
Lava II

Mary Sheeran, Thomas Hallgren

Chalmers University of Technology

Today

• VHDL generation

• Generic circuits

• Connection patterns

• Sequential circuits

See file Lava2.hs on the schedule.

http://www.cse.chalmers.se/edu/year/2012/course/TDA956/Slides/Lava2.hs

Generating VHDL

•In the simplest case
writeVhdl "fullAdder" fullAdder

•Assigning names to the inputs
writeVhdlInput "fullAdder" fullAdder (var "carryIn",(var "a",var "b"))

•Assigning names also to the outputs
writeVhdlInputOutput "fullAdder" fullAdder

(var "carryIn",(var "a",var "b")) (var "sum",var "carryOut")

•Generic circuits are not supported, so you need to pick a size
writeVhdlInputOutput "rippleCarryAdder" rcAdder1

(var "carryIn",(varList 8 "a",varList 8 "b"))

(varList 8 "sum",var "carryOut")

Generating VHDL (better)

Above method generates silly VHDL for combinational

circuits

importing file VhdlNew11.hs (on Schedule page)

allows gen. of clocked or unclocked VHDL netlists

Append Clk or NoClk to end of previous function names

see Lava2.hs

library ieee;

use ieee.std_logic_1164.all;

entity

rippleCarryAdder

is

port

(

carryIn : in std_logic

; a_0 : in std_logic

; a_1 : in std_logic

; a_2 : in std_logic

; a_3 : in std_logic

; b_0 : in std_logic

; b_1 : in std_logic

; b_2 : in std_logic

; b_3 : in std_logic

; sum_0 : out std_logic

; sum_1 : out std_logic

; sum_2 : out std_logic

; sum_3 : out std_logic

; carryOut : out std_logic

);

end rippleCarryAdder;

architecture

structural

of

rippleCarryAdder

is

signal w1 : std_logic;

signal w2 : std_logic;

signal w3 : std_logic;

signal w4 : std_logic;

signal w5 : std_logic;

…

signal w29 : std_logic;

begin

c_w2 : entity work.wire port map (carryIn, w2);

c_w4 : entity work.wire port map (a_0, w4);

c_w5 : entity work.wire port map (b_0, w5);

c_w29 : entity work.andG port map (w25, w26, w29);

c_w27 : entity work.xorG port map (w28, w29, w27);

c_sum_0 : entity work.wire port map (w1, sum_0);

c_sum_1 : entity work.wire port map (w6, sum_1);

c_sum_2 : entity work.wire port map (w13, sum_2);

c_sum_3 : entity work.wire port map (w20, sum_3);

c_carryOut : entity work.wire port map (w27, carryOut);

end structural;

…

…

Generic circuits again

The module Lava.Arithmetic contains

binAdder :: ([Signal Bool], [Signal Bool]) -> [Signal Bool]

Generic circuits again

The module Lava.Arithmetic contains

binAdder :: ([Signal Bool], [Signal Bool]) -> [Signal Bool]

> simulate binAdder ([low,high,low], [high,low,high])

[high,high,high,low]

Generic circuits again

The module Lava.Arithmetic contains

binAdder :: ([Signal Bool], [Signal Bool]) -> [Signal Bool]

Let’s check if it is commutative!

First attempt

prop_AdderCommutative (as,bs) = ok
where
out1 = binAdder (as,bs)
out2 = binAdder (bs,as)
ok = out1 <==> out2

First attempt

prop_AdderCommutative (as,bs) = ok
where
out1 = binAdder (as,bs)
out2 = binAdder (bs,as)
ok = out1 <==> out2

smv prop_AdderCommutative does not work!

Need to fix size

prop_AdderCommutative_ForSize n =
forAll (list n) $ \ as ->
forAll (list n) $ \ bs ->
prop_AdderCommutative (as,bs)

Need to fix size

prop_AdderCommutative_ForSize n =
forAll (list n) $ \ as ->
forAll (list n) $ \ bs ->
prop_AdderCommutative (as,bs)

smv (prop_AdderCommutative_ForSize 16) works!

See Chapter 4 in the Lava tutorial.

