Preliminaries

p holds at the even states and does not hold at the odd states

p & G (p <-> ¬ (X p))

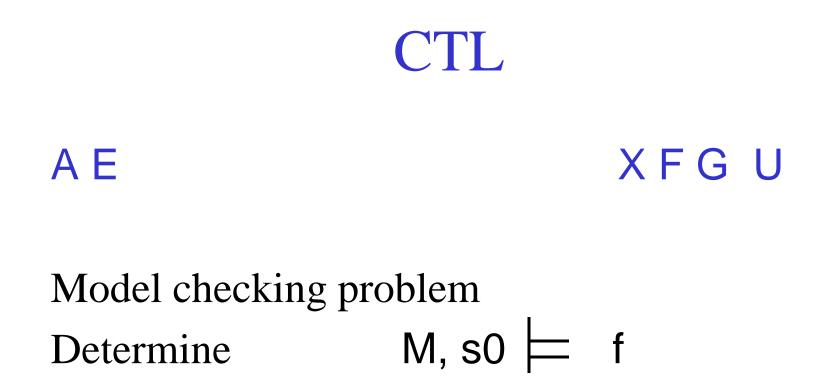
This is syntactically a CTL* path formula, but it's meaning is actually

A (p & G (p <-> ¬ (X p)))

(A means "all paths", not "always".)

Model Checking II

How CTL model checking works



Or find all s s.t. M, s \models f

Model checking

Last lecture – semantics of CTL*: M, s0 \models f

• Impractical as algorithm (A,E require exploring an infinite set of paths; F,U require searching indefinitely for future timepoint)

This lecture – alternative semantics (of CTL): $H(f) = \{s \mid M, s \models f\}$ "set of states for which f holds"

• Easy to turn into a practical algorithm!

Explicit state model checking

Option 1

Represent state transition graph explicitly Walk around marking states

Graph algorithms involving strongly connected components etc.Not covered in this course (cf. SPIN)Used particularly in software model checking

Symbolic MC

Option 2

McMillan et al

because of STATE EXPLOSION problem

State graph exponential in program/circuit size Graph algorithms linear in state graph size

INSTEAD

Use symbolic representation both of sets of states and of state transtion graph

CTL

Need only the boolean connectives (¬, &) and A X F G U (different choice from yesterday to follow Seger paper more closely)

Define others e.g. EG p \Leftrightarrow \neg AF \neg p E(p U q) \Leftrightarrow \neg (A(\neg q U (\neg p & \neg q)) \lor AG(\neg q))

Set of states in which a formula holds CTL formula f H(f) set of states satisfying f

a (atomic)

{s | a in L(s)} (cf.Lars)

Set of states in which a formula holds CTL formula f H(f) set of states satisfying f

a (atomic)

¬Ρ

{s | a in L(s)} (cf.Lars)

S - H(p)

Set of states in which a formula holds CTL formula f H(f) set of states satisfying f {s | a in L(s)} (cf.Lars) a (atomic) S - H(p)¬Ρ p&q $H(p) \cap H(q)$

Set of states in which a formula holds CTL formula f H(f) set of states

AX f

 $\{s \mid forall \ t \ sRt => t \in H(f)\}$

satisfying f

Now gets harder

AGp ⇔ p& AX AGp

Recursive

Want to write something like

 $H(AG p) = H(p) \cap \{s \mid \text{forall t } sRt => t \in H(AG p)\}$ How to solve this equation?

want to find a set U such that $U = H(p) \cap \{s \mid \text{ forall } t \ sRt => t \in U \}$

form is

 $\mathsf{U} = \mathsf{f}(\mathsf{U})$

We need to compute a fixed point (or fixpoint) of function **f**

Fixed points (Tarski)

(Normally expressed in terms of general lattices; here only considering the special case of sets.)

