
More on PSL

some examples,
some pitfalls

pulsed signal 

The PSL was right
assert always (req -> next (not req))

English description was nonsense

Pulsed signal means a signal in which a high signal
always goes low on next cycle
so the implication is the right thing

the signal that is always false is pulsed

Verification unit

vunit <name> [(<ent> [(<arch>)])] {
[<declaration> ;]
[<directive>;]

}

directive

assert <property>;

or

assume <property>;
assume_guarantee <property>;

directive
assert <property>;

or

assume <property>;
assume_guarantee <property>;

(Assume guarantee reasoning is a compsitional approach to verification first
introduced (afaik) in
[Jon83] C. B. Jones. Tentative steps toward a development method for interfering

programs. ACM Transactions on Programming Languages and Systems,
5(4):596–619, 1983.)

treat as assume if vunit
at top level and assert

otherwise

property

temporal layer
(temporal operators and SEREs)

Q: Are these two equally expressive (or do SEREs
add something new)?

Short A: properties involving counting need SEREs
(LTL not enough)

Ex: a must be high on every even cycle
assert { [*1] ; {[*2]} [*]} |-> {a} (from book)

property

temporal layer
(temporal operators and SEREs)

Q: Are these two equally expressive (or do
SEREs add something new)?

Long A. Defining stuff in the modelling layer
tends to even out the differences

Equivalences (examples)
see PSL book

b,c Boolean p Property s SERE

b until s

Equivalences (examples)
see PSL book

b,c Boolean p Property s SERE

b until s {b[*] ; s}

Equivalences (examples)
see PSL book

b,c Boolean p Property s SERE

next[i](b)

Equivalences (examples)
see PSL book

b,c Boolean p Property s SERE

next[i](b) { [*i] ; b }

property

temporal layer
(temporal operators and SEREs)

boolean layer
mostly just inherited from the HDL
but includes some useful built-in functions

prev (<expression>)
returns the value that the expression had
in the previous cycle

prev (<expression>)
returns the value that the expression had
in the previous cycle

property sum_correct is
always (o = i + prev (i)) ??

prev (<expression>)
returns the value that the expression had
in the previous cycle

property sum_correct is
always (o = i + prev (i)) ??

not good in cycle 0

prev (<expression>)
returns the value that the expression had
in the previous cycle

when using it, make sure there is a previous
cycle

How?

prev (<expression>)
returns the value that the expression had
in the previous cycle

when using it, make sure there is a previous cycle

How? property sum_correct is
always next (o = i + prev (i))

prev (<expression>)
returns the value that the expression had
in the previous cycle

when using it, make sure there is a previous cycle

How? property sum_correct is
always next (o = i + prev (i))

also prev (e, n) version
(n clock cycles ago)

prev (<expression>)
returns the value that the expression had
in the previous cycle

when using it, make sure there is a previous cycle

How? property sum_correct is
always next (o = i + prev (i))

book mentions next(<expression>)
confusing!
Doesn’t appear in JG

Simple subset

Having prev() tempts one to write stranger
properties
always next (a -> prev(b) = 7)
time no longer moves left to right as we move

through the property

Simple subset
Can also play such time games with SEREs
always ((a and next[6]b) -> c)

Neither of these last 2 props is in the simple subset.
(which is characterised by a list of rules in the LRM,

mostly forcing operands to be Boolean)

Advice in the PSL book. Stick to the simple subset. Easier
to understand. Easier to process. Authors have never
seen a real property that could not be rewritten in the
simple subset.

More built in functions

stable (< expression>)
true if expr. didn’t change from previous cycle

rose (< boolean>)
true if bool was false at previous cycle and true
now

fell (< boolean>)
vice versa

lastly

onehot (<bit vector>)
only one bit high

onehot0(<bit vector>)
zero or one bit high

start

idle p1 p2 p3

continue continue

done

cancel

cancel

FSM

Low level assertions
assert always ((state = idle and start) ->

next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

Low level assertions
assert always ((state = idle and start) ->

next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

Bit-vector

Low level assertions
assert always ((state = idle and start) ->

next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

constant

Low level assertions
assert always ((state = idle and start) ->

next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

Implicit self-loop

Higher level assertion

assert always (not (state = idle) ->
eventually! (state = idle)

Note: not a safety property!

