
Model Checking I

What are LTL and CTL?
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View circuit as a transition 
system

(dreq, q0, dack)     (dreq’, q0’, dack’)

q0’     =  dreq
dack’  =  dreq and (q0 or (not q0 and dack))
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Idea

Transition system

+ special temporal logic

+ automatic checking algorithm



Exercise
(from example circuit)

(dreq, q0, dack)    

(dreq’, dreq, dreq and (q0 or (not q0 and dack)))

Draw state transition diagram

Q: How many states for a start?



Hint (partial answer)

000      100                     110                     111

001                                                                         101

010       
011



Question

000      100                     110                     111

001                                                                         101

010       
011

Q:   how many arrows should there be out of each state?
Why so?



Exercise

000      100                     110                     111

001                                                                         101

010       
011

Complete the diagram

Write down the corresponding binary relation as 
a set of pairs of states



Another view

computation tree from a state

111



Unwinding further
111

111 011

111 011                000                           100

111          011  000     100       000        100          010           110.                                                   
.                                                   
.



Possible behaviours from state s
s

.                                                   

.                                                   

.

Transition relation R

Relation vs. Function?



path = possible run of the system
s

.                                                   

.                                                   

.

Transition relation R



Points to note

Transition system models circuit behaviour

We chose the tick of the transition system to be the same 
as one clock cycle. Gates have zero delay – a very 
standard choice for synchronous circuits

Could have had a finer degree of modelling of time (with 
delays in gates). Choices here determine what 
properties can be analysed

Model checker starts with transition system. It doesn’t 
matter where it came from



Model Checking

MC

G(p -> F q)
yes

no
p

q

p

q

property

finite-state model

algorithm

counterexample

(Ken McMillan)
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input to SMV model checker
MODULE main

VAR w1 : boolean;

VAR w2 : boolean;

VAR w3 : boolean;

VAR w4 : boolean;

VAR w5 : boolean;

VAR i0 : boolean;

VAR w6 : boolean;

VAR w7 : boolean;

VAR w8 : boolean;

VAR w9 : boolean;

VAR w10 : boolean;

DEFINE w4 := 0;

DEFINE w5 := i0;

ASSIGN init(w3) := w4;

ASSIGN next(w3) := w5;

DEFINE w7 := !(w3);

DEFINE w9 := 1;

DEFINE w10 := w5 & w6;

ASSIGN init(w8) := w9;

ASSIGN next(w8) := w10;

DEFINE w6 := w7 & w8;

DEFINE w2 := w3 | w6;

MC builds internal 
representation of 
transition system



Transition system   M

S      set of states (finite)

R binary relation on states
assumed total,  each state has at least one arrow out

A set of atomic formulas

L function S ->  set of atomic formulas that hold
in that state

Lars backwards  finite Kripke structure



Path   in M

Infinite sequence of states
π =  s0 s1 s2 ...              st



Path   in M

s0  s1    s2      ... 

R (s0,s1) є R

(s1,s2) є R

etc



Properties

Express desired behaviour over time using 
special logic

LTL    (linear temporal logic)
CTL    (computation tree logic)
CTL*   (more expressive logic with both                   

.        LTL and CTL as subsets)



CTL*

path quantifers
A  “for all computation paths”
E  “for some computation path”
can prefix assertions made from
Linear operators
G “globally=always”
F “sometimes”
X “nexttime”
U “until”

about a path



CTL*  formulas (syntax)

path formulas
f ::=  s |  f |   f1  f2  |  X f  |  f1 U f2

state formulas     (about an individual state)

s ::=   a | s | s1  s2 | E f

atomic formulas



Build up from core

A f     =    E  f

F  f =   true U f
G f     =    F  f



Example

G (req -> F ack)



Example

G (req -> F ack)

A request will eventually lead to an 
acknowledgement

liveness
linear



Example (Gordon)

It is possible to get to a state where Started 
holds but Ready does not



Example  (Gordon)

It is possible to get to a state where Started 
holds but Ready does not

E (F  (Started & Ready))



Semantics

M = (L,A,R,S)

M, s f f holds at state s in M 

(and omit M if it is clear which M 
we are talking about)

