First some loose ends

Back to BDDs
(from lec. 3, week 1)

First form of FV

Equivalence Checking
(EC,CEC)

Boolean network comparison, also
known as combinational equivalence

checking

Straight BDD comparison works for
moderately sized circuits. For larger
circuits, more sophisticated methods
are used.

Invisible to user, automatic, effective

Second form of FV
Symbolic simulation

Take a simulator (can be quite low level, accurate one)

Make 1t work not only on 0, 1, X (unknown)
(or a larger group of constants) but ALSO on symbols

Ordimary simulation

V V

Db

B

XOr ?

simulation

D

simulation

D

R
)05

D>

simulation

0

B

0

4 runs to check exhaustively

Q: how many for n mputs?

Symbolic simulation Idea 1

0 0
) Halves number of sim. runs!

Use X values

BUT may lose mformation

- X
:) (try on xor example)

Symbolic simulation Idea 2

D>

D

1a

Use symbolic values

Think of giving mput values names
rather than constant values

Build up an expression in terms of
(some of the) mputs

May Rep. Using Binary Decision
Diagrams (BDDs)

V V

Symbolic simulation

Db

D

Symbolic simulation

Db

D

Symbolic simulation

>

Dl

a

D

e

Symbolic simulation

D

14

D>

a

1X

1a

1a

Symbolic simulation

Widely used (applies also to sequential circuits)

Forms basis of model checking method called Symbolic
Trajectory Evaluation (STE)

User must make judicious choice of 0,1 X a,b, ...

X halves sim runs, but may result in X at a point vital
to the verification

Symbolic variable halves sim. runs without losing info.
BUT BDD somewhere in the stm. may grow too big

Pro and Cons of BDDs

+ Powerful operations (create, manipulate,test)
polynomial complexity, composable
+ Usually stay small enough
given good variable order
+ Provide quantification operations (unlike plain SAT) (see MC!)

- sometimes explode in size

- Important circuits (multipliers and shifters) are problematic =>
yet more special hacks in the tools

- variable ordering problem is NP-complete

In practice used together with SAT and other engines

Model Checking |

What are LTL and CTL?

dreg

or

and

dack

and -

View circuit as a transition system

(dreq, qO, dack) - (dreq’, q0’, dack’)

b

qo0 = dreq
dack’ = dreq and (q0 or (not q0 and dack))

exercise

() ()

000 =— 100 110 111

011

001 101

010

110

111

v

011

/

101

() ()

000 =— 100 ., 110 . 111

1\ / | |

001
010 /

011

101

can also view transititon relation as a set of pairs of states, one pair per arrow
{(000,000), (000,100), (001,000), (001,100),
(010,000), (010,100), (011,000), (011,100),
(100,010), (100,110), (101,011), (101,111),
(110,011), (110,111), (111,011), (111,111)}

Idea

Transition system

+ special temporal logic

+ automatic checking algorithm

Another view

computation tree from a state

111

/N

AYA

Unwinding further

111 011 000 100

& o o @ W of 0

Possible behawours from state s

/ \Transmon relation R

/Q\ /\ /\ /\

Relation vs. Function?

path = possible run of the system

Transition relation R

Points to note

Transition system models circuit behaviour

We chose the tick of the transition system to be the same as
one clock cycle. Gates have zero delay — a very standard
choice for synchronous circuits

Could have had a finer degree of modelling of time (with

delays in gates). Choices here determine what properties
can be analysed

Model checker starts with transition system. It doesn’t matter
where It came from

Transition system M

S set of states (finite)

R binary relation on states
assumed total, each state has at least one arrow out

A set of atomic formulas

L function S -> set of atomic formulas that hold
In that state

Lars backwards © finite Kripke structure

Path iIn M

Infinite sequence of states
m - sOsls2... such that

Path iIn M

SO —- sl S2—, ..