Same effect but easier

prop_AdderComm1 n
= prop_AdderCommutative (varList n "a", varList n "b")

fv_binAdd_Comm1 = smv (prop_AdderComm1 16)

works

Serial composition

useful connection pattern

f g

gf

f ->- g

Serial composition type

useful connection pattern

gf

(->-) :: (a -> b) -> (b -> c) -> a -> c

a b c

Serial composition example

doubSum :: [Signal Int] -> Signal Int
doubSum = map (*2) ->- sum

> simulate doubSum [1..8]
72

Serial composition example

doubSum :: [Signal Int] -> Signal Int
doubSum = map (*2) ->- sum

doubSum1 :: [Signal Int] -> Signal Int
doubSum1 as = sum (map double as)

where
double a = a * 2

could also have written

Feedback and sequential circuits

First example

bad inp = out
where
out = nand2(inp,out)

Feedback and sequential circuits

First example

bad inp = out
where
out = nand2(inp,out)

> simulate bad low

high

> simulate bad high

*** Exception: combinational loop

Delay in VHDL

Signal assignments have no delay by default:

out <= a nand b;

Delay can be introduced explicitly:

out <= a nand b after 4ns;

Delay in Lava

The logical gates in the Lava library are "ideal" and have zero delay

Delay has to be modelled explicitly:

delay init s

delays the signal s by one time unit

The output during the first time unit is init

Delay in Lava

The Lava library does not care how long a time unit is.

It could be the gate delay, for analyzing the effect of delay in

combinational circuits

But usually it is one clock cycle in a synchronously clocked sequential

circuit.

Feedback and sequential circuits

Second example

nand2D = nand2 ->- delay low

good a = out

where

out = nand2D(a,out)

Feedback and sequential circuits

nand2D = nand2 ->- delay low

good a = out

where

out = nand2D(a,out)

*Main> simulate good high

*** Exception: evaluating a delay component

Need to use sequential simulation

Feedback and sequential circuits

nand2D = nand2 ->- delay low

good a = out

where

out = nand2D(a,out)

*Main> simulateSeq good [high,high,low,high]

[low,high,low,high]

Retiming

nand2D = nand2 ->- delay low

delNand2 = delay (high,high) ->- nand2

sim0 = simulateSeq nand2D [(low,low),(high,low),(high,high),(low,low)]

sim1 = simulateSeq delNand2 [(low,low),(high,low),(high,high),(low,low)]

> sim0

[low,high,high,low]

> sim1

[low,high,high,low]

Retiming

nand2D = nand2 ->- delay low

delNand2 = delay (high,high) ->- nand2

sim0 = simulateSeq nand2D [(low,low),(high,low),(high,high),(low,low)]

sim1 = simulateSeq delNand2 [(low,low),(high,low),(high,high),(low,low)]

> sim0

[low,high,high,low]

> sim1

[low,high,high,low]

Note that delay works on many types,

not just bits

Sequential verification

-- A general function for equivalence testing

propEQ circ1 circ2 inp = ok

where

out1 = circ1 inp

out2 = circ2 inp

ok = out1 <==> out2

prop0 = propEQ nand2D delNand2

fv_prop0 = smv prop0

(on my laptop ca .1 sec, 60 BDD nodes allocated)

reg init (w,din) = dout
where
dout = delay init m
m = mux (w,(dout,din))

Register

Register

reg init (w,din) = dout
where
dout = delay init m
m = mux (w,(dout,din))

multiplexer (also polymorphic)

mux :: … => (Signal Bool,(a,a)) -> a

using Haskell to generate inputs

-- infinite lists
lh :: [Bit]
lh = low : high : lh

ins :: Int -> [[Signal Int]]
ins n = map (replicate n) [1..]

regtst n = simulateSeq (reg (zeroList n)) (take 10 (zip lh (ins n)))

*Main> regtst 5
[[0,0,0,0,0],[0,0,0,0,0],[2,2,2,2,2],[2,2,2,2,2],[4,4,4,4,4],
[4,4,4,4,4],[6,6,6,6,6],[6,6,6,6,6],[8,8,8,8,8],[8,8,8,8,8]]

Connection patterns

Higher order functions that capture common ways

of plugging circuits together

Connection patterns

Higher order functions that capture common ways

of plugging circuits together

We saw row

Connection patterns

Higher order functions that capture common ways

of plugging circuits together

We saw row

->-

Connection patterns

Higher order functions that capture common ways

of plugging circuits together

We saw row

->-

map

map f ->- map g = ??

f

f

f

f

g

g

g

g

map f ->- map g = map (f ->- g)

f

f

f

f

g

g

g

g

More connection patterns:

column and grid

mirror circ (a, b) = (c, d)
where
(d, c) = circ (b, a)

column circ = mirror (row (mirror circ))

grid circ = row (column circ)