Let f be a monotonic function on sets $(x \subseteq f(x) \text{ or } x \supseteq f(x))$

Then there will be a least fixed pointLfp U. f(U)or a greatest fixed pointGfp U. f(U)

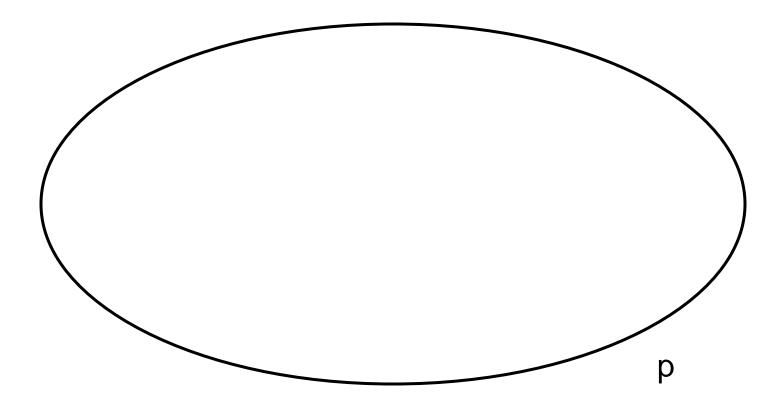
Lfp for increasing sets and Gfp for decreasing sets

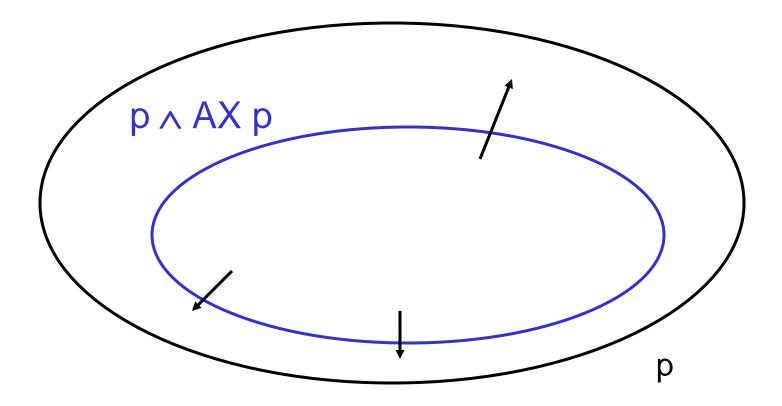
Next question

- Do we need a least or a greatest fixed point for $U = H(p) \cap \{s \mid \text{forall t } sRt => t \in U\}$?
- Answer is Gfp
- Idea: start with S (entire set of states) as first approx. Then compute f(S), f(f(S)) until no change in set

