
Model Checking I

What are LTL and CTL?

and

and

or

dreq

q0

dack

q0barD

D

View circuit as a transition
system

(dreq, q0, dack)  (dreq’, q0’, dack’)

q0’ = dreq
dack’ = dreq and (q0 or (not q0 and dack))

and

and

or

dreq

q0

dack

D

D

dreq

q0

dack

dack’

q0’

Idea

Transition system

+ special temporal logic

+ automatic checking algorithm

Exercise
(from example circuit)

(dreq, q0, dack) 

(dreq’, dreq, dreq and (q0 or (not q0 and dack)))

Draw state transition diagram

Q: How many states for a start?

Hint (partial answer)

000 100 110 111

001 101

010
011

Question

000 100 110 111

001 101

010
011

Q: how many arrows should there be out of each state?
Why so?

Exercise

000 100 110 111

001 101

010
011

Complete the diagram

Write down the corresponding binary relation as
a set of pairs of states

Another view

computation tree from a state

111

Unwinding further
111

111 011

111 011 000 100

111 011 000 100 000 100 010 110.
.
.

Possible behaviours from state s
s

.

.

.

Transition relation R

Relation vs. Function?

path = possible run of the system
s

.

.

.

Transition relation R

Points to note

Transition system models circuit behaviour

We chose the tick of the transition system to be the same
as one clock cycle. Gates have zero delay – a very
standard choice for synchronous circuits

Could have had a finer degree of modelling of time (with
delays in gates). Choices here determine what
properties can be analysed

Model checker starts with transition system. It doesn’t
matter where it came from

Model Checking

MC

G(p -> F q)
yes

no
p

q

p

q

property

finite-state model

algorithm

counterexample

(Ken McMillan)

and

and

or

dreq

q0

dack

D

D

0

1

Netlist

input to SMV model checker
MODULE main

VAR w1 : boolean;

VAR w2 : boolean;

VAR w3 : boolean;

VAR w4 : boolean;

VAR w5 : boolean;

VAR i0 : boolean;

VAR w6 : boolean;

VAR w7 : boolean;

VAR w8 : boolean;

VAR w9 : boolean;

VAR w10 : boolean;

DEFINE w4 := 0;

DEFINE w5 := i0;

ASSIGN init(w3) := w4;

ASSIGN next(w3) := w5;

DEFINE w7 := !(w3);

DEFINE w9 := 1;

DEFINE w10 := w5 & w6;

ASSIGN init(w8) := w9;

ASSIGN next(w8) := w10;

DEFINE w6 := w7 & w8;

DEFINE w2 := w3 | w6;

MC builds internal
representation of
transition system

Transition system M

S set of states (finite)

R binary relation on states
assumed total, each state has at least one arrow out

A set of atomic formulas

L function S -> set of atomic formulas that hold
in that state

Lars backwards  finite Kripke structure

Path in M

Infinite sequence of states
π = s0 s1 s2 ... st

Path in M

s0 s1 s2 ...

R (s0,s1) є R

(s1,s2) є R

etc

Properties

Express desired behaviour over time using
special logic

LTL (linear temporal logic)
CTL (computation tree logic)
CTL* (more expressive logic with both

. LTL and CTL as subsets)

CTL*

path quantifers
A “for all computation paths”
E “for some computation path”
can prefix assertions made from
Linear operators
G “globally=always”
F “sometimes”
X “nexttime”
U “until”

about a path

CTL* formulas (syntax)

path formulas
f ::= s | f | f1  f2 | X f | f1 U f2

state formulas (about an individual state)

s ::= a | s | s1  s2 | E f

atomic formulas

Build up from core

A f =  E  f

F f = true U f
G f =  F  f

Example

G (req -> F ack)

Example

G (req -> F ack)

A request will eventually lead to an
acknowledgement

liveness
linear

Example (Gordon)

It is possible to get to a state where Started
holds but Ready does not

Example (Gordon)

It is possible to get to a state where Started
holds but Ready does not

E (F (Started & Ready))

Semantics

M = (L,A,R,S)