Will also likely need to link the state machine to the system
that it is controlling and check that the desired
functionality is achieved

Message: try to raise level of abstraction of properties
(while keeping them short and simple)

Example: simple bus interface
spec (1)

1. 2 commands, read and write (with corresponding
signals)

2. Command can be issued only after requesting the bus,
indicated by a pulsed assertion of signal bus_req, and
receiving a grant, indicated by the assertion of signal
gnt one cycle after the assertion of bus_req

3. If the bus was not requested, it shouldn’t be granted
4. Command is issued the cycle following receipt of grant
5. Either a read or a write can be issued, not both

simultaneously

Example: simple bus interface
spec (2)

6. Reads and writes come with an address,
on addr[7 downto 0], that should be valid in the
following cycle

7. Address validity is indicated by signal addr_valid
8. If a read is issued, then one pulse of data on

data_in[63 downto 0] is expected the following cycle
9. If a write is issued, then one pulse of data on

data_out[63 downto 0] is expected the following cycle
10. Valid read data is indicated by data_in_valid and valid

write data by data_out_valid

Example: simple bus interface
low level checks

2, 4. assert always ((read or write) ->
endpoint(bus_req; gnt; true))

Built in function

Returns true when the sequence
has just ended

Example: simple bus interface
low level checks

3. assert always (not bus_req -> next (not gnt))

Example: simple bus interface
low level checks

5. assert never (read and write)

Example: simple bus interface
low level checks

part of 6,7.

assert always ((read or write) -> next addr_valid)

assert always (not (read or write)
-> next (not addr_valid))

Example: simple bus interface
low level checks

10.

assert always (read -> next data_in_valid)

assert always (not read -> next (not data_in_valid))

assert always (write -> next data_out_valid)

assert always (not write -> next (not data_out_valid))

Example: simple bus interface
low level checks

Have checked the protocol

but not mentioned the addr, data_in or
data_out buses

Need to think about overall functionality as
well as low level details

Example: simple bus interface
high level checks

Let’s assume two input signals get_data and
put_data indicating that a read or write is
needed

Assume also we have a way to recognise, at the
assertion of get_data or put_data, the data
that needs to be read or written
(from address get_addr[7 downto 0] to
read_buffer[63 downto 0] or
from write_buffer[63 downto 0] to address
put_addr[7 downto 0])

Assume also a suitable memory

Example: simple bus interface
high level checks

assert forall ADR[7 downto 0] in boolean:
always ((get_data and

get_adr[7 downto 0] = ADR[7 downto 0])
->

eventually!
(read_buffer[63 downto 0] = mem[ADR[7 downto 0]]))

Notes:
have made some assumptions e.g. about memory not
changing after read
included to show some of the fancier PSL constructs

and use of bus structures

Main message

Write both low level and high level checks

Low level checks will be easier to write – often transcribed
from spec.

High level specs consider desired functionality, which may
be implicit in the spec. Hard to write but high pay-off

For one approach to a methodology for use of PSL, see the
Prosyd Eu project web page (www.prosyd.org)
Contains many interesting examples both small and
large (some links broken)

http://www.prosyd.org/�

Common PSL errors

Mixing up logical implication and suffix
implication

assert always {req; ack} -> {start;busy[*]; end}

Source: the PSL book (Eisner and Fisman)

Probably didn’t mean start to coincide with req

if then

Probably meant
assert always {req; ack} |=> {start; busy[*]; end}

Confusing and with implication

Every high priority request (req and high_pri) should be followed
immediately by an ack and then by a gnt

assert always (req and high_pri) -> next (ack -> next gnt)
or
assert always (req and high_pri) -> next (ack and next gnt)
or
assert always (req and high_pri) |=> {ack; gnt}

Which?
Why?

Confusing and with implication

Every high priority request (req and high_pri) should be followed
immediately by an ack and then by a gnt

assert always (req and high_pri) -> next (ack and next gnt)
or
assert always (req and high_pri) |=> {ack; gnt}

(These two are correct (and equiv.))

Confusing concatentation with implication

Are these equivalent?

assert always {a; b; c}

assert always (a -> next b -> next[2] c)

Confusing concatentation with implication

Are these equivalent?

assert always {a; b; c} NOT a useful property

assert always (a -> next b -> next[2] c)

Confusing concatentation with suffix
implication

Are these equivalent?

assert always {a; b[+]; c} |=> {d}

assert always {a; b[+]; c; d}

Confusing concatentation with suffix
implication

Are these equivalent? NO

assert always {a; b[+]; c} |=> {d}

assert always {a; b[+]; c; d} again not useful

Using never with implication

assert always (req -> next ack)
req is always followed by ack

Two consecutive reqs are not allowed
assert never (req -> next req) ?

Using never with implication

assert always (req -> next ack)
req is always followed by ack

Two consecutive reqs are not allowed
assert never (req -> next req) ??
or
assert always (req -> next (not req))
or
assert never {req; req}

Which? Why? (And similarly for suffix implication)

Negating implications

assert always ((high_pri and req) -> ack)
High priority req gives an immediate ack

Low priority request does not give an immediate ack
assert always not ((low_pri and req) -> ack) ??

Ex: What should it be?
Check all three assertions on the following traces

(And similarly for suffix implication)

Negating implications

assert always ((high_pri and req) -> ack)
High priority req gives an immediate ack

Low priority request does not give an immediate ack
assert always not ((low_pri and req) -> ack) ??

Ex: What should it be? (A: move the negation to the ack)
Check all three assertions on the following traces

(And similarly for suffix implication)

req

high_pri

ack

low_pri

req

high_pri

ack

low_pri

Incorrect nesting of implications (1)

If a request (assertion of req) is acknowledged (assertion of ack
the following cycle), then it must receive a grant (assertion of
gnt) the cycle following ack

assert always ((req -> next ack) -> next gnt)

Faults?

What should it be? (Write in both LTL and SERE style)
Check on following trace

req

ack

gnt

Incorrect nesting of implications (2)
If there is a granted read request (assertion of req followed
by ack followed by gnt), then if there follows a complete data transfer
{start; data[*], end}, then the whole thing should be followed by an

assertion of signal read_complete.

assert always ({req; gnt; ack} |=> {start; data[*]; end}) | =>
{read_complete} ??

Fault?

What should it be? (Write with two suffix implications and with one)
In the latter case, think about how moving the position of the suffix

implication changes the meaning of the property

Thinking you are missing a ”first match” operator

On the cycle after the first ack following a request, a data
transfer should begin

assert always ({req; [*]; ack} |=> {start; data[*]; end}) ??

Wrong: Demands a transfer after every assertion of ack after
the req.

Thinking you are missing a ”first match” operator

On the cycle after the first ack following a request, a data
transfer should begin

assert always ({req; [*]; ack} |=> {start; data[*]; end}) ??

Wrong: Demands a transfer after every assertion of ack after
the req.

Answer: use ack[->]

Now, go and master PSL in the lab!

	More on PSL
	pulsed signal 
	Verification unit
	directive
	directive
	property
	property
	Equivalences (examples)�see PSL book
	Equivalences (examples)�see PSL book
	Equivalences (examples)�see PSL book
	Equivalences (examples)�see PSL book
	property
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Simple subset
	Simple subset
	More built in functions
	lastly
	FSM
	Low level assertions
	Low level assertions
	Low level assertions
	Low level assertions
	Higher level assertion
	Example: simple bus interface�spec (1)
	Example: simple bus interface�spec (2)
	Example: simple bus interface�low level checks
	Example: simple bus interface�low level checks
	Example: simple bus interface�low level checks
	Example: simple bus interface�low level checks
	Example: simple bus interface�low level checks
	Example: simple bus interface�low level checks
	Example: simple bus interface�high level checks
	Example: simple bus interface�high level checks
	Main message
	Common PSL errors
	Slide Number 42
	Confusing and with implication
	Confusing and with implication
	Confusing concatentation with implication
	Confusing concatentation with implication
	Confusing concatentation with suffix implication
	Confusing concatentation with suffix implication
	Using never with implication
	Using never with implication
	Negating implications
	Negating implications
	Slide Number 53
	Slide Number 54
	Incorrect nesting of implications (1)
	Slide Number 56
	Incorrect nesting of implications (2)
	Thinking you are missing a ”first match” operator
	Thinking you are missing a ”first match” operator
	Slide Number 60