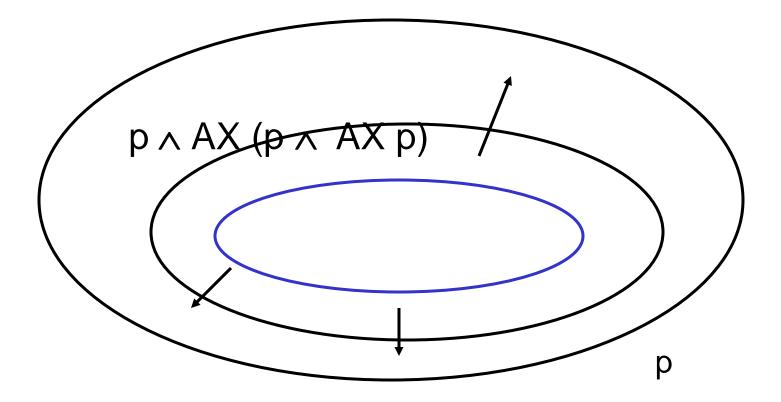
Conclusion

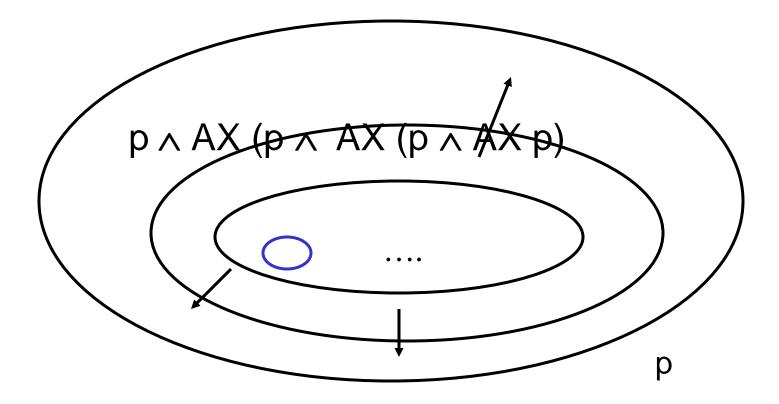
H(AG p)= Gfp U . H(p) $\cap \{s \mid \text{forall } t \ sRt => t \in U\}$





Fixed point interation in the other direction



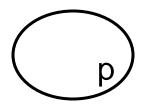


AF

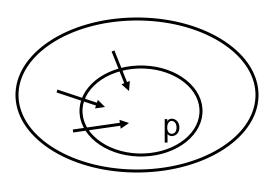
AFp ⇔ p ∨ AX AF P

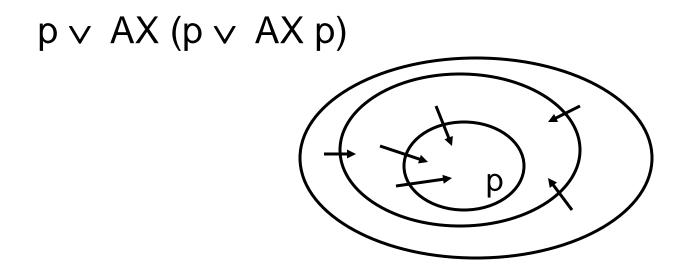
Same kind of pattern but this time need least fixed point (starting with empty set)

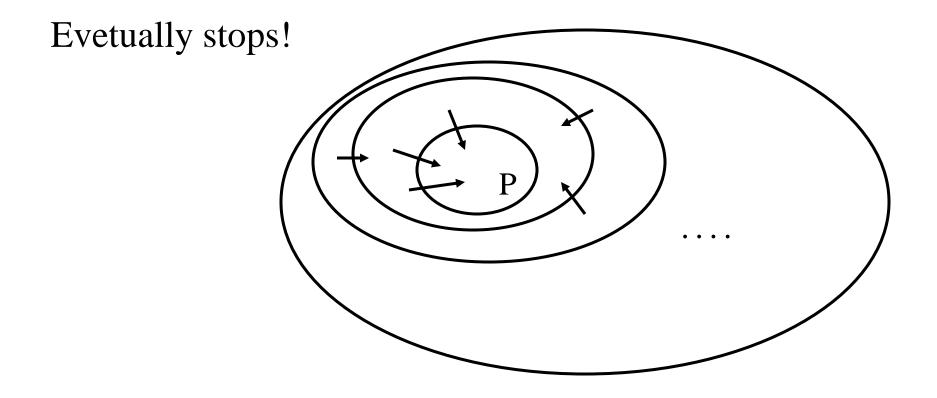
 $H(AF p) = Lfp U. H(p) \cup \{s \mid forall t sRt => t \in U\}$



p∨ AX p







Similar story for Until

 $\begin{array}{ll} A(p \cup q) \iff q \lor (p \land AX (A (p \cup q))) \\ H(A (p \cup q)) \\ = Lfp \ U. \ H(q) \cup (H(q) \cap \{s \mid \text{ forall } t \ sRt \\ . \end{array} \\ \end{array}$

Rest are defined in terms of these

e.g. EG p ⇔ ¬ AF ¬p E(p U q) ⇔ ¬ (A(¬ q U ¬ p & ¬ q) ∨ AG(¬ q))

Put H around each side

So far so good

Only talked about sets of states so far

Will come back to concrete calculations with these

What about BDDs to represent them??

