
Formal Property Checking - OverviewFormal SoC Verification

Formal Verification of

Systems-on-Chip – Industrial Practices

Slide 1

Wolfgang Kunz

Department of Electrical & Computer Engineering

University of Kaiserslautern, Germany

kunz@eit.uni-kl.de

Formal Property Checking - OverviewFormal SoC Verification

Industrial Experiences

Industrial partners:

Formal verification of Systems-on-Chip in industrial practice

Slide 2

Formal Property Checking - OverviewFormal SoC Verification

• processors

• hardware accelerators

Example: SoC for automotive application

Slide 3

• memories

• I/O controllers

• mixed signal blocks

• communication structures

Formal Property Checking - OverviewFormal SoC Verification

Early phase

� set up and assess functional
prototypes

Architecture

� model and explore architectural
choices

� specify modules and communication
for target architecture

SoC Design Flow

Slide 4

for target architecture

Design (RT)

� Register-Transfer (RT) description of
modules

� system integration, communication
structures

Implementation

� Synthesis and optimization

� test preparation

Formal Property Checking - OverviewFormal SoC Verification

Early phase

� set up and assess functional
prototypes

Architecture

� model and explore architectural
choices

� specify modules and communication
for target architecture

SoC Design Flow

Property Checking

Given:

• informal specification

• RT-level circuit description

Slide 5

for target architecture

Design (RT)

� Register-Transfer (RT) description of
modules

� system integration, communication
structures

Implementation

� Synthesis and optimization

� test preparation

• RT-level circuit description

Prove (by checking properties) that the

RT-level design description fulfills the

specification

Formal Property Checking - OverviewFormal SoC Verification

Early phase

� set up and assess functional
prototypes

Architecture

� model and explore architectural
choices

� specify modules and communication
for target architecture

SoC Design Flow

Equivalence Checking

Given: two design descriptions

(e.g. 1x RTL, 1x Gatelevel)

Prove that both designs are functionally

equivalent

Slide 6

for target architecture

Design (RT)

� Register-Transfer (RT) description of
modules

� system integration, communication
structures

Implementation

� Synthesis and optimization

� test preparation

equivalent

Formal Property Checking - OverviewFormal SoC Verification

Verification Tasks

The hot spot for property checking

Given:

informal specification of modules

and communication between

modules (protocols)

Implementation at the register-

Slide 7

(not yet)

(FV feasible but more advanced)

(FV quite established)

Implementation at the register-

transfer (RT) level in Verilog or

VHDL (hardware description

languages)

Approach:

Verify each module individually

Verify interfaces between modules

Verify global behavior of entire chip

Formal Property Checking - OverviewFormal SoC Verification

RT-level module verification

A typical property for RT-level module verification:

AG(a→ c)

Slide 8

a : assumptions

- module is in some control state V

- certain inputs X occur

c : commitments

- module goes into certain control state V’

- certain outputs Y occur

Formal Property Checking - OverviewFormal SoC Verification

Control 1

/ data_path_control_signals

Property 1: AG(acontrol 1→ ccontrol 2)

RT-level module verification: operation by operation

Slide 9

Control 2

data path

Property 2: AG(acontrol 2→ ccontrol …)

n cycles

Formal Property Checking - OverviewFormal SoC Verification

Control 1

RT-level module verification: operation by operation

Typical methodology for Property Checking

of SoC modules:

• Adopt an operational view of the design

• Each operation can be associated with certain

“important control states” in which the operation

starts and ends

Slide 10

Control 2

n cycles

starts and ends

• Specify a set of properties for every operation,

i.e., for every important control state

• Verify the module operation by operation by

moving along the important control states of the

design

• The module is verified when every operation

has been covered by a set of properties

Formal Property Checking - OverviewFormal SoC Verification

Control 1

))(()),((VcYXc control

n

j

nj

j

j

2
0

AXAX ∧∏
=

=

))(()(XaVa j

nj

j

j

control ∏
=

=

∧
0

1 AX

RT-level module verification

acontrol 1 :

ccontrol 2 :

