal reasoning is done

Satisfiability Module Theories (SMT) is the hot topic

