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Industrial Experiences

Industrial partners:

Formal verification of Systems-on-Chip in industrial practice 
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• processors

• hardware accelerators

Example: SoC for automotive application
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• memories 

• I/O controllers

• mixed signal blocks

• communication structures
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Early phase

� set up and assess functional 
prototypes

Architecture

� model and explore architectural 
choices  

� specify modules and communication 
for target architecture

SoC Design Flow
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for target architecture

Design (RT)

� Register-Transfer (RT) description of 
modules 

� system integration, communication 
structures

Implementation

� Synthesis and optimization

� test preparation
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Early phase

� set up and assess functional 
prototypes

Architecture

� model and explore architectural 
choices  

� specify modules and communication 
for target architecture

SoC Design Flow

Property Checking

Given: 

• informal specification

• RT-level circuit description
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for target architecture

Design (RT)

� Register-Transfer (RT) description of 
modules 

� system integration, communication 
structures

Implementation

� Synthesis and optimization

� test preparation

• RT-level circuit description

Prove (by checking properties) that the 

RT-level design description fulfills the 

specification
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Early phase

� set up and assess functional 
prototypes

Architecture

� model and explore architectural 
choices  

� specify modules and communication 
for target architecture

SoC Design Flow

Equivalence Checking

Given: two design descriptions 

(e.g. 1x RTL, 1x Gatelevel)

Prove that both designs are functionally 

equivalent
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for target architecture

Design (RT)

� Register-Transfer (RT) description of 
modules 

� system integration, communication 
structures

Implementation

� Synthesis and optimization

� test preparation

equivalent
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Verification Tasks

The hot spot for property checking

Given: 

informal specification of modules 

and communication between 

modules (protocols)

Implementation at the register-
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(not yet)

(FV feasible but more advanced)

(FV quite established)

Implementation at the register-

transfer (RT) level in Verilog or 

VHDL (hardware description 

languages)

Approach:

Verify each module individually 

Verify interfaces between modules

Verify global behavior of entire chip
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RT-level module verification

A typical property for RT-level module verification:

AG(a→ c)
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a :  assumptions

- module is in some control state V

- certain inputs X occur

c :  commitments

- module goes into certain control state V’

- certain outputs Y occur
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Control 1

/ data_path_control_signals

Property 1:   AG(acontrol 1→ ccontrol 2)

RT-level module verification: operation by operation
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Control 2

data path

Property 2:   AG(acontrol 2→ ccontrol …)

n cycles
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Control 1

RT-level module verification: operation by operation

Typical methodology for Property Checking 

of SoC modules:

• Adopt an operational view of the design

• Each operation can be associated with certain 

“important control states” in which the operation 

starts and ends
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Control 2

n cycles

starts and ends

• Specify a set of properties for every operation, 

i.e., for every important control state

• Verify the module operation by operation by 

moving along the important control states of the 

design

• The module is verified when every operation 

has been covered by a set of properties  
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Control 1
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RT-level module verification

acontrol 1 :

ccontrol 2 :

V: state variables

AG(acontrol 1→ ccontrol 2)
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Control 2

/ data_path_control_signals

data path

n cycles
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Property for RT-level module verification

AG(a→ c) property myExample is

assume:

at t: astart(V); //starting state //
at t: a0(X);

at t+1: a1(X);

at 2
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V: state variables, X: inputs, Y: outputs

at 2

at t+n: an(X);

prove:

at t: c0(X,Y);

at t+1: c1(X,Y);

at 2

at t+n: cn(X,Y);

at t+n: cend(V); //ending state //
end property;
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Property for RT-level module verification

property myExample is

assume:

at t: astart(s); //starting state //
at t: a0(x);

at t+1: a1(x);

at 2

Assumptions a()

- we start in a certain 

control state

- a certain input 

sequence arrives
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s: state variables, x: inputs, y: outputs

at 2

at t+n: an(x);

prove:

at t: c0(x,y);

at t+1: c1(x,y);

at 2

at t+n: cn(x,y);

at t+n: cend(s); //ending state //
end property;

sequence arrives

Commitments c()

- certain input/output 

relations hold

- operation ends in a  

certain control state
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Formal Module Verification

