
Lava III

Mary Sheeran, Thomas Hallgren,

Emil Axelsson

Exercise: Zero detection

•Define a generic circuit that

•inputs a bit vector, and

•outputs high if all bits are zero.

zero_detect :: [Bit] -> Bit

•Simple solution first

•Also think about circuit depth and delay

Exercise: Zero detection

How to decompose the problem recursively?

Exercise: Zero detection

How to decompose the problem recursively?

First version

assume we have a circuit that works for n bits,

build a circuit that works for n+1 bits.

Result: a linear chain of 2-input gates

Second version

assume we have a circuit that works for n bits,

build a circuit that works for 2n bits.

Result: a balanced trees of 2-input gates

linear chain

zero_detect as = inv nz
where
nz = nz_detect as

nz_detect [] = low
nz_detect (a:as) = out
where
out = or2(a,out2)
out2 = nz_detect as

linear chain

zero_detect1 = lin or2 ->- inv

-- from Lecture 2
red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[]) = a
red f (a, (b:bs)) = red f (f(a,b), bs)

lin f (a:as) = red f (a,as)
lin _ [] = error "lin: empty list”

balanced tree

nz_detect1 [] = low
nz_detect1 [a] = a
nz_detect1 as = out
where
(as1,as2) = halveList as
out1 = nz_detect1 as1
out2 = nz_detect1 as2
out = or2(out1,out2)

nz_detect2 [] = low
nz_detect2 [a] = a
nz_detect2 as = circ as

where
circ = halveList ->- (nz_detect2 -|- nz_detect2) ->- or2

different style

nz_detect2 [] = low
nz_detect2 [a] = a
nz_detect2 as = circ as

where
circ = halveList ->- (nz_detect2 -|- nz_detect2) ->- or2

different style

reminder

> simulate halveList ([1..9] :: [Signal Int])
([1,2,3,4],[5,6,7,8,9])

capturing the pattern for reuse

binTree c [] = error "binTree of empty list"

binTree c [a] = a

binTree c as = circ as

where

circ = halveList ->- (binTree c -|- binTree c) ->- c

capturing the pattern for reuse

binTree c [] = error "binTree of empty list"

binTree c [a] = a

binTree c as = circ as

where

circ = halveList ->- (binTree c -|- binTree c) ->- c

Q: Why do we need the second base case?

capturing the pattern for reuse

binTree c [] = error "binTree of empty list"

binTree c [a] = a

binTree c as = circ as

where

circ = halveList ->- (binTree c -|- binTree c) ->- c

> simulate halveList [low]
([],[low])

Must make sure that inputs to recursive calls
are smaller than original input

Comparing circuits

• The linear and tree-shaped versions have

different logic depth

• Comparing behaviour with FV is easy (for

fixed size boolean circuits, incl. Sequential)

• For comparing performance, we need to do

some modelling of delay behaviour

Simple delay analysis:

Depth computations

ldepth :: (Signal Int, Signal Int) -> Signal Int
ldepth (a,b) = max a b + 1

dtstTree n = simulate (binTree ldepth) (replicate n 0)

dtstT n = map dtstTree [1..n]

> dtstT 10
[0,1,2,2,3,3,3,3,4,4]

Simple delay analysis:

Depth computations

dtstLin n = simulate (lin ldepth) (replicate n 0)

dtstL n = map dtstLin [1..n]

*Main> dtstL 10
[0,1,2,3,4,5,6,7,8,9] >Connection patterns capture

Simple delay analysis:

Depth computations

Connection patterns do not constrain the ’a’ type

Enables reuse:

– Circuits of different type

e.g. Singal Bool, (Singal Bool, Signal Bool)

– Non-functional analysis

e.g. Singal Int or Integer

lin :: ((a, a) -> a) -> [a] -> a
binTree :: ((a, a) -> a) -> [a] -> a

Simple delay analsysis:

Modelling delay in a full adder

fAddI (a1s, a2s, a3s, a1c, a2c, a3c) (a1,(a2,a3)) = (s,cout)
where
s = maximum [a1s+a1, a2s+a2, a3s+a3]
cout = maximum [a1c+a1, a2c+a2, a3c+a3]

fI = fAddI (20,20,10,10,10,10)

Simple delay analsysis:

Modelling delay in a full adder

-- from first lecture but generalising the type!
rcAdder2 :: ((a,(a,a)) -> (a,a)) -> (a,([a],[a])) -> ([a], a)
rcAdder2 fadd (c0, (as, bs)) = (sum, cOut)
where

(sum, cOut) = row fadd (c0, zipp (as,bs))

rcdeltst1 = simulate (rcAdder2 fI)
(0 :: Signal Int, (replicate 10 0, replicate 10 0))

> rcdeltst1
([20,30,40,50,60,70,80,90,100,110],100)

Simple delay analsysis:

Modelling delay in a full adder

-- from first lecture but generalising the type!
rcAdder2 :: ((a,(a,a)) -> (a,a)) -> (a,([a],[a])) -> ([a], a)
rcAdder2 fadd (c0, (as, bs)) = (sum, cOut)
where

(sum, cOut) = row fadd (c0, zipp (as,bs))

rcdeltst1 = simulate (rcAdder2 fI)
(0 :: Signal Int, (replicate 10 0, replicate 10 0))

> rcdeltst1
([20,30,40,50,60,70,80,90,100,110],100)

For feedback-free circuits, can also use Haskell directly:

rcdeltst = rcAdder2 fI (0, (replicate 10 0, replicate 10 0))

Don’t try to mix the two approaches
Stay within Lava if you are not a Haskell expert!

Multiplication

11010

01001

11010

00000

00000

11010

00000

0011101010

Multiplication

11010

01001

11010

00000

00000

11010

00000

0011101010

Partial products

Making a multiplier is about adding
up all these numbers (and that is
what the Lava lab explores)

Here, we will look at a particular
(slightly fancier) approach called
column compression

Structure of multiplier

Structure of multiplier

for simplicity, assume that as and bs have equal
length

Structure of multiplier

Reduction array reduces the partial products to two

binary numbers (see Lava lab)

– Can be done in logic depth O(log(n)), where n is

#partial products

Final adder adds the two final numbers

– Can be done in logic depth O(log(n)), where n is the

width of the numbers (~ #partial products)

Total depth of n×n bit mult: O(log(n))

Multiplication

msb 1 1 0 1 0

0 0 0 0 0

0 0 0 0 0

1 1 0 1 0

0 0 0 0 0

Multiplication

lsb 0 1 0 1 1

0 0 0 0 0

0 0 0 0 0

0 1 0 1 1

0 0 0 0 0

Multiplication

lsb 1

1 0 0

0 0 0 0 0

1 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0

Process column by column
instead of row by row

Multiplication

lsb 1

1 0 0

0 0 0 0 0

1 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0

Process column by column
instead of row by row

The bits in each column
(and carries from the
column before) can be
processed in any order.
Different decisions lead to
different performance.

Generic components

See Lava3_mult.hs

type Components s =

(s -- low

, s -- high

, (s,s) -> s -- and2

, (s,s) -> (s,s) -- halfAdd

, (s,(s,s)) -> (s,s) -- fullAdd

)

Generic components

-- Components for logic simulation

logicComps :: Components (Signal Bool)

logicComps = (low,high,and2,halfAdd,fullAdd)

-- Components for delay estimation

delayComps :: Components (Signal Int)

delayComps = (0,0,an,ha,fa)

where

an (a,b) = 1 + max a b

ha (a,b) = let x = 2 + max a b in (x,x)

fa (c,(a,b)) = let x = 3 + maximum [a,b,c] in (x,x)

Partial products, grouped by

weight

prods_by_weight (l,h,an,ha,fa) (as,bs)