V: state variables

AG(acontrol 1→ ccontrol 2)

Slide 11

Control 2

/ data_path_control_signals

data path

n cycles

Formal Property Checking - OverviewFormal SoC Verification

))(()(XaVaa j

nj

j

j

start ∏
=

=

∧=
0

AX

Property for RT-level module verification

AG(a→ c) property myExample is

assume:

at t: astart(V); //starting state //
at t: a0(X);

at t+1: a1(X);

at 2

Slide 12

))(()),((VcYXcc end

n

j

nj

j

j AXAX ∧=∏
=

=0

V: state variables, X: inputs, Y: outputs

at 2

at t+n: an(X);

prove:

at t: c0(X,Y);

at t+1: c1(X,Y);

at 2

at t+n: cn(X,Y);

at t+n: cend(V); //ending state //
end property;

Formal Property Checking - OverviewFormal SoC Verification

Property for RT-level module verification

property myExample is

assume:

at t: astart(s); //starting state //
at t: a0(x);

at t+1: a1(x);

at 2

Assumptions a()

- we start in a certain

control state

- a certain input

sequence arrives

Slide 13

s: state variables, x: inputs, y: outputs

at 2

at t+n: an(x);

prove:

at t: c0(x,y);

at t+1: c1(x,y);

at 2

at t+n: cn(x,y);

at t+n: cend(s); //ending state //
end property;

sequence arrives

Commitments c()

- certain input/output

relations hold

- operation ends in a

certain control state

Formal Property Checking - OverviewFormal SoC Verification

Formal Module Verification

Usage model: “Automated code inspection”

Code review: verification engineer inspects code of chip designer

� Looks at RT code and seeks explanation in specification

� Formulates hypothesis on behavior of implementation, formulates this

hypothesis in terms of property that can be checked automatically

� If property fails, design error is detected, or, verification engineer

Slide 14

� If property fails, design error is detected, or, verification engineer

improves his understanding of implementation and specification and

corrects his property

� Every true property documents a piece of correct design behavior

� Walks through the code, operation by operation, and covers each piece of

code by appropriate hypotheses

� Process is continued until implementation code is completely covered by

properties (metrics available to check completeness!)

Formal Property Checking - OverviewFormal SoC Verification

Completeness Criterion

M

operation properties

I O

Slide 15

A set of operation properties is called complete, if it uniquely

determines the I/O behavior of a circuit, i.e., every two circuits M,

M fulfilling the properties are sequentially equivalent.

M

=

I O

=

Formal Property Checking - OverviewFormal SoC Verification

Architectural characteristics

– unified 32-Bit-RISC/DSP/MC
architecture

– 853 instructions

– 6-stage superscalar pipeline

– multithreading extensions

– coprocessor support/floating point unit

Current Implementation

– 0.13 micron technology

TriCore 2 Microprocessor System of Infineon

Program

Scratch RAM

Program

Scratch RAM

Program

Cache

Data

Scratch RAM

TriCore 2

Core

Bus Interface Unit

Data Cache

Data

Scratch RAM

MMU

Interrupt & Interrupts

FPU

I

n

t

e

r

f

a

c

e

I

n

t

e

r

f

a

c

e

Slide 16

– 0.13 micron technology

– 3 mm2 core area/8 mm2 hardmacro
area

– typical frequency ~ 500 MHz

– typical compiled code 1.5 MIPS / MHz

– 2 MMACS/MHz, 0.5 mW/MHz @ 1.5 V

Deployment

primarily in automotive high-end
System Bus

Debug Unit
Interrupts

Other IPOther IP Crossbar (64 bit)

Bridge

subject to formal

verification

Formal Property Checking - OverviewFormal SoC Verification

Infineon Tricore 2 project – Example

Every instruction of the processor is verified by formulating a

property (or set of properties) describing its behavior

MAC Unit: multiply, multiply/add,

multiply/subtract

saturation, rounding,

shift-bits

Slide 17

shift-bits

e.g.

