
1

Specifying circuit properties in

PSL

(Much of this material is due to Cindy Eisner and Dana

Fisman, with thanks)

See also the Jasper PSL Quick Ref.

Background: Model Checking

MC

G(p -> F q)
yes

no
p

q

p

q

property

finite-state model

algorithm

counterexample

(Ken McMillan)

2

Two main types of temporal logic

• Linear-time Temporal Logic (LTL)
– must properties, safety and liveness

– Pnueli, 1977

• Computation Tree Logic (CTL)
– branching time, may properties, safety and liveness

– Clarke and Emerson, Queille and Sifakis, 1981

Linear time conceptually simplier (words vs trees)

Branching time computationally more efficient

We will return to this in a later lecture

But

temporal logics hard to read and write!

3

Computation Tree Logic

A sequence beginning with the assertion of signal
strt, and containing two not necessarily
consecutive assertions of signal get, during which
signal kill is not asserted, must be followed by a
sequence containing two assertions of signal put
before signal end can be asserted

AG~(strt & EX E[~get & ~kill U get & ~kill & EX
E[~get & ~kill U get & ~kill & E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U
end])]]])

Basis of PSL was Sugar

(IBM, Haifa)

Grew out of CTL

Added lots of syntactic sugar

Engineer friendly, used in many projects

Used in the industrial strength MC RuleBase

Standardisation led to further changes

4

Assertion Based Verification (ABV)

can be done in two ways

During simulation

– (dynamic, at runtime, called semi-formal
verification, checks only those runs)

As a static check

– (formal verification, covers all possible runs, more
comprehensive, harder to do, restricted to a subset
of the property language)

(Note: this duality has been important for PSL’s practical
success, but it also complicates the semantics!)

Safety Properties

always (p)

”Nothing bad will ever happen”

Most common type of property checked in practice

Easy to check (more later)

Disproved by a finite run of the system

always (not (gr1 and gr2))

5

Observer: a second approach

Observer written in same language as circuit

Safety properties only

Used in verification of control programs such as Lustre programs

that control safety critical features in the airbus

(and in Lava later)

F

Prop
ok

Back to PSL

Layers

Boolean

Temporal (temporal operators, SEREs)

Verification

Modelling (subset of chosen HDL)

(we use VHDL flavour and the simplest choice of

what the clock in properties is)

(group properties, specify whether to

verify or assume etc.)

6

Temporal layer

Foundation Language (FL) + Optional Branching Extension(OBE)

Temporal layer

Foundation Language (FL) + Optional Branching Extension(OBE)

where CTL comes in

can refer to sets of traces

FV only

7

Temporal layer

Foundation Language (FL) + Optional Branching Extension (OBE)

Property of a single trace or run

Temporal operators (LTL)

+ SEREs (two styles)

Sim. or FV

our main concern

Temporal operators

always (= never not ...)

Most PSL properties start with this!

8

0 1 2 3 4 5

a

b

assert not (a and b) ?

0 1 2 3 4 5

a

b

assert not (a and b) holds

9

0 1 2 3 4 5

a

b

assert not (a and b) holds

Pure boolean assertion

refers to FIRST cycle

ONLY

0 1 2 3 4 5

a

b

assert always not (a and b) ?

10

0 1 2 3 4 5

a

b

assert always not (a and b) does not hold

assert never (a and b) is same

Temporal operators

next

next p holds in a cycle if p holds at the next cycle

11

Example

Whenever signal a is asserted then in the next cycle

signal b must be asserted

Logical implication

Boolean

But often used inside temporal ops

p1 -> p2 is (not p1) or p2

if p1 then p2 else true

12

Logical implication

Boolean

But often used inside temporal ops

p1 -> p2 is (not p1) or p2

if p1 then p2 else true
Is TRUE if p1 is false

Beware!

next and implication

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b)

a

b

13

next and implication

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b)

a

b

a does not hold

next and implication

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b)

a

b

a holds so check b in next cycle

14

next and implication

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b)

a

b

a does not hold

Note overlap with previous pair

next and implication

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b)

a

b

a does not hold

15

next and implication

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b)

a

b

a holds so check b in next cycle

and so on….

Slightly different trace

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b) ?

a

b

16

Slightly different trace

0 1 2 3 4 5 6 7 8 9 10

assert always (a -> next b)

a

b

next[n] p holds if p holds in nth cycle in future

0 1 2 3 4 5 6 7 8 9 10

next is next[1]

assert always (a -> next[2] b) ?

a

b

17

next[n]

0 1 2 3 4 5 6 7 8 9 10

next is next[1]

assert always (a -> next[2] b)

a

b

More variants

Ranges

next_a[3 to 7] all in range

next_e [3 to 5] exists (= some) in range

next_event(b) p p should hold at next cycle at which

Boolean b holds (could be this cycle)

Also comes in a and e versions for

ranges

18

And yet more! weak vs strong

Strong operator demands that the trace “not end too soon”

indicated by !

(Will return to this.)

example

0 1 2 3 4 5 6 7 8

a

b

weak operator is lenient

assert always (a -> next b)

19

example

0 1 2 3 4 5 6 7 8

a

b

weak operator is lenient

assert always (a -> next b)

example

0 1 2 3 4 5 6 7 8

a

b

strong operator is strict

assert always (a -> next! b)

20

Temporal operators

until

p until q

p until_ q

p holds in each cycle until

(the one before) q holds

p holds in each cycle until

(and including the one where)

q holds

Example

Whenever signal req is asserted then, starting from

the next cycle, signal busy must be asserted

until signal done is asserted.

21

0 1 2 3 4 5 6 7 8 9 10

req

busy

assert always (req -> next (busy until done))

done

0 1 2 3 4 5 6 7 8 9 10

req

busy

assert always (req -> next (busy until done))

done

22

0 1 2 3 4 5 6 7 8 9 10

req

busy

assert always (req -> next (busy until done))

done

0 1 2 3 4 5 6 7 8 9 10

req

busy

assert always (req -> next (busy until done))

done

23

0 1 2 3 4 5 6 7 8 9 10

req

busy

assert always (req -> next (busy until done))

done

0 1 2 3 4 5 6 7 8 9 10

req

busy

assert always (req -> next (busy until_ done))

done

the other form of until

24

0 1 2 3 4 5 6 7 8 9 10

req

busy

assert always (req -> next (busy until_ done))

done

0 1 2 3 4 5 6 7 8 9 10

req

busy

Ex: assert always (req -> next (busy until_ done))

done

?

25

0 1 2 3 4 5 6 7 8 9 10

req

busy

Ex: assert always (req -> next (busy until done))

done

?

Temporal operators

before

p before q

p before_ q

p must hold at least once

strictly before q holds

p holds at least once before

or at the same cycle as q

holds

26

Example

Pulsed request signal req

Requirement:

Before can make a second request, the first must be

acknowledged

0 1 2 3 4 5 6 7 8 9 10

req

ack

assert always (req -> next (ack before req))

?

27

0 1 2 3 4 5 6 7 8 9 10

req

ack

assert always (req -> next (ack before req))

0 1 2 3 4 5 6 7 8 9 10

req

ack

assert always (req -> next (ack before_ req))

Allow ack simultaneously with next req

28

0 1 2 3 4 5 6 7 8 9 10

req

ack

1) assert always (req -> next (ack before req)) ?

Questions

Questions

2) Would

assert always (req -> (ack before req))

match the original English requirement?

3) What if we want to allow the ack to come not

together with the next req but with the req that

it is acknowledging?? Write a new property

for this.

29

Next topic (tomorrow)

Sequential Extended Regular Expressions

SEREs