R (s0,s1) e R
(s1,s2) e R

etc

Properties

Express desired behaviour over time using
special logic

LTL (linear temporal logic)
CTL (computation tree logic)

CTL* (more expressive logic with both
LTL and CTL as subsets)

CTL*

path quantifers

A “for all computation paths”
E “for some computation path”
can prefix assertions made from

Linear operators)

G “globally=always” about a path
F “sometime” >

X “nexttime”

U “until”)

CTL* formulas (syntax)

path formulas
fi=s| f | flvi2 | Xf | flUTf2

state formulas (about an individual state)
S::= a|—-Ss |slvs2|Ef

atomic formulas

Build up from core

Example

G (req -> F ack)

Example
G (req -> F ack)

A request will eventually lead to an
acknowledgement

liveness
linear

Example

G (req -3

Liveness property

A reques| can only be proved false by exhibiting an infinite
ackn path (run). Any finite path can be extended to
satisfy the eventuality condition

liveness
linear

Example

G (req -3

Safety and liveness in this sense introduced by
A reques| Lamport in a 1976 paper (about manual proof of his
ackn Bakery algorithm)

liveness
linear

Example (Gordon)

It Is possible to get to a state where Started
holds but Ready does not

Example (Gordon)

It Is possible to get to a state where Started
holds but Ready does not

E (F (Started & —-Ready))

Semantics
M = (L,AR,S)

M, s f f holds at state s In M

(and omit M if it Is clear which M
we are talking about)

M, TT = g g holds forpathminM

Semantics

Back to syntax and write down each case

S

— a ainL(s) (atomic)
— —f not (s — f)
— flv {2 S f1 or

— E (9)

Exists r. head (1) = s

S

and 1T

— {2

Semantics

Back to syntax and write down each case

S

— a ainL(s) (atomic)
| —f
English
a holds in state s if and only if a is in the set of

— E (9)

atomic propositions associated with s

English
—f holds ins if and only If it is not the case that f
holds in s

Semantics of a formula expressed in terms of
Back t0/ semantics of its parts. Recursive, with base case

s |— being the rule about atomic formulas
s | —f not (s — f)
S I— flvf2 S f1 or sp— f2

si—E(g) Existsthead (mm)=s and1m—g

— f

— glvg2

Semantics

— =g not (T

TT

—)

— gl or

TT

— f and head(mr) =s

Semantics

mE=— Xdg tail(mm) I— g
mH— gl UQg2
Exists k>0. drop kT g2 and

Forall0<j<k. dropjmg= gl

(note: I

mean tail in the Haskell sense)

CTL

Restrict path formulas (compare with CTL*)

fii= —f | slvs2 | Xs | s1USs2
N\

state formulas

Linear time ops (X,U,F,G) must be wrapped up in a
path quantifier (A,E).

Back to CTL* formulas (syntax)

path formulas
fi=s| f | flvi2 | Xf | flUTf2

state formulas (about an individual state)
S: = a|—-s |slvs2|Ef
!

atomic formulas

CIL* yes CITL ?

E XXf
E (tU@U))

A (fU Xg)

A(fUg)vEK

CIL* yes CITL ?

E XXf
E (tU@U))

A (fU Xg)

A(fUgQ)vEK Yes

CTL

Another view Is that we just have the
combined operators

AU, AX, AF, AG and EU, EX, EF, EG
and only need to think about state formulas

A operators for necessity
E operators for possibility

f

All immediate successors
Some immediate succesor
All paths always

Some path always

All paths eventually
Some path eventually

atomic
—f
AX f
EX f
AG f
EG f

AF f

EF f

f1v 2
A((fl U f2)
E (f1 U f2)

dymbaic Model Checking K. Fistore and B Rower

finally p globally p

;'lllxlli!
ii!il
l’-liiii
EXp

Examples (Gordon)

It Is possible to get to a state where Started
holds but Ready does not

Examples (Gordon)

It Is possible to get to a state where Started
holds but Ready does not

EF (Started & —Ready)

Examples (Gordon)

If a request Req occurs, then it will
eventually be acknowledged by Ack

Examples (Gordon)

If a request Req occurs, then it will
eventually be acknowledged by Ack

AG (Req -> AF Ack)

Examples (Gordon)

If a request Req occurs, then it continues to
hold, until it is eventually acknowledged

Examples (Gordon)

If a request Req occurs, then it continues to
hold, until it is eventually acknowledged

AG (Reg -> A[Reg U Ack])

EX E (fU g)

LTL

LTL formula is of form A f where f is a path formula
with subformulas that are atomic

(The f 1s what we write down. The A is implicit.)