= [[an (a,b) | (a,m) <- number as,

(b,n) <- number bs,

m+n == w] | w <- [0 .. 2*length as-2]]

where

number cs = zip cs [0 .. length cs-1]

multBin :: Components s -> ([s],[s]) -> [s]

multBin comps (as,bs) = p1:ss

where

([p1]:[p2,p3]:ps) = prods_by_weight comps (as,bs)

is = [(i1,i2) | [i1,i2] <- redArray comps ps]

ss = binaryAdder comps ((p2,p3):is)

redArray :: Components s -> [[s]] -> [[s]]

redArray comps ps = is

where

(is,[]) = row (compress comps) ([],ps)

Complete multiplier

3

4
5

4

3
2

Fast Adder

carries

Reduction tree for multiplier

Missing piece: compress

c

p

Different cases depending on

diff = p-c

Compress (diff=2)

f-cell

n

n-2

2

Use one full adder to
compress three bits to
one sum bit and a carry

f-cellweight w weight w+1

n

n-1

diff > 2 diff < 2

hcell wcell

k

k-1

k

k+2

.

.

.

.

.

.

.

.

.

.

.

.

weight w weight w+1

n

n-1

hcell

weight w

n

n+1

wcell

compress comps (as,bs)

| diff > 2 = (compress comps |- hcell comps) (as,bs)

| diff == 2 = column (fcell comps) (as,bs)

| diff < 2 = (compress comps -| wcell) (as,bs)

where

diff = length bs - length as

(-| and |- are defined in Lava3_mult.hs.)

possible fcell

hcell similar using halfAdd

Gives standard array multiplier. Not great!

fullAdd

s

c

Dadda-like

fullAdd

s

c

Excellent log depth reduction tree, but known for irregularity,

difficult layout

-- insert a bs = a:bs -- Stick to front: array mult

insert a bs = bs ++ [a] -- Stick to end: Dadda

hcell :: Components s -> [s] -> ([s],s)

hcell (l,h,an,ha,fa) (b1:b2:bs) = (insert s bs, c)

where

(s,c) = ha (b1,b2)

fcell :: Components s -> (s,[s]) -> ([s],s)

fcell (l,h,an,ha,fa) (ci,bs) = (insert s xs, c)

where

x1:x2:x3:xs = insert ci bs

(s,c) = fa (x1,(x2,x3))

wcell :: (s,[s]) -> [s]

wcell (a,bs) = insert a bs

Exploring the choices:

Only need to vary wiring!

fullAdd

s

c

iC

s3

cc

iS

Dadda-like

fullAdd

s

c

picture by Henrik Eriksson, Chalmers

Regular reduction tree (Eriksson et al. CE)

fullAdd

s

c

Nowhere near as good as Dadda, but inspired this work

picture by Henrik Eriksson, CE

The cool thing

The same description with just some different wiring cells gives a
GREAT VARIETY of different multipliers

Layout of Dadda turned out to be easy!

One begins to see some order in the chaos...

The key point was finding the right connection pattern

Ideally, one would like to prove this extremely generic description
correct! Open research question....

Verification

prop_mult n =

forAll (list n) $ \as ->

forAll (list n) $ \bs ->

multBin logicComps (as,bs) <==> multi (as,bs)

smv (prop_mult 8) goes through in less than half a second. But size

16 doesn’t. Why?

Delay analysis

delays :: Int -> Signal Int -> [Signal Int]

delays n inp = multBin delayComps (replicate n inp, replicate n inp)

totDelay :: Int -> Signal Int -> Signal Int

totDelay n inp = maximum (delays n inp)

Delay analysis

Lava3_mult.hs uses a linear final adder:

binaryAdder (l,h,an,ha,fa) abs = ss ++ [c]

where

(ss,c) = row fa (l,abs)

Replace with and gates to avoid linear depth in delay analysis:

binaryAdder (l,h,an,ha,fa) abs = map an abs

(Ideally should use a fast logarithmic adder.)