BDD based Symbolic MC

Sets of states relations between states

BDDs

Fixed point characterisations of CTL ops

NO explicit state graph

Boolean formulas

 $(x \oplus y) \oplus z$ (\oplus is exclusive or)

 $(1 \oplus 0) \oplus 0 = 1$ assignment [x=1,y=0,z=0] gives answer 1 is a model or satisfying assignment

Write as 100

Exercise: Find another model

Boolean formulas

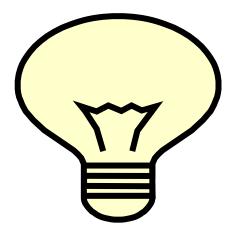
 $(\mathbf{x} \oplus \mathbf{y}) \oplus \mathbf{z}$ $(1 \oplus 1) \oplus \mathbf{0} = \mathbf{0}$

assignment [x=1,y=1,z=0] is not a model

Formula is a tautology if ALL assignments are models and is contradictory if NONE is.

Boolean formulas

For us, interesting formulas are somewhere in between: some assignments are models, some notIDEA: A formula can represent a set of states (its models)



{} {111} {101} {111,101}

false $X \land Y \land Z$ $X \land \neg Y \land Z$ $X \land Z$

{000,001, ..., 111}

true

Example

 $(x \oplus y) \oplus z$ represents {100,010,001,111} for states of the form xyz

Exercise: Find formulas (with var. names x,y,z) for the sets

{} {100} {110,100,010,000}

What is needed now?

A good data structure for boolean formulas

Have already seen Binary Decision Diagrams (BDDs) Bryant (IEEE Trans. Comp. 86, most cited CS paper!) see also Bryant's document about a Hitachi patent from 93 McMillan saw application to symbolic MC

Vector of boolean variables

 $(v_1, v_2, v_3, ..., v_n) \in \{0, 1\}^n$

Represent a set of states

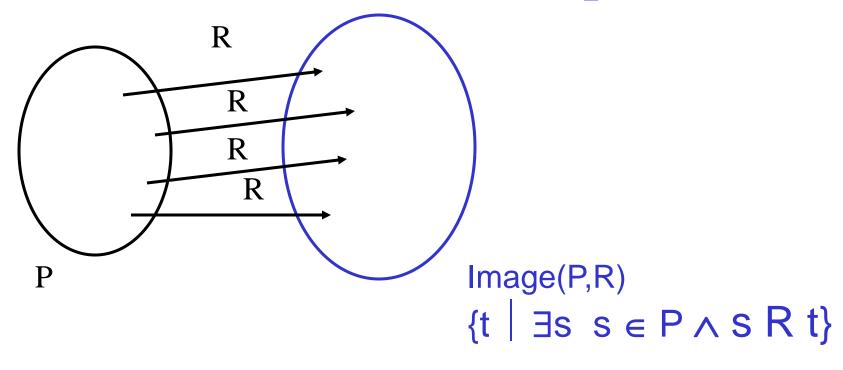
Just make the BDD for a corresponding formula!

BDD for set P using state variable vector V: bdd(P,v)

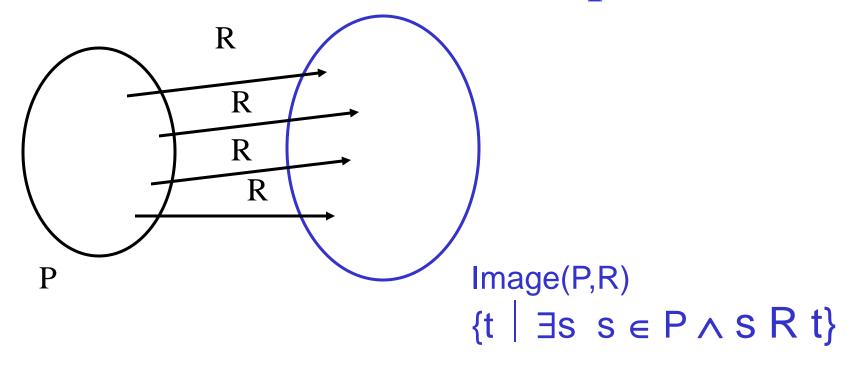
Represent a transition relation R

Remember that R is just a set of pairs of states

Use two variable vectors, V and V' (with the primed variables representing next states) Make a formula involving both V and V' and from that a BDD bdd(R,(V,V')) What set of states can we reach from set P in one step?

