
Example from yesterday

Pulsed request signal req

Requirement:

Before can make a second request, the first must be

acknowledged

What if we want to allow the ack to come not together

with the next req but with the req that it is

acknowledging?? Write a new property for this.

A: assert always (req -> (ack || next (ack before req)))

Sequential Extended Regular

Expressions (SEREs)

(based on source : Dana Fisman and Cindy Eisner,

with thanks)

SEREs

Alternative to the temporal operators (always,

next, until, before)

Related to good old regular expressions

A SERE is a property but a property is not

necessarily a SERE

SERE examples

assert {req; busy; grnt}

req is high on the first cycle, busy on the

second, and grnt on the third.

SERE examples

0 1 2 3 ...

req

busy

grnt

assert {req; busy; grnt}

SERE examples

0 1 2 3 ...

req

busy

grnt

this too

assert {req; busy; grnt}

SERE examples

0 1 2 3 ...

req

busy

grnt

and this

assert {req; busy; grnt}

SERE examples

0 1 2 3 ...

req

busy

grnt

but not this

Why?

assert {req; busy; grnt}

SERE examples

0 1 2 3 ...

req

busy

grnt

Specify only traces that start like this?

SERE examples

0 1 2 3 ...

req

busy

grnt

Specify only traces that start like this?

assert {req and not busy and not grnt;

not req and busy and not grnt;

not req and not busy and grnt}

0 1 2 3 ...

req

busy

grnt

assert {[*]; req; busy; grnt}

[*] means skip

zero or more

cycles

0 1 2 3 ...

req

busy

grnt

assert {[*]; req; busy; grnt}

so our original trace

is still in the set

described

0 1 2 3 ...

req

busy

grnt

assert {true; req; busy; grnt}

says

req;busy;grnt

should start

after one cycle

constrains only

cylces 1,2,3

{true[*4]; req; busy; grnt} 4 repetitions

{true[+]; req; busy; grnt} true[+] = [+]

one or more trues

true[*] = [*]

{[*]; req; busy[*3 to 5]; grnt}

at least 3 and at most 5 busys

{[*]; req; {b1;b2}[*]; grnt}

{[*]; req; {b1;b2;b3}[*7]; grnt}

subsequences can also be repeated

Yet more SERE repetition operators

{[*]; req; busy[=3]; grnt}

3 busys, not necessarily in consecutive cycles, between

req and grnt

(and with possible ”padding” before and after

occurrences of busy)

Applies only to Boolean expressions

(example trace later)

Yet more SERE repetition operators

{[*]; req; busy[->3]; grnt}

3 busys, not necessarily in consecutive cycles, between

req and grnt

(and with possible ”padding” before, but NOT after last

occurrence of busy)

Applies only to Boolean expressions

Called the ”goto repetition operator”

[->1] can be written [->]

&&

Simultaneous subsequences

Same length, start and end together

{start; a[*]; end} && {!abort[*]}

”length matching and”

&

Both sequences should be matched, starting at the

same clock cycle

But they don’t need to be the same length

{p1_done[->] & p2_done[->] & p3_done[->]}

Describes an interval in which p1, p2 and p3 all

get done, but not necessarily simultaneously

|

One of the subsequences should be matched (or)

Don’t need to be the same length

{request;

{rd; not c_r; not dne[*]} | {wr; not c_w; not dne[*]};

dne}

Fancier properties at last!

SEREs are themselves properties

Properties are also built from subproperties

{SERE1} |=> {SERE2} is a property

If a trace matches SERE1, then its

continuation should match SERE2

Fancier properties at last!

SEREs are themselves properties

Properties are also built from subproperties

{SERE1} |=> {SERE2} is a property

If a trace matches SERE1, then its

continuation should match SERE2

Non-overlapping suffix

implication

Fancier properties at last!

SEREs are themselves properties

Properties are also built from subproperties

{SERE1} |=> {SERE2} is a property

If a trace matches SERE1, then its

continuation should match SERE2

This can also be a

property

if then

{true[*]; req; ack} |=> {start; busy[*]; end}

Not just the first req; ack

{true[*]; req; ack} |=> {start; busy[*]; end}

if then

if then

Overlap also possible!

{true[*]; req; ack} |=> {start; busy[*]; end}

if then

if
then

if then

{true[*]; req; ack} |=> {start; data[*]; end}

{true[*]; req; ack} |=> {start; data[=8]; end}

if then

1 2 3 4 5 6 7 8

Can check for data in non-consecutive cycles

A form of implication

{SERE1} |=> {SERE2}

If a trace matches SERE1, then its

continuation should match SERE2

A form of implication

v. similar to logical implication

(with same ”false implies everything” trap)

Difference is timing relationship between if and

then parts

logical implication

p1 -> p2

p1

logical implication

p1 -> p2

p1

->

p2

suffix implication

s1 |=> p2

s1

suffix implication

s1 |=> p2

s1

|=>

p2

overlapping suffix implication

s1 |-> p2

s1

|->

p2

Another form of implication

{SERE1} |-> {SERE2}

If a trace matches SERE1, then SERE2
should be matched, starting from the last
element of the trace matching SERE1

So there is one cycle of overlap in the middle

Example

{[*]; start; busy[*]; end} |-> {success; done}

If signal start is asserted, signal end is asserted at

the next cycle or later, and in the meantime signal

busy holds, then success is asserted at the same

time as end is, and in the next cycle done is

asserted

Example

{[*]; {{start; c[*]; end}&&{not abort[*]}}} |->

{success}

If there is no abort during {start;c[*];end},

success will be asserted with end

Question

Can you express one of the suffix implications in

terms of the other?

Don’t forget always!

{[*];s} |-> p (SERE style)

equivalent to

always {s} |-> p (LTL style)

(and sim. for |=>)

PSL has a small core and the rest is syntactic

sugar, for example

b[=i] = {not b[*]; b}[*i] ; not b[*]

Q: define b[->k] in similar style

See formal semantics in LRM

PSL

Regular expressions (plus some operators)

+

Linear temporal logic (LTL)

+

Lots of syntactic sugar

+ (optional)

Computation tree logic (CTL)

Example revisited

A sequence beginning with the assertion of signal
strt, and containing two not necessarily
consecutive assertions of signal get, during which
signal kill is not asserted, must be followed by a
sequence containing two assertions of signal put
before signal end can be asserted

AG~(strt & EX E[~get & ~kill U get & ~kill & EX
E[~get & ~kill U get & ~kill & E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U
end])]]])

In PSL (with 8 for 2)

A sequence beginning with the assertion of signal

strt, and containing eight not necessarily

consecutive assertions of signal get, during which

signal kill is not asserted, must be followed by a

sequence containing eight assertions of signal put

before signal end can be asserted

always({strt; {get[=8]}&&{kill[=0]}}

|=> {{put[=8]}&&{end[=0]}})

PSL

Seems to be reasonably simple, elegant and

concise!

Jasper’s Göteborg based team have helped

to define and simplify the formal semantics.

See the LRM (or IEEE standard) and also the

paper in FMCAD 2004