Delay analysis: Dadda

insert a bs = bs ++ [a] -- Stick to end: Dadda

*Main> simulate (delays 8) 0

[1,2,4,7,8,10,11,13,14,14,14,14,14,14,8]

*Main> simulate (delays 16) 0

[1,2,4,7,8,10,11,13,14,14,16,17,17,17,17,19,20,20,20,20,20,20,20,

20,17,17,17,17,14,14,8]

Delay analysis: Dadda

*Main> simulate (totDelay 4) 0

7

*Main> simulate (totDelay 8) 0

14

*Main> simulate (totDelay 16) 0

20

*Main> simulate (totDelay 32) 0

26

*Main> simulate (totDelay 64) 0

31

*Main> simulate (totDelay 128) 0

35

Delay analysis: array mult

insert a bs = a:bs -- Stick to front: array mult

*Main> simulate (totDelay 4) 0

13

*Main> simulate (totDelay 8) 0

37

*Main> simulate (totDelay 16) 0

85

*Main> simulate (totDelay 32) 0

181

*Main> simulate (totDelay 64) 0

373

*Main> simulate (totDelay 128) 0

757

Next step: Choose wiring

automatically

Predefined wiring components not optimal

Idea by Mary Sheeran:

• Pair up each wire with its estimated delay

– ”Shadow value”

• Let the wiring components make sure that fast signals get

processed first

• Resulting multiplier adapts both to context and internal

delay

Idea: Harden the wiring during circuit generation

using clever circuits. Shadow values estimate delay

through wires and cells.

fullAdd

s

c

cleverInsert

s3

cc

cleverInsert

Shadow value

(delay)

Parameterizing on
s3 and cc lets us
take wire delay
into account

cswap((a,x),(b,y))

= if (x>y) then ((b,y),(a,x))else((a,x),(b,y))

cleverInsert = row cswap ->- apr

forms necessary wiring based on context (delays on
shadow wires)

Result (multiplication)

Simple parameterised description of fast adaptive multiplier

Better than Dadda and TDM

Adaption to incoming delay profile can be arranged (clever
circuits again)

Can also easily adapt description to take account of
limitations on cross-cell tracks (see FMCAD04 paper)

Much remains to be done (e.g. insertion of buffers, fine delay
modelling, transistor sizing, other layouts, the rest of the
multiplier...). The approach feels right!

Reading

Published paper about this is at

http://www.cse.chalmers.se/~ms/fmcadMultSubmit.pdf

NOT required reading. Read if interested.

http://www.cse.chalmers.se/~ms/fmcadMultSubmit.pdf

Next step: Wired (see links page)

• Based on Lava

• Captures layout exactly

• Optional guiding of wire routing

• Built-in accurate wire-aware timing analysis

• Still embedded in Haskell

– Can still use our bag of programming tricks

• Has been used in the VLSI design group (K.

Subramaniyan) to study multiplier layout.

Multiplier in Wired

hpmTree :: [[Signal]] -> W [[Signal]]

hpmTree = (,) [] .>. (row (hpmColumn 2)) ->- mon fst

hpmMult :: ([Signal],[Signal]) -> W [[Signal]]

hpmMult = genCols ->- hpmTree

Multiplier in Wired

hpmTree :: [[Signal]] -> W [[Signal]]

hpmTree = (,) []

.>. (rightwards . row (downwards . hpmColumn 2))

->- mon fst

hpmMult :: ([Signal],[Signal]) -> W [[Signal]]

hpmMult = downwards .

(bus

->- space r

->- genCols

->- label "pp"

->- space r

->- hpmTree

->- space r

->- bus

)

Putting the designer in control

Connection patterns are essential first step (and give some
layout awareness when wanted)

We write circuit generators rather than circuit descriptions.
Full power of Haskell is available to the user (but we have
some useful idioms to reduce the fear).

Circuit generators are short and sweet and LOOK LIKE
circuit descriptions.