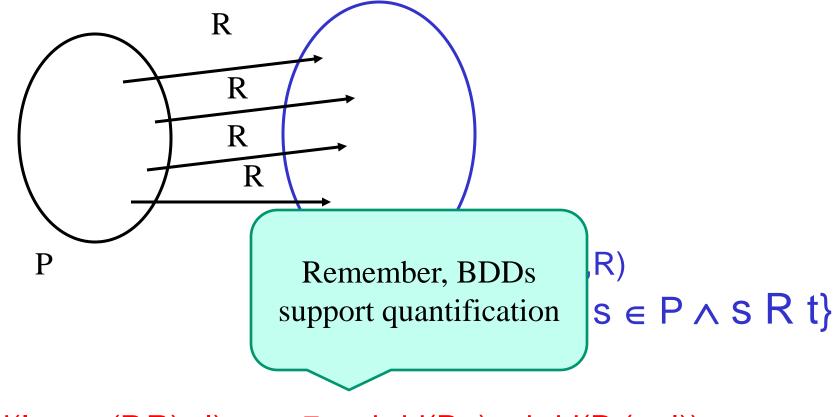


What set of states can we reach from set P in one step?



 $bdd(Image(P,R),v') = \exists v bdd(P,v) \land bdd(R,(v,v'))$

What set of states can we reach from set P in one step?



 $bdd(Image(P,R),v') = \exists v bdd(P,v) \land bdd(R,(v,v'))$

So far

BDDs for

- 1) sets of states
- 2) transition relation
- 3) calculating forward image of a set

Before we go on with MC, note that we can now compute Reachable States (see Hu paper)

Let T be the transition relation

. . .

- $R_0(v) = BDD$ for reset (or initial) state
- $R_1(v) = R_0(v) \lor bdd(Image(R_0,T),v)$

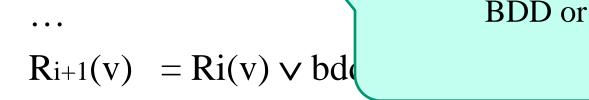
 $R_{i+1}(v) = Ri(v) \lor bdd(Image(R_i,T),v)$

Will eventually converge with $R_{i+1}(v) = Ri(v)$. Why???

Before we go on with MC, note that we can now compute Reachable States (see Hu paper)

Let T be the transition relation

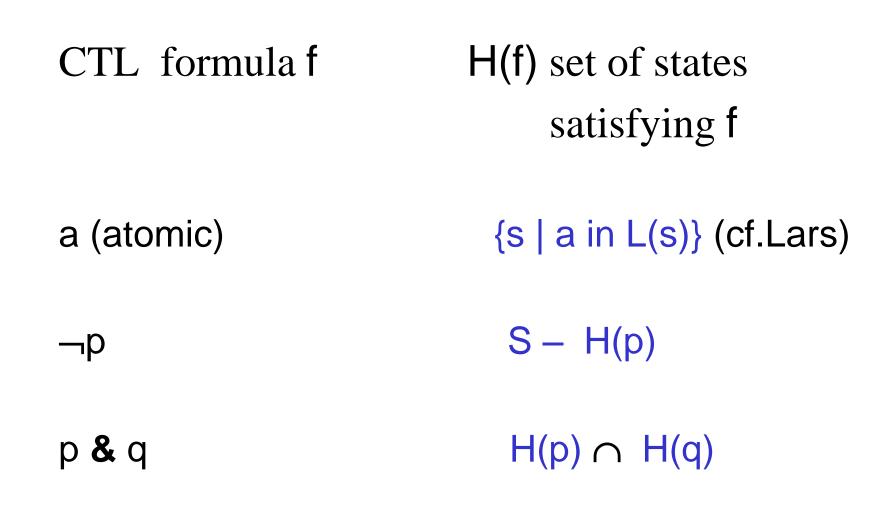
- $R_0(v) = BDD$ for reset (or initial) state
- $R_1(v) = R_0(v) \lor bdd(Image(R_0,T),v)$



Will eventually converge with $R_{i+1}(v) = Ri(v)$. Why???