(in Lava.Patterns)

could just define column recursively (exercise)

More connection patterns:

compose

compose :: [a -> a] -> a -> a

[, ,]

(is in Lava.Patterns)

More connection patterns

compose :: [a -> a] -> a -> a
compose [] =
compose (circ : circs) =

[, ,]

[,]

circ circs

More connection patterns

compose :: [a -> a] -> a -> a
compose [] = id
compose (circ : circs) = circ ->- compose circs

[, ,]

[,]

circ circs

compose n copies of function

composeN :: Int -> (a -> a) -> a -> a
composeN n circ = compose (replicate n circ)

(in Lava.Patterns)

compose n copies of function

composeN :: Int -> (a -> a) -> a -> a
composeN n circ = compose (replicate n circ)

doubN :: Int -> Signal Int -> Signal Int
doubN n = composeN n (*2)

*Main> simulate (doubN 4) 1
16

compose n copies of function

composeN :: Int -> (a -> a) -> a -> a
composeN n circ = compose (replicate n circ)

Note that this is a Haskell Int

not a circuit level Int (Signal Int)

compose n copies of function

could also have defined this function recursively:

composeNR 0 circ = id

composeNR n circ = circ -> composeNR (n-1) circ

compose n copies of function

could also have defined this function recursively:

composeNR 0 circ = id

composeNR n circ = circ -> composeNR (n-1) circ

This is a second very standard way to

write recursive functions in Haskell

Par

f -|- g

g

f

(in Lava.Patterns)

Par

f -|- g

g

f
par circ1 circ2 (a, b) = (circ1 a, circ2 b)
circ1 -|- circ2 = par circ1 circ2

infixr 4 -|-

Par

f -|- g

g

f
par circ1 circ2 (a, b) = (circ1 a, circ2 b)
circ1 -|- circ2 = par circ1 circ2

infixr 4 -|-

Q: What is the type of par?

red f (like fold in Haskell)

red f, recursive structure

red f, type

red :: ((a,b) -> a) -> (a, [b]) -> a

red f, definition

red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[]) =
red f (a, (b:bs)) =

red f, definition

red :: ((a,b) -> a) -> (a, [b]) -> a
red f (a,[]) = a
red f (a, (b:bs)) = red f (f (a,b), bs)

lin (like foldl1)

> simulate (lin plus) [1..5]
15

lin f (a:as) = red f (a,as)
lin _ [] = error “lin: empty list”

> simulate (lin plus) []
*** Exception: lin: empty list

Triangles (tri in Lava.Patterns)

f

f

f

ff

f

tri f, recursive structure

f

f

f

ff

f

map tri

tri, definition

tri circ [] =
tri circ (inp:inps) =

tri, definition

tri circ [] = []
tri circ (inp:inps) = inp : (map circ ->- tri circ) inps

tri, definition

tri circ [] = []
tri circ (inp:inps) = inp : (map circ ->- tri circ) inps

downtri f = reverse ->- tri f ->- reverse

Converting msb first binary to

integer

+ + +

*2 *2*2

*2

*2

*2
bit2int

binary to integer

msbbin2int = map bit2int ->- downtri (*2) ->- lin plus

(Arithmetic module also has bin2int,

which assumes lsb first)

Another way

+*2 +*2 +*2

binary to integer

msbbin2int' = map bit2int ->- lin cell
where
cell (a,b) = 2*a + b

binary to integer

msbbin2int' = map bit2int ->- lin cell
where
cell (a,b) = 2*a + b

Note: we have no solver hooked up to

Lava that can do arithmetic

So we can’t formally verify equivalence

of the two different msb-bin to int

functions

On the bright side: a general rule!

If

=

Then, this is the same as

this, no matter what the

components are (and for any size)

Why?

map

tri

What’s left?

So, by induction

Does this look familiar?

=

Pipelining!