� MUL.H

- packed multiply

- 2 parallel multiplications

- 8 variants +12 special cases

- 16 bit operands

- 64 bit result

� MADD(S).Q

- multiply/add in Q-format

- 40 variants + 24 special cases

- 32/16 bit operands

- 64/32 bit results

- some variants with saturation

Formal Property Checking - OverviewFormal SoC Verification

Verification of processor pipelines

theorem mul; // packed half word

multiplication
assume:

at t: command_dec(MUL,op1,op2);
during[t,t+3]: no_reset;"assumptions"

Goal Prove that instructions are performed correctly

Example

Property in ITL (InTerval Language): "assumption + commitment"

Slide 18

during[t,t+3]: no_reset;
during[t,t+3]: no_cancel;

…
prove:

at t+3: ip_res[31:0]

== op1[15:0]*op2[15:0];

at t+3: ip_res[63:32]

== op1[31:16]*op2[31:16];

at t+5: decode_next_instruction;
end

"assumptions"

"commitments"

Formal Property Checking - OverviewFormal SoC Verification

Simulation vs. Complete Formal Module Verification

simulation

?
e
ff
o
rt

Slide 19

quality

setting up properties

proving completeness

complete formal module verification

achieved quality

Formal Property Checking - OverviewFormal SoC Verification

The Tricore processor – some results

Performance of property checking

� 99.9 % of properties run in less than 2 minutes on solaris machine

� current property suite runs in 40 hours on 1 solaris machine

Productivity

Slide 20

� 2k LoC per person month exhaustively verified

Quality

� formal techniques identified bugs that are hard or impossible to

find by conventional technique

� drastic reduction of errata sheets seems realistic

Formal Property Checking - OverviewFormal SoC Verification

New-Generation Property Checking

x y

δ, λs s'
Computation and representation

of state sets are very hard !

Consider machine in selected time window

Slide 21

Consider machine in selected time window

Property checking

mapped to satisfiability

problem (SAT)

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt

Formal Property Checking - OverviewFormal SoC Verification

Bounded Model Checking

Properties are proved for finite time interval!

s0 s1
s2 s3

y0 y1 x2

δ, λ δ, λ δ, λ

x1 x2

x0

bound k

Slide 22

s0 s1 s3

Property of length n = 3 satisfiable?

C
k

t

t
nk

i

iii psxssI
00

10][),,()(
=

+

=

+∏ ∧∧ τ

generate SAT instance:

initial states transition relation

unrolled k+n times

propositional formula for

internal formula of AGp,

k instances

Formal Property Checking - OverviewFormal SoC Verification

Modified formulation

Proving safety properties (AGp) using bounded circuit model

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

xt+1 xt+2

xt

Slide 23

st st+1 st+3

Property of length n = 3 satisfiable?

t
nt

ti

iii psxs][),,(1∏
+

=

+ ∧τ

generate SAT instance:

transition relation

unrolled n times

one instance of propositional

formula for property

„Interval Property Checking (IPC)“

[Siemens: 1995]

Formal Property Checking - OverviewFormal SoC Verification

Interval Property Checking

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt

Slide 24

property satisfiable?

Interval Property Checking essentially means that we prove safety properties

constructing a certain combinational circuit and solve a SAT problem for it.