M, s f f holds at state s in M

(and omit M if it is clear which M
we are talking about)

M, π g g holds for path π in M

Semantics

Back to syntax and write down each case
S a a in L(s) (atomic)

s f not (s f)

s f1  f2 s f1 or s f2

s E (g) Exists π. head(π) = s and π g

Semantics

π f s f and head(π) = s

π  g not (π g)

π g1  g2 π g1 or π g2

Semantics

π X g tail(π) g

π g1 U g2

Exists k ≥ 0. drop k π g2 and

Forall 0 ≤ j < k. drop j π g1

(note: I mean tail in the Haskell sense)

CTL

Branching time (remember upside-down tree)
Restrict path formulas (compare with CTL*)

f ::= f | s1  s2 | X s | s1 U s2

state formulas

Linear time ops (X,U,F,G) must be wrapped up
in a path quantifier (A,E).

Back to CTL* formulas (syntax)

path formulas
f ::= s | f | f1  f2 | X f | f1 U f2

state formulas (about an individual state)

s ::= a | s | s1  s2 | E f

atomic formulas

CTL

Another view is that we just have the
combined operators AU, AX, AF,
AG and EU, EX, EF, EG and only
need to think about state formulas

A operators for necessity
E operators for possibility

f :: = atomic
| f

All immediate successors | AX f
Some immediate succesor | EX f
All paths always | AG f
Some path always | EG f
All paths eventually | AF f
Some path eventually | EF f

| f1 & f2
| A (f1 U f2)
| E (f1 U f2)

Examples (Gordon)

It is possible to get to a state where Started
holds but Ready does not

Examples (Gordon)

It is possible to get to a state where Started
holds but Ready does not

EF (Started & Ready)

Examples (Gordon)

If a request Req occurs, then it will
eventually be acknowledged by Ack

Examples (Gordon)

If a request Req occurs, then it will
eventually be acknowledged by Ack

AG (Req -> AF Ack)

Examples (Gordon)

If a request Req occurs, then it continues
to hold, until it is eventually
acknowledged

Examples (Gordon)

If a request Req occurs, then it continues
to hold, until it is eventually
acknowledged

AG (Req -> A [Req U Ack])

LTL

LTL formula is of form A f where f is a path
formula with subformulas that are atomic
(The f is what we write down. The A is
implicit.)

Restrict path formulas (compare with CTL*)

f ::= a | f | f1  f2 | X f | f1 U f2

Back to CTL* formulas (syntax)

path formulas
f ::= s | f | f1  f2 | X f | f1 U f2

state formulas (about an individual state)

s ::= a | s | s1  s2 | E f

atomic formulas

LTL

It is the restricted path formulas that we think of as LTL
specifications (See P&R again)

G(critical1 & critical2) mutex

FG initialised eventually stays initialised

GF myMove myMove will always eventually hold

G (req -> F ack) request acknowledge pattern

In CTL but not LTL

AG EF start

Regardless of what state the program enters, there

exists a computation leading back to the start state

AF AG p

In both

AG (p → AF q) in CTL

G(p → F q) in LTL

In LTL but not CTL

[G F p → F q]

if there are infinitely many p along
the path, then there is an
occurrence of q

F G p

In CTL* but not in LTL or CTL

E [G F p]

there is a path with infinitely many p

Further reading

Ed Clarke’s course on Bug Catching: Automated Program

Verification and Testing

complete with moving bug on the home page!

Covers model checking relevant to hardware too.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15414-
f06/www/index.html

For some history (by the inventors themselves) see this
workshop celebrating 25 years of MC
http://www.easychair.org/FLoC-06/25MC-day227.html

Example revisited

A sequence beginning with the assertion of
signal strt, and containing two not necessarily
consecutive assertions of signal get, during
which signal kill is not asserted, must be
followed by a sequence containing two
assertions of signal put before signal end can
be asserted

AG~(strt & EX E[~get & ~kill U get & ~kill &
EX E[~get & ~kill U get & ~kill & E[~put U
end] or E[~put & ~end U (put & ~end & EX
E[~put U end])]]])

Next lecture

How to model check CTL formulas