Equality holds for circle=delay

Checking equiv. of an instance

propEQ circ1 circ2 a = ok
where
out1 = circ1 a
out2 = circ2 a
ok = out1 <==> out2

propEQS circ1 circ2 n = propEQS circ1 circ2 (varList n "a")

withtri f = downtri (delay low) ->- lin f

piped f = lin cell
where
cell (a,b) = f (delay low a, b)

pipetst = smv (propEQS (withtri and2) (piped and2) 4)

Checking equiv. of an instance

propEQ circ1 circ2 a = ok
where
out1 = circ1 a
out2 = circ2 a
ok = out1 <==> out2

propEQS circ1 circ2 n = propEQS circ1 circ2 (varList n "a")

withtri f = downtri (delay low) ->- lin f

piped f = lin cell
where
cell (a,b) = f (delay low a, b)

pipetst = smv (propEQS (withtri and2) (piped and2) 4)

On Mary’s i5 laptop

Size 4 and 8 very quick

size 12 14 secs

size 16 didn’t finish

Lava is good for stress-testing tools

Are connection patterns useful??

or do they just make programming harder?

Xilinx Lava provides part of the answer:

Full Adder in Xilinx Lava

fa

fa (cin, (a,b)) = (sum, cout)

where

part_sum = xor (a, b)

sum = xorcy (part_sum, cin)

cout = muxcy (part_sum, (a, cin))

a

b

cin

cout

sum

Generic Adder

fa

fa

fa
adder = col fa

Top Level

adder16Circuit

= do a <- inputVec ”a” (bit_vector 15 downto 0)

b <- inputVec ”b” (bit_vector 15 downto 0)

(s, carry) <- adder1 (a, b)

sum <- outputVec ”sum” (s++[carry])

(bit_vector 16 downto 0)

> circuit2VHDL ”add16” adder16Circuit

> circuit2EDIF ”add16” adder16Circuit

> circuit2Verilog ”add16” adder16Circuit

114 Lines of VHDL
library ieee ;

use ieee.std_logic_1164.all ;

entity add16 is

port(a : in std_logic_vector (15 downto 0) ;

b : in std_logic_vector (15 downto 0) ;

c : out std_logic_vector (16 downto 0)

) ;

end entity add16 ;

library ieee, unisim ;

use ieee.std_logic_1164.all ;

use unisim.vcomponents.all ;

architecture lava of add16 is

signal lava : std_logic_vector (0 to 80) ;

begin

...

lut2_48 : lut2 generic map (init => "0110") port map (i0 => lava(5), i1 => lava(21), o => lava(48)) ;

xorcy_49 : xorcy port map (li => lava(48), ci => lava(47), o => lava(49)) ;

muxcy_50 : muxcy port map (di => lava(5), ci => lava(47), s => lava(48), o => lava(50)) ;

lut2_51 : lut2 generic map (init => "0110") port map (i0 => lava(6), i1 => lava(22), o => lava(51)) ;

xorcy_52 : xorcy port map (li => lava(51), ci => lava(50), o => lava(52)) ;

muxcy_53 : muxcy port map (di => lava(6), ci => lava(50), s => lava(51), o => lava(53)) ;

lut2_54 : lut2 generic map (init => "0110") port map (i0 => lava(7), i1 => lava(23), o => lava(54)) ;

...

EDIF...
(edif add16

(edifVersion 2 0 0)

(edifLevel 0)

(keywordMap (keywordLevel 0))

(status

(written (timeStamp 2000 11 19 15 39 43)

(program "Lava" (Version "2000.14"))

(dataOrigin "Xilinx-Lava") (author "Xilinx Inc.")

)

)

...

(instance lut2_78

(viewRef prim

(cellRef lut2 (libraryRef lava_virtex_lib))

)

(property INIT (string "6"))

(property RLOC (string "R-7C0.S1"))

)

…

(net lava_bit38

(joined

(portRef o (instanceRef muxcy_38))

(portRef ci (instanceRef muxcy_41))

(portRef ci (instanceRef xorcy_40))

)

)

Xilinx FPGA Implementation

• 16-bit implementation on a XCV300 FPGA

• Vertical layout required to exploit fast carry

chain

• No need to specify coordinates in HDL

code

16-bit Adder Layout

Four adder trees

No Layout Information

Another motivation for

connection patterns and algebra

Work on Hawk for describing and reasoning about

processors showed really nice applications of transformations

See John Matthew’s slides

http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt
http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt
http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt
http://web.cecs.pdx.edu/~jmatthew/papers/Algebra.ppt

Next lecture

• More patterns

• Simple delay analysis

• Multipliers

• Circuits that adapt to the context

Exercise: Zero detection

•Define a generic circuit that

•inputs a bit vector, and

•outputs high if all bits are zero.

zero_detect :: [Bit] -> Bit

•Simple solution first

•Also think about circuit depth and delay