So, what about all the classical notions of

- reachability analysis

- representations and operations for large state sets

- finite state machine traversal techniques

-P

Formal Property Checking - OverviewFormal SoC Verification

Example: Registers of an SoC-module

PC
0

0

1

2

3
instruction

[31 – 26]

shift

left 2

op

[31-26]

bool

P
C

W
ri

te
C

o
n

d

P
C

W
ri

te

lo
rD

M
e
m

R
e
a
d

M
e
m

W
ri

te

M
e
m

to
R

e
g

II
R

W
ri

te

P
C

S
o

u
rc

e

A
L

U
O

p

A
L

U
S

rc
A

A
L

U
S

rc
B

R
e
g

W
ri

te

R
e
g

D
s
t

instr. [25-0] 26 28

control
1

E
P

C
W

ri
te

C
a
u

s
e
W

ri
te

In
tC

a
u

s
e

11101(subtract)001 0 oder 1

Instruction registerProgram Counter

Data register

Register file

State register of control unit

Buffer register

Status register

Slide 25

0

1

0

1

0

1

0

1

0

1

2

3

3

A

B

T

address

write

data

MemData

memory

instruction

register

memory

data

register

register file
ALU

read

register1

read

register2

write

register

write

data

read

data 1

read

data 2

zero

result

[31 – 26]

instruction

[25 – 21]

instruction

[20 – 16]

instruction

[15 – 0]

shift

left 2

sign

extend

left 2

4

ALU

Control

instr.

[15-11]

PC [31-28]

16 32

instr. [5-0]

C
0
0
0
0
0
0
0

EPC

0

1

Status
0

1

Formal Property Checking - OverviewFormal SoC Verification

data register

pipeline buffer

instruction register

register file

control unit register combinational

Inputs

(X)

Outputs

(Y)

Representation of SoC Module as Moore- or Mealy machine

Slide 26

control unit register

Status register

program counter

counter / timer

Clock

combinational

logicStates

(V)

The registers of the SoC module correspond to different segments in the

global state vector V.

Formal Property Checking - OverviewFormal SoC Verification

Operation property

property myExample is

assume:

at t: astart(V); //starting state //
at t: a0(X);

at t+1: a1(X);

at 2

Note:

In general, operational

properties specify the register

contents only for a subset of

the SoC registers.

Slide 27

V: state variables, X: inputs, Y: outputs

at 2

at t+n: an(X);

prove:

at t: c0(X,Y);

at t+1: c1(X,Y);

at 2

at t+n: cn(X,Y);

at t+n: cend(V); //ending state //
end property;

the SoC registers.

e.g., a property may specify the

opcode bits of the instruction

register as well as some bits of the

control unit registers. Nothing is

said about all other registers.

Formal Property Checking - OverviewFormal SoC Verification

Example: Verifying communication structures

IDLE

input = REQ FSM describes a transaction in a

request/acknowledge protocol.

System waits for input "request". If it

arrives a counter is started. When the

Slide 28

READY

cnt ≠ n

cnt = n

/ output := ACK

arrives a counter is started. When the

counter has counted up to n an

acknowledge is given and the FSM

goes into state READY.

Formal Property Checking - OverviewFormal SoC Verification

Example

assume:

at t: (state = IDLE && input = REQ)

prove:

at t+n: (state = READY && output = ACK)

PropertyIDLE

input = REQ

Slide 29

at t+n: (state = READY && output = ACK)

READY

cnt ≠ n

cnt = n

/ output := ACK
Operational property with IDLE and

READY as starting and ending states

Formal Property Checking - OverviewFormal SoC Verification

Example

IDLE and READY are specified by asserting

IDLE

input = REQ

x x x x 2 x 1 0 1 0 0 x 2 x x

P 1 0pqm-1

Slide 30

IDLE and READY are specified by asserting

certain state bits in the global state vector

global state vector with m bits

READY

cnt ≠ n

cnt = n

/ output := ACK

P 1 0pqm-1

x x x x 2 x 1 0 1 0 0 x 2 x x

Formal Property Checking - OverviewFormal SoC Verification

Example

assume:

at t: (state = IDLE && input = REQ)

prove:

at t+n: (state = READY && output = ACK)

Property

IDLE

input = REQ

Slide 31

False!