Restrict path formulas (compare with CTL*)

fo=alf | flvf2 | Xf| fLUR

|

atomic formulas (Talk about a single state)

dymbadc Model Checking

finally p

LTL

It is the restricted path formulas that we think of as LTL
specifications (See P&R again)

G —(criticall & critical2) mutex
FG initialised eventually stays initialised
GF myI\/I ove myMove will always eventually hold

G (req -> F ack) request acknowledge pattern

LTL

Responsiveness (more examples)

G (req -> XF ack)

G (req -> X(req U ack))

G (req -> X((req & — ack) U (- reqg & ack)))

LTL

p holds at the even states and does not hold at the odd states

P& G (p<->=(Xp))

It is not possible to express that p holds in the even states (while not
saying anything about the odd states) in LTL

In CTL but not LTL

AG EF start

Regardless of what state the program enters, there
exists a computation leading back to the start state

In CTL but not LTL

AG (R — EX S)

non-blocking”

Even EX P Is an example

In both

AG (p — AF q) InCTL
G(p — F Q) In LTL

In LTL butnot CTL

GFp— F g
If there are infinitely many p along the path,
then there Is an occurrence of g

FGDp

In CTL* butnotin LTL or CTL

EIGFp
there Is a path with infinitely many p

Further reading

Ed Clarke’s course on Bug Catching: Automated Program
Verification and Testing

complete with moving bug on the home page!

Covers model checking relevant to hardware too.

The sub-page called Reading has slides and paper links

For some history (by the inventors themselves) see this workshop celebrating 25 years of
MC http://www.easychair.org/ FLoC-06/25MC-day227.html

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15414-f06/www/index.html�

Example revisited

A sequence beginning with the assertion of signal
strt, and containing two not necessarily
consecutive assertions of signal get, during which
signal kill is not asserted, must be followed by a
sequence containing two assertions of signal put
before signal end can be asserted

AG~(strt & EX E[~get & ~kill U get & ~kill & EX
E[~get & ~kill U get & ~kill & E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U
end])]]])

AG ~ ...
strt & EX E[~get & ~kill U get & ~kill & ...]
EX E [~get & ~kill U get & ~kill & ...]

E[~put U end] or
E[~put & ~end U (put & ~end & EX E[~put U end])]]

AG ~ ...

strt & EX E[~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

Zero puts

E[~put Uenay or |

E[~put & ~end U (put & ~end & EX E[~put U end])]]

AG ~ ...

strt & EX E[~get & ~kill U get & ~kill & ...]

EX E [~get & ~kill U get & ~kill & ...]

one put
E[~put U end] or .

E[~put & ~end U (put & ~end & EX E[~put U end])]]

Next lecture

How to model check CTL formulas

	First some loose ends
	Back to BDDs �(from lec. 3, week 1)
	First form of FV�Equivalence Checking (EC,CEC)
	Second form of FV�
	Second form of FV�
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Pro and Cons of BDDs
	Model Checking I
	Slide Number 18
	View circuit as a transition system
	exercise
	Slide Number 21
	Slide Number 22
	Idea
	Another view
	Unwinding further
	Possible behaviours from state s
	path = possible run of the system
	Points to note
	Transition system M
	Path in M
	Path in M
	Properties
	CTL*
	CTL* formulas (syntax)
	Build up from core
	Example
	Example
	Example
	Example
	Example (Gordon)
	Example (Gordon)
	Semantics
	Semantics
	Semantics
	Semantics
	Semantics
	Semantics
	CTL
	Back to CTL* formulas (syntax)
	CTL* yes CTL ?
	CTL* yes CTL ?
	CTL
	Slide Number 53
	Slide Number 54
	Examples (Gordon)
	Examples (Gordon)
	Examples (Gordon)
	Examples (Gordon)
	Examples (Gordon)
	Examples (Gordon)
	Slide Number 61
	LTL
	Slide Number 63
	LTL
	LTL
	LTL
	In CTL but not LTL
	In CTL but not LTL
	In both
	In LTL but not CTL
	In CTL* but not in LTL or CTL
	Further reading
	Example revisited
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Next lecture