Usage model: “Automated code inspection”

Code review: verification engineer inspects code of chip designer

� Looks at RT code and seeks explanation in specification

� Formulates hypothesis on behavior of implementation, formulates this 

hypothesis in terms of property that can be checked automatically 

� If property fails, design error is detected, or, verification engineer 
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� If property fails, design error is detected, or, verification engineer 

improves his understanding of implementation and specification and 

corrects his property

� Every true property documents a piece of correct design behavior

� Walks through the code, operation by operation, and covers each piece of 

code by appropriate hypotheses

� Process is continued until implementation code is completely covered by 

properties (metrics available to check completeness!)
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Completeness Criterion

M 

operation properties

I O
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A set of operation properties is called complete, if it uniquely 

determines the I/O behavior of a circuit, i.e., every two circuits M, 

M fulfilling the properties  are sequentially equivalent. 

M

=

I O

=
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Architectural characteristics

– unified 32-Bit-RISC/DSP/MC 
architecture

– 853 instructions

– 6-stage superscalar pipeline 

– multithreading extensions

– coprocessor support/floating point unit

Current Implementation

– 0.13 micron technology 

TriCore 2 Microprocessor System of Infineon

Program

Scratch RAM

Program

Scratch RAM

Program

Cache

Data 

Scratch RAM

TriCore 2

Core

Bus Interface Unit

Data Cache

Data 

Scratch RAM

MMU

Interrupt & Interrupts

FPU

I

n

t

e

r

f

a

c

e

I

n

t

e

r

f

a

c

e
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– 0.13 micron technology 

– 3 mm2 core area/8 mm2 hardmacro 
area

– typical frequency ~ 500 MHz

– typical compiled code 1.5 MIPS / MHz

– 2 MMACS/MHz, 0.5 mW/MHz @ 1.5 V

Deployment

primarily in automotive high-end
System Bus

Debug Unit
Interrupts

Other IPOther IP Crossbar (64 bit)

Bridge

subject to formal 

verification
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Infineon Tricore 2 project – Example

Every instruction of the processor is verified by formulating a 

property (or set of properties) describing its behavior

MAC Unit: multiply, multiply/add, 

multiply/subtract

saturation, rounding,

shift-bits
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shift-bits

e.g.

� MUL.H 

- packed multiply 

- 2 parallel multiplications 

- 8 variants +12 special cases

- 16 bit operands

- 64 bit result

� MADD(S).Q 

- multiply/add in Q-format

- 40 variants + 24 special cases

- 32/16 bit operands

- 64/32 bit results

- some variants with saturation
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Verification of processor pipelines

theorem mul; // packed half word 

multiplication
assume:

at t: command_dec(MUL,op1,op2);
during[t,t+3]: no_reset;"assumptions"

Goal Prove that instructions are performed correctly

Example

Property in ITL (InTerval Language): "assumption + commitment"
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during[t,t+3]: no_reset;
during[t,t+3]: no_cancel;

…
prove:

at t+3: ip_res[31:0]

== op1[15:0]*op2[15:0];

at t+3: ip_res[63:32]

== op1[31:16]*op2[31:16];

at t+5: decode_next_instruction;
end

"assumptions"

"commitments"
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Simulation vs. Complete Formal Module Verification

simulation

?
e
ff
o
rt
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quality

setting up properties

proving completeness

complete formal module verification

achieved quality
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The Tricore processor – some results

Performance of property checking

� 99.9 % of properties run in less than 2 minutes on solaris machine

� current property suite runs in 40 hours on 1 solaris machine 

Productivity
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� 2k LoC per person month exhaustively verified

Quality

� formal techniques identified bugs that are hard or impossible to 

find by conventional technique

� drastic reduction of errata sheets seems realistic
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New-Generation Property Checking

x y

δ, λs s'
Computation and representation 

of state sets are very hard !

Consider machine in selected time window
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Consider machine in selected time window

Property checking 

mapped to satisfiability 

problem (SAT)

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt
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Bounded Model Checking

Properties are proved for finite time interval!

s0 s1
s2 s3

y0 y1 x2

δ, λ δ, λ δ, λ

x1 x2

x0

bound k
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s0 s1 s3

Property of length n = 3 satisfiable?