Counterexample:

READY after n-1 cycles but not later

READY

cnt ≠ n

cnt = n

/ output := ACK

Formal Property Checking - OverviewFormal SoC Verification

Example

Verification engineer analyzes situation:

Inspection of counterexample

at time t: counter value is 1 when the controller

is in IDLE, but should be 0

Slide 32

⇒ Is there a bug? Forgot to initialize the counter

properly?

Inspection of design

Design is correct! Counter is always 0 when

controller is in state IDLE

⇒ The tool’s answer is wrong! (“False Negative”)

Formal Property Checking - OverviewFormal SoC Verification

Example

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt

Slide 33

property satisfiable?

At time t:

counter value is 1 when controller is in IDLE

This is possible in our computational model, even if it is not possible in the

real design!

Note: there are no restrictions on st

⇒ all binary code words are considered to be reachable

states at time t !

Formal Property Checking - OverviewFormal SoC Verification

IPC: The reachability problem

Do we still need this stuff?

Slide 34

- representations and operations for large state sets

But then

we are back in the 90s

and we can only handle small designs 2

- reachability analysis

- finite state machine traversal techniques

Formal Property Checking - OverviewFormal SoC Verification

IPC with invariants

Proving safety properties (AGp) by IPC with invariants

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

xt+1 xt+2

xt

Slide 35

st+1 st+3

Property of length n = 3 satisfiable?

t
nt

ti

iiit psxss][),,()(1∏
+

=

+ ∧∧ τφ

generate SAT instance:

Invariant transition relation

unrolled n times

one instance of propositional

formula for property
(special case: φ = 1)

need to add reachability

information here!

Formal Property Checking - OverviewFormal SoC Verification

Invariants

The notion of an „invariant“

Definition:

A set of states W in a finite state machine M is called invariant

if W contains all states being reachable from W.

Slide 36

Example:

The set of all reachable states in M is an invariant.

Can there be other invariants than the reachable state set R?

Formal Property Checking - OverviewFormal SoC Verification

Invariants

Example: FSM with 3 state variables

110 001 011

111 100 Reachable states:

R = {000, 001, 010, 011, 100}

Slide 37

110 001 011

101 000 010

initial state

Unreachable states:

U = {101, 110, 111}

Formal Property Checking - OverviewFormal SoC Verification

Invariants

Example (continued)

110 001 011

111 100

Invariants:

W1 = R = {000, 001, 010, 011, 100}

W2 = {001, 011, 010, 100}

W3 = {010}

Slide 38

110 001 011

101 000 010

initial state

W3 = {010}

W4 = {011, 010, 100}

W5 = {100}

W6 = {101, 110, 000, 001, 010, 011, 100}

W7 = {110, 001, 011, 010, 100}

W8 = {111, 110, 001, 011, 010, 100}

W9 = {010, 100}

W10 = {111, 101, 110, 000, 001, 010,

011, 100}

Formal Property Checking - OverviewFormal SoC Verification

Proving Safety Properties with Invariants

Let p be a Boolean formula. We want to prove that p holds in every

reachable state of the system (“safety property”, in CTL: AGp).

If the formula p holds for some invariant W that includes the initial state,

then, p holds in every reachable state of the system, i.e., the system

fulfills this safety property.

Slide 39

Which invariants of the previous example can be useful to prove the

safety property?

W1, W6, W10

E.g., consider W6:

W6 ⊇ R “W6 over-approximates the reachable state set“

Formal Property Checking - OverviewFormal SoC Verification

Proving Safety Properties with Invariants

Over-approximating the state space

For any state set W

- which is an invariant and

- which includes the initial state

it must hold that W ⊇ R.

Slide 40

it must hold that W ⊇ R.

Obviously, if a property holds for a superset of the reachable state set, it

must also for the reachable state set itself.

Therefore, we can prove safety properties based on invariants that over-

approximate the reachable state set.