Before we go on with MC, note that we can now compute Reachable States (see Hu paper) Let T be the transition relation $R_0(v) = BDD$ for reset (or initial) state $R_1(v) = R_0(v) \lor bdd(Image(R_0,T),v)$ Easy to check. Why? $R_{i+1}(v) = R_i(v) \lor bdd(Image(R_i, T)),$ Will eventually converge with $R_{i+1}(v) = R_i(v)$.

Back to MC



CTL formula f H(f) set of states satisfying f

AX f $\{s \mid \text{forall } t \ sRt => t \in H(f)\}$

All of the above operations easy to do with BDDs

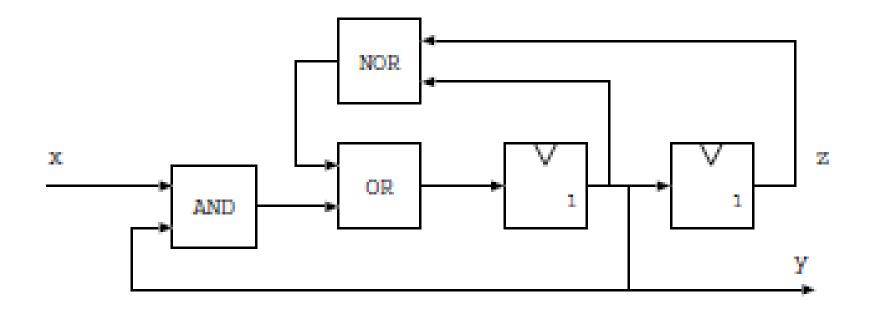
BDDs also fine in fixed point iterations

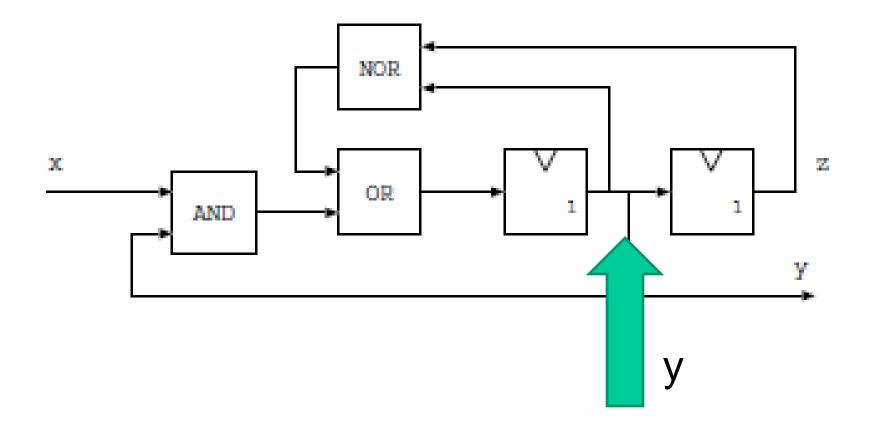
H(AF p) = Lfp U. H(p) \cup {s | forall t sRt => t \in U}