M, π g     g holds for path π in M



Semantics

Back to syntax and write down each case
S  a                  a in L(s)     (atomic)

s  f not (s       f)

s         f1  f2     s       f1  or s        f2

s       E (g)     Exists π. head(π) = s    and π g



Semantics

π f                  s        f   and head(π) = s

π  g     not (π g)

π g1  g2       π g1    or π g2



Semantics

π X g tail(π)      g

π g1 U g2

Exists k ≥ 0. drop k π g2           and

Forall 0 ≤ j < k. drop j π g1

(note: I mean tail in the Haskell sense)



CTL

Branching time  (remember upside-down tree)
Restrict path formulas (compare with CTL*)

f ::=  f   |   s1  s2 |  X s |  s1 U s2

state formulas

Linear time ops (X,U,F,G) must be wrapped up 
in a path quantifier (A,E).  



Back to CTL*  formulas (syntax)

path formulas
f ::=  s |  f   |   f1  f2  |  X f  |  f1 U f2

state formulas     (about an individual state)

s ::=   a | s  | s1  s2 | E f

atomic formulas



CTL

Another view is that we just have the 
combined operators AU, AX, AF, 
AG and EU, EX, EF, EG  and only 
need to think about state formulas

A operators      for   necessity
E operators      for   possibility



f             :: =                              atomic
|   f

All immediate successors |   AX  f
Some immediate succesor |   EX  f
All paths always |   AG f
Some path always |   EG f
All paths eventually |   AF f
Some path eventually |   EF  f

|   f1  &  f2
|  A (f1  U  f2)
|  E  (f1  U  f2)





Examples (Gordon)

It is possible to get to a state where Started 
holds but Ready does not



Examples (Gordon)

It is possible to get to a state where Started 
holds but Ready does not

EF  (Started & Ready)



Examples (Gordon)

If a request Req occurs, then it will 
eventually be acknowledged by Ack



Examples (Gordon)

If a request Req occurs, then it will
eventually be acknowledged by Ack

AG (Req -> AF Ack)



Examples (Gordon)

If a request Req occurs, then it continues 
to hold, until it is eventually 
acknowledged



Examples (Gordon)

If a request Req occurs, then it continues
to hold, until it is eventually
acknowledged

AG (Req ->  A [Req U  Ack])



LTL

LTL formula is of form A f where f is a path
formula with subformulas that are atomic
(The f is what we write down. The A is 
implicit.)

Restrict path formulas (compare with CTL*)

f ::=  a | f |   f1  f2  |  X f  |   f1 U f2



Back to CTL*  formulas (syntax)

path formulas
f ::=  s |  f   |   f1  f2  |  X f  |  f1 U f2

state formulas     (about an individual state)

s ::=   a | s  | s1  s2 | E f

atomic formulas





LTL

It is the restricted path formulas that we think of as LTL 
specifications (See P&R again)

G(critical1 & critical2)     mutex

FG initialised eventually stays initialised

GF myMove myMove will always eventually hold

G (req -> F ack) request acknowledge pattern



In CTL but not LTL

AG EF start

Regardless of what state the program enters, there

exists a computation leading back to the start state

AF AG p



In both

AG (p → AF q) in CTL 

G(p → F q) in LTL



In LTL but not CTL

[ G F p → F q]

if there are infinitely many p along 
the path, then there is an 
occurrence of q

F G p



In CTL* but not in LTL or CTL

E [G F p]

there is a path with infinitely many p



Further reading

Ed Clarke’s course on Bug Catching: Automated Program 

Verification and Testing

complete with moving bug on the home page!

Covers model checking relevant to hardware too.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15414-
f06/www/index.html

For some history (by the inventors themselves) see this 
workshop celebrating 25 years of MC 
http://www.easychair.org/FLoC-06/25MC-day227.html



Example revisited

A sequence beginning with the assertion of 
signal strt, and containing two not necessarily
consecutive assertions of signal get, during
which signal kill is not asserted, must be 
followed by a sequence containing two
assertions of signal put before signal end can
be asserted

AG~(strt & EX E[~get & ~kill U get & ~kill & 
EX E[~get & ~kill U get & ~kill & E[~put U 
end] or E[~put & ~end U (put & ~end & EX 
E[~put U end])]]])



Next lecture

How to model check CTL formulas