Formal Property Checking - OverviewFormal SoC Verification

Proving Safety Properties with Invariants

False negatives

But, what if the property fails for an invariant W, with W ⊇ R ?

Then, we need to distinguish:

1) Property fails for one or more reachable states

(e.g. states 000, 001, 010, 011, 100 in W6)

Slide 41

⇒ there is a bug in the design (“True Negative”)

2) Property fails only for one or more unreachable states

(e.g. states 101, 110 in W6)

⇒ there is no bug in the design (“False Negative“)

The counterexample is “spurious”, i.e., it is based on states that

are unreachable in the design. Fortunately, the verification

engineer can usually recognize this by inspection.

Formal Property Checking - OverviewFormal SoC Verification

Interval Property Checking with Invariants

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt

Slide 42

property satisfiable?

May need to add

reachability information here!

This reachability information is added in terms of an invariant!

Formal Property Checking - OverviewFormal SoC Verification

IPC: The reachability problem

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt

Slide 43

property satisfiable?

Which states are reachable in this model?

at time t: all binary state codes (includes unreachable states)

at time t+1: only those states that are the image of some state code

at time t+2: only those states that are the image of an image of a state code

P

Formal Property Checking - OverviewFormal SoC Verification

Invariants in IPC

Invariants: sets of states closed under reachability

Proving AGp

t
nt

ti

iiit psxss][),,()(1∏
+

=

+ ∧∧ τφ

Slide 44

Invariants in this formulation compared to invariants in most other

model checking techniques:

• can be weaker

• can be of simpler syntactic forms

• are more intuitive to the designer

⇒⇒⇒⇒ common practice to derive invariants manually

Formal Property Checking - OverviewFormal SoC Verification

IPC: the standard case

DSP

Block Interfaces

RISC

System-on-Chip

φ = 1 φ = 1

The good cases3

“computation”

Slide 45

I/O controller

Block Interfaces

HW accelerator

φ = 1 holds in most cases when

verifying individual modules

φ = 1 φ = 1

Formal Property Checking - OverviewFormal SoC Verification

IPC with invariants

DSP

Block Interfaces

RISC

The difficult cases3

“communication”

φ ≠ 1 φ ≠ 1

φ ≠ 1

System-on-Chip

Slide 46

I/O controller

Block Interfaces

HW accelerator

φφφφ ≠≠≠≠ 1 for implementations of SoC protocols !

φ ≠ 1

φ ≠ 1 φ ≠ 1

Formal Property Checking - OverviewFormal SoC Verification

In industrial practice invariants are often described implicitly:

all states of the code space that fulfill certain “constraints”

Example constraint: the counter value is 0 whenever the controller

is in state IDLE.

This means: the designer sets up constraints (e.g. implications,

equivalences) which he/she expects to hold in the design. These

IPC with Invariants

Slide 47

equivalences) which he/she expects to hold in the design. These

constraints implicitly describe a state set. Then, we try to prove that

the state set characterized by the constraints is an invariant.

P 1 0

global state vector for design

m-1

Idle → cnt = 0

Formal Property Checking - OverviewFormal SoC Verification

Tool produces counterexample, false negative? How to proceed

in practice?

Step 1:

Inspect counterexample: check e.g. whether important states are

combined with “weird”, possibly unreachable states in other parts of

the design

IPC with Invariants

This should

Slide 48

P 1 0

global state vector for design

m-1

IDLE and cnt = 5
This should

be impossible!

Formal Property Checking - OverviewFormal SoC Verification

Tool produces counterexample, false negative? How to proceed

in practice?

Step 2:

Formulate a “reachability constraint” that you expect to hold for the

design.

IPC with Invariants

Slide 49

P 1 0

global state vector for design

m-1

IDLE → cnt = 0

Formal Property Checking - OverviewFormal SoC Verification

Tool produces counterexample, false negative? How to proceed

in practice?