C
k

t

t
nk

i

iii psxssI
00

10 ][),,()(
=

+

=

+∏ ∧∧ τ

generate SAT instance:

initial states transition relation

unrolled k+n times 

propositional formula for

internal formula of AGp,

k instances
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Modified formulation

Proving safety properties (AGp) using bounded circuit model

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

xt+1 xt+2

xt
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st st+1 st+3

Property of length n = 3 satisfiable?

t
nt

ti

iii psxs ][),,( 1∏
+

=

+ ∧τ

generate SAT instance:

transition relation

unrolled n times 

one instance of propositional 

formula for property

„Interval Property Checking (IPC)“

[Siemens: 1995]
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Interval Property Checking

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt
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property satisfiable?

Interval Property Checking essentially means that we prove safety properties 

constructing a certain combinational circuit and solve a SAT problem for it.

So, what about all the classical notions of

- reachability analysis

- representations and operations for large state sets

- finite state machine traversal techniques

-P
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Example: Registers of an SoC-module 
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Instruction registerProgram Counter

Data register

Register file

State register of control unit

Buffer register

Status register
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0

1

0
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address

write

data

MemData

memory
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register file
ALU

read
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read
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write
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write

data

read

data 1

read
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result
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[25 – 21]
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4
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data register

pipeline buffer

instruction register

register file

control unit register combinational 

Inputs

(X)

Outputs

(Y)

Representation of SoC Module as Moore- or Mealy machine 
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control unit register

Status register

program counter

counter / timer

Clock

combinational 

logicStates

(V)

The registers of the SoC module correspond to different segments in the 

global state vector V.
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Operation property

property myExample is

assume:

at t: astart(V); //starting state //
at t: a0(X);

at t+1: a1(X);

at 2

Note: 

In general, operational 

properties specify the register 

contents only for a subset of 

the SoC registers.
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V: state variables, X: inputs, Y: outputs

at 2

at t+n: an(X);

prove:

at t: c0(X,Y);

at t+1: c1(X,Y);

at 2

at t+n: cn(X,Y);

at t+n: cend(V); //ending state //
end property;

the SoC registers.

e.g., a property may specify the 

opcode bits of the instruction 

register as well as some bits of the 

control unit registers. Nothing is 

said about all other registers.
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Example: Verifying communication structures

IDLE

input = REQ FSM describes a transaction in a 

request/acknowledge protocol. 

System waits for input "request". If it 

arrives a counter is started. When the 
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READY

cnt ≠ n

cnt = n

/ output := ACK

arrives a counter is started. When the 

counter has counted up to n an 

acknowledge is given and the FSM 

goes into state READY.
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Example

assume:

at t: (state = IDLE && input = REQ)

prove:

at t+n: (state = READY && output = ACK)

PropertyIDLE

input = REQ
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at t+n: (state = READY && output = ACK)

READY

cnt ≠ n

cnt = n

/ output := ACK
Operational property with IDLE and 

READY as starting and ending states
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Example

IDLE and READY are specified by asserting 

IDLE

input = REQ

x  x  x  x 2   x  1  0 1  0  0  x 2 x  x

P 1  0pqm-1
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IDLE and READY are specified by asserting 

certain state bits in the global state vector

global state vector with m bits

READY

cnt ≠ n

cnt = n

/ output := ACK

P 1  0pqm-1

x  x  x  x 2   x  1  0 1  0  0  x 2 x  x
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Example

assume:

at t: (state = IDLE && input = REQ)

prove:

at t+n: (state = READY && output = ACK)

Property

IDLE

input = REQ
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False!

Counterexample: 

READY after n-1 cycles but not later

READY

cnt ≠ n

cnt = n

/ output := ACK
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Example

Verification engineer analyzes situation:

Inspection of counterexample

at time t: counter value is 1 when the controller 

is in IDLE, but should be 0
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⇒ Is there a bug? Forgot to initialize the counter 

properly?