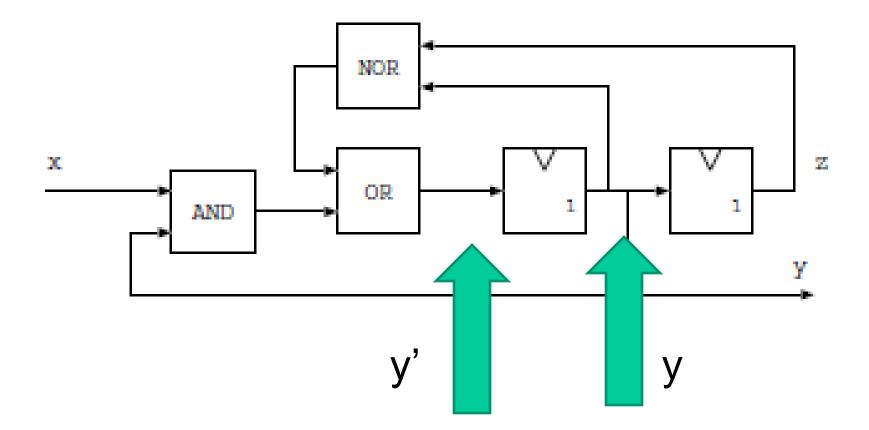
becomes

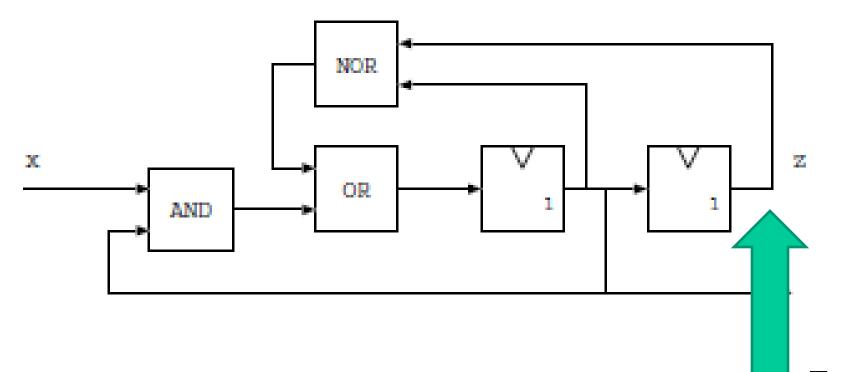
- $U_0 = empty set$
- $U_1 = H(p) \cup \{s \mid \text{forall t } sRt => t \in U_0\}$ $U_2 = H(p) \cup \{s \mid \text{forall t } sRt => t \in U_1\}$

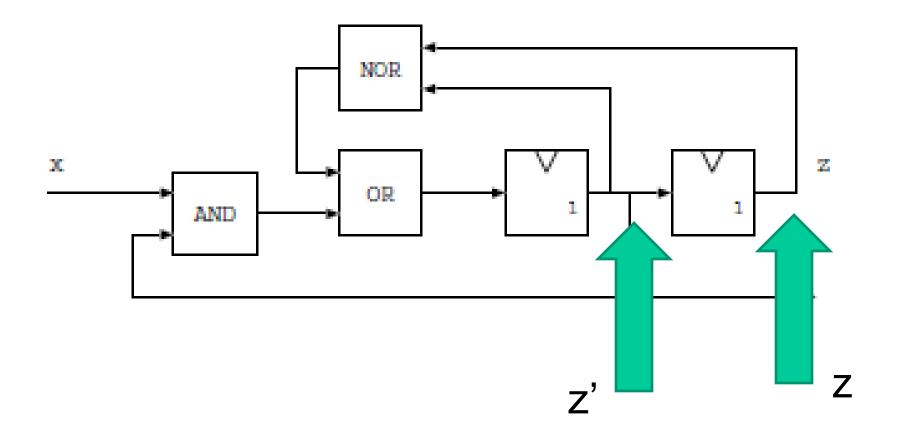
All done with BDDS (and recursion and fixed point iteration)











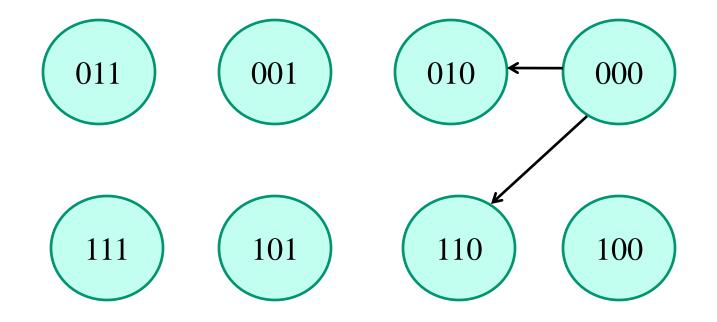
transitions

$(x, y, z) \rightarrow (x', y', z')$

y' = $(x \land y) \lor \neg (y \lor z)$ z' = y

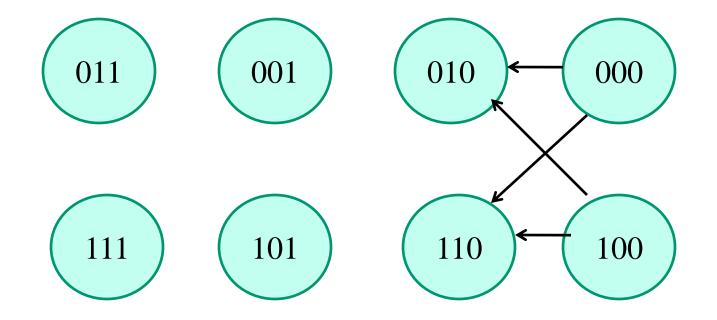
Show state transition diagram Calculate states in which EG y holds

state transition graph

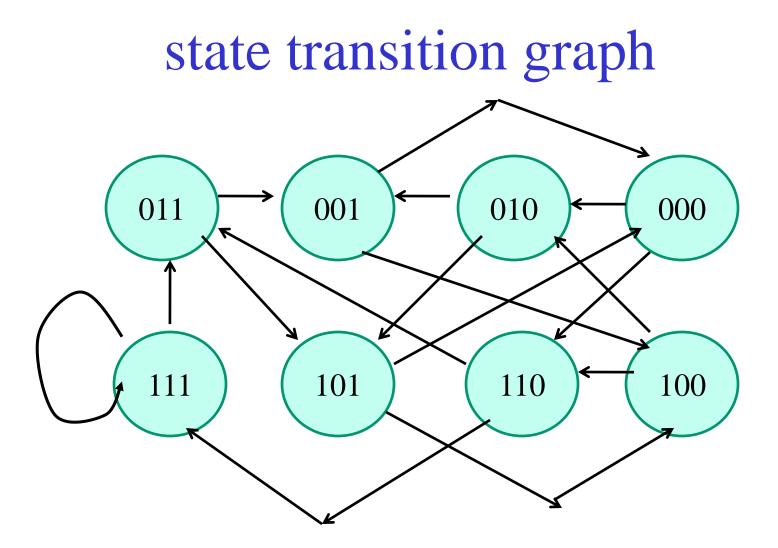


000 -> 010 110

state transition graph



100 -> 010 110



$H(\neg y) = \{000, 001, 100, 101\}$

$H(AF \neg y) = Lfp U. H(\neg y) \cup \{s \mid forall t sRt => t in U\}$

$H (EG y) = H (\neg AF \neg y)$ $= S - H(AF \neg y)$

Fixed point iteration

U0 = empty set $U1 = H(\neg y) \cup \{s \mid \text{forall t } sRt => t \text{ in } U0\}$ $= H(\neg y) = \{000,001,100,101\}$ $U2 = H(\neg y) \cup \{s \mid \text{forall } t \text{ sRt} => t \text{ in } U1\}$ $= H(\neg y) \cup \{011, 010\}$ $U3 = H(\neg y) \cup \{s \mid \text{ forall } t \ sRt => t \ in \ U2\}$ $= H(\neg y) \cup \{011, 010\}$

$H(AF \neg y) = \{000,001,100,101,011,010\}$

Therefore, H (EG y) = S - H(AF \neg y) = {110,111}

Happy easter!