Step 3:

Prove the reachability constraint by induction.

IPC with Invariants

property 1 (base case)

Assume: initial state

Slide 50

Assume: initial state

Prove: IDLE → cnt = 0

property 2 (induction step)

Assume:

at t: IDLE → cnt = 0

Prove:

at t+1: IDLE → cnt = 0

Hence, the state set characterized by (IDLE → cnt = 0) includes

the initial state (base case) and is an invariant (induction step).

Formal Property Checking - OverviewFormal SoC Verification

Tool produces counterexample, false negative? How to proceed

in practice?

Step 4:

Prove the original property using the reachability constraint. This

means that you prove the property for all states of the design that

fulfill the constraint. Since the constraint is proved to be valid for the

design it means that your proof is based on a state set that is an

invariant and which includes the initial state.

IPC with Invariants

Slide 51

invariant and which includes the initial state.

Property

assume:

at t: (state = IDLE && input = REQ

&& cnt = 0)

prove:

at t+n: (state = READY && output = ACK)

Formal Property Checking - OverviewFormal SoC Verification

Advanced Feature in OSS 360MV

assertion reachabiliy_constraints :=

if state = IDLE then cnt = 0 end if;

end assertion;

property improved is

dependencies: reachability_constraints;

assume:

IDLE

input = REQ

Slide 52

assume:

at t: state = IDLE and input = REQ;

prove:

at t+n: state = READY and output = ACK;

end property;

Property proven !
READY

cnt ≠ n

cnt = n

/ output := ACK

Formal Property Checking - OverviewFormal SoC Verification

Methodology

RTL

description

informal

specification

writes

Slide 53

writes

properties

properties

(ITL)

property checking

(interval-based)

counter-

example

property

holds

property fails

true

negative

finds reachability

constraints updates

properties

false

negative

Formal Property Checking - OverviewFormal SoC Verification

Industrial Experiences

How to integrate

FV in ESL-based

design flows?

Slide 54

White-box versus

black-box verification

Verification engineer’s

preferences

“Stimulus, response! Stimulus,

response! Don‘t you ever think?”

Formal Property Checking - OverviewFormal SoC Verification

Electronic System Level (ESL)

The problem

System level models are usually created in addition to the other

models, e.g. for virtual prototyping

→ high costs (in spite of IP re-use)

Slide 55

Semantic Gap: high-level synthesis applicable only in niches, no

formal relationship between high-level models and concrete RTL

implementation

→ ESL models do not reduce costs of RTL design

→ ESL models do not reduce costs of RTL verification

Formal Property Checking - OverviewFormal SoC Verification

ESL – RTL: Closing the semantic gap by property checking

send2

send

ctrl
send

S2

S3

ctrl

ctrl ctrl

ESL abstraction

SEND

SEND

RTL implementation

Slide 56

idle S1
send

ctrl IDLE SEND

set of important concrete states abstract state

“operational” finite path between

important states

abstract

transition

SEND

send1

Formal Property Checking - OverviewFormal SoC Verification

Implementing Understanding

Verifying

Documenting

Future Flow?

System Level Design and Verification

(SystemC)

Slide 57

Abstract Hardware Model

(SystemC)

Time and state abstract FSMs

RTL Implementation

(VHDL or Verilog)

Design IP

Abstract Verification Model

(macros in SVA)

Abstract Properties

Set of RTL Properties

(SVA)

Verification IP

Formal Property Checking - OverviewFormal SoC Verification

Conclusion

� Formal SoC verification relies on a sophisticated combination of

methodologies and proof engines

� More than “bug hunting”: the result of formal RTL verification should

be the soundness of the ESL model:

− verify global system behavior at the system level

(and get rid of RTL chip-level simulation!)

Slide 58

(and get rid of RTL chip-level simulation!)

− verify local register transfers (operations) at the RT level

� New challenges and opportunities for property checking in ESL-

based design flows