Inspection of design

Design is correct! Counter is always 0 when 

controller is in state IDLE

⇒ The tool’s answer is wrong! (“False Negative”)
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Example

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt
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property satisfiable?

At time t:

counter value is 1 when controller is in IDLE

This is possible in our computational model, even if it is not possible in the 

real design!

Note: there are no restrictions on st  

⇒ all binary code words are considered to be reachable 

states at time t !
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IPC: The reachability problem

Do we still need this stuff?
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- representations and operations for large state sets

But then

we are back in the 90s

and we can only handle small designs 2

- reachability analysis

- finite state machine traversal techniques
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IPC with invariants

Proving safety properties (AGp) by IPC with invariants

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

xt+1 xt+2

xt
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st+1 st+3

Property of length n = 3 satisfiable?

t
nt

ti

iiit psxss ][),,()( 1∏
+

=

+ ∧∧ τφ

generate SAT instance:

Invariant transition relation

unrolled n times 

one instance of propositional 

formula for property
(special case: φ = 1)

need to add reachability 

information here!
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Invariants

The notion of an „invariant“

Definition: 

A set of states W in a finite state machine M is called invariant

if W contains all states being reachable from W.
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Example:

The set of all reachable states in M is an invariant.

Can there be other invariants than the reachable state set R?
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Invariants

Example: FSM with 3 state variables

110 001 011

111 100 Reachable states:

R = {000, 001, 010, 011, 100}
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110 001 011

101 000 010

initial state

Unreachable states:

U = {101, 110, 111}
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Invariants

Example (continued)

110 001 011

111 100

Invariants:

W1 = R = {000, 001, 010, 011, 100}

W2 = {001, 011, 010, 100}

W3 = {010}
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110 001 011

101 000 010

initial state

W3 = {010}

W4 = {011, 010, 100}

W5 = {100}

W6 = {101, 110, 000, 001, 010, 011, 100}

W7 = {110, 001, 011, 010, 100}

W8 = {111, 110, 001, 011, 010, 100}

W9 = {010, 100}

W10 = {111, 101, 110, 000, 001, 010, 

011, 100}
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Proving Safety Properties with Invariants

Let p be a Boolean formula. We want to prove that p holds in every 

reachable state of the system (“safety property”, in CTL: AGp).  

If the formula p holds for some invariant W that includes the initial state, 

then, p holds in every reachable state of the system, i.e., the system 

fulfills this safety property.
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Which invariants of the previous example can be useful to prove the 

safety property? 

W1, W6, W10

E.g., consider W6: 

W6 ⊇ R “W6 over-approximates the reachable state set“
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Proving Safety Properties with Invariants

Over-approximating the state space

For any state set W

- which is an invariant and 

- which includes the initial state 

it must hold that W ⊇ R. 
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it must hold that W ⊇ R. 

Obviously, if a property holds for a superset of the reachable state set, it 

must also for the reachable state set itself.

Therefore, we can prove safety properties based on invariants that over-

approximate the reachable state set.
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Proving Safety Properties with Invariants

False negatives

But, what if the property fails for an invariant W, with W ⊇ R ?

Then, we need to distinguish:

1) Property fails for one or more reachable states

(e.g. states 000, 001, 010, 011, 100 in W6)
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⇒ there is a bug in the design (“True Negative”)

2) Property fails only for one or more unreachable states

(e.g. states 101, 110 in W6)

⇒ there is no bug in the design (“False Negative“)

The counterexample is “spurious”, i.e., it is based on states that 

are unreachable in the design. Fortunately, the verification 

engineer can usually recognize this by inspection.
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Interval Property Checking with Invariants

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt

Slide 42

property satisfiable?

May need to add 

reachability information here!

This reachability information is added in terms of an invariant!
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IPC: The reachability problem

st st+1
st+2 st+3

yt yt+1 yt+2

δ, λ δ, λ δ, λ

property satisfiable?

xt+1 xt+2

xt
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property satisfiable?

Which states are reachable in this model?

at time t: all binary state codes (includes unreachable states)

at time t+1: only those states that are the image of some state code

at time t+2: only those states that are the image of an image of a state code 

P
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Invariants in IPC

Invariants: sets of states closed under reachability 

Proving AGