
More on PSL

some examples,

some pitfalls

start

idle p1 p2 p3

continue continue

done

cancel

cancel

FSM

Low level assertions

assert always ((state = idle and start) ->
next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

Low level assertions

assert always ((state = idle and start) ->
next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

Bit-vector

Low level assertions

assert always ((state = idle and start) ->
next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

constant

Low level assertions

assert always ((state = idle and start) ->
next (state = p1));

assert always ((state = idle and not start) ->
next (state = idle));

assert always ((state = p1 and continue) ->
next (state = p2));

and so on… one for each transition
good, but very localised

Implicit self-loop

Higher level assertion

assert always (not (state = idle) ->

eventually! (state = idle)

Note: not a safety property!

Will also likely need to link the state machine to the system
that it is controlling and check that the desired
functionality is achieved

Message: try to raise level of abstraction of properties
(while keeping them short and simple)

Example: simple bus interface
spec (1)

1. 2 commands, read and write (with corresponding
signals)

2. Command can be issued only after requesting the bus,
indicated by a pulsed assertion of signal bus_req, and
receiving a grant, indicated by the assertion of signal
gnt one cycle after the assertion of bus_req

3. If the bus was not requested, it shouldn’t be granted

4. Command is issued the cycle following receipt of grant

5. Either a read or a write can be issued, not both
simultaneously

Example: simple bus interface
spec (2)

6. Reads and writes come with an address,

on addr[7 downto 0], that should be valid in the
following cycle

7. Address validity is indicated by signal addr_valid

8. If a read is issued, then one pulse of data on

data_in[63 downto 0] is expected the following cycle

9. If a write is issued, then one pulse of data on
data_out[63 downto 0] is expected the following cycle

10. Valid read data is indicated by data_in_valid and valid
write data by data_out_valid

Example: simple bus interface
low level checks

2, 4. assert always ((read or write) ->

ended(bus_req; gnt; true))

Built in function
Returns true when the SERE has just ended

Example: simple bus interface
low level checks

3. assert always (not bus_req -> next (not gnt))

Example: simple bus interface
low level checks

5. assert never (read and write)

Example: simple bus interface
low level checks

part of 6,7.

assert always ((read or write) -> next addr_valid)

assert always (not (read or write)

-> next (not addr_valid))

Example: simple bus interface
low level checks

10.

assert always (read -> next data_in_valid)

assert always (not read -> next (not data_in_valid))

assert always (write -> next data_out_valid)

assert always (not write -> next (not data_out_valid))

Example: simple bus interface
low level checks

Have checked the protocol

but not mentioned the addr, data_in or
data_out buses

Need to think about overall functionality as
well as low level details

Example: simple bus interface
high level checks

Let’s assume two input signals get_data and
put_data indicating that a read or write is
needed

Assume also we have a way to recognise, at the
assertion of get_data or put_data, the data
that needs to be read or written
(from address get_addr[7 downto 0] to
read_buffer[63 downto 0] or
from write_buffer[63 downto 0] to address
put_addr[7 downto 0])

Assume also a suitable memory

Example: simple bus interface
high level checks

assert forall ADR[7 downto 0] in boolean:
always ((get_data and

get_adr[7 downto 0] = ADR[7 downto 0])
->

eventually!
(read_buffer[63 downto 0] = mem[ADR[7 downto 0]]))

Notes:
have made some assumptions e.g. about memory not
changing after read
included to show some of the fancier PSL constructs

and use of bus structures

Main message

Write both low level and high level checks

Low level checks will be easier to write – often transcribed
from spec.

High level specs consider desired functionality, which may
be implicit in the spec. Hard to write but high pay-off

For one approach to a methodology for use of PSL, see the
Prosyd Eu project web page (www.prosyd.org)
Contains many interesting examples both small and
large (including the following example)

http://www.prosyd.org/

Common PSL errors

Mixing up logical implication and suffix
implication

assert always {req; ack} -> {start;busy[*]; end}

Source: the PSL book (Eisner and Fisman)

Probably didn’t mean start to coincide with req

if then

Probably meant
assert always {req; ack} |=> {start; busy[*]; end}

Confusing and with implication

Every high priority request (req and high_pri) should be followed
immediately by an ack and then by a gnt

assert always (req and high_pri) -> next (ack -> next gnt)

or

assert always (req and high_pri) -> next (ack and next gnt)

or

assert always (req and high_pri) |=> {ack; gnt}

Which?

Why?

Confusing concatentation with implication

Are these equivalent?

assert always {a; b; c}

assert always (a -> next b -> next[2] c)

Confusing concatentation with suffix
implication

Are these equivalent?

assert always {a; b[+]; c} |=> {d}

assert always {a; b[+]; c; d}

Exercise

Figure out from the standard what

{SERE} (FL_property)

means

Using never with implication

assert always (req -> next ack)

req is always followed by ack

Two consecutive reqs are not allowed

assert never (req -> next req) ?

Using never with implication

assert always (req -> next ack)

req is always followed by ack

Two consecutive reqs are not allowed

assert never (req -> next req) ??

or

assert always (req -> next (not req))

or

assert never {req; req}

Which? Why? (And similarly for suffix implication)

Negating implications

assert always ((high_pri and req) -> ack)

High priority req gives an immediate ack

Low priority request does not give an immediate ack

assert always not ((low_pri and req) -> ack) ??

Ex: What should it be?

Check all three assertions on the following traces

(And similarly for suffix implication)

req

high_pri

ack

low_pri

req

high_pri

ack

low_pri

Incorrect nesting of implications (1)

If a request (assertion of req) is acknowledged (assertion of ack
the following cycle), then it must receive a grant (assertion of
gnt) the cycle following ack

assert always ((req -> next ack) -> next gnt)

Faults?

What should it be? (Write in both LTL and SERE style)

Check on following trace

req

ack

gnt

Incorrect nesting of implications (2)

If there is a granted read request (assertion of req followed

by ack followed by gnt), then if there follows a complete data transfer

{start; data[*], end}, then the whole thing should be followed by an
assertion of signal read_complete.

assert always ({req; gnt; ack} |=> {start; data[*]; end}) | =>

{read_complete} ??

Fault?

What should it be? (Write with two suffix implications and with one)

In the latter case, think about how moving the position of the suffix
implication changes the meaning of the property

Thinking you are missing a ”first match” operator

On the cycle after the first ack following a request, a data
transfer should begin

assert always ({req; [*]; ack} |=> {start; data[*]; end}) ??

Wrong: Demands a transfer after every assertion of ack after
the req.

Thinking you are missing a ”first match” operator

On the cycle after the first ack following a request, a data
transfer should begin

assert always ({req; [*]; ack} |=> {start; data[*]; end}) ??

Wrong: Demands a transfer after every assertion of ack after
the req.

Answer: use ack[->]

”Extraneous” assertions of signals

assert always {ack} |=> {start ; busy[*] ; done}

ack

start

busy

done

May wish to rule out some behaviours

assert always (ack -> not (start or busy or done))

assert always {ack} | => {start and not busy and not done ;

{not start and busy and not done}[*];

not start and not busy and done}

PSL

Seems to be reasonably simple, elegant and concise!

Jasper’s Göteborg based team have helped
to define and simplify the formal semantics.

See the LRM (or IEEE standard) and also the paper in FMCAD 2004

In larger examples, one uses the modelling layer (in VHDL) to augment
specs, ending up with small and readable PSL properties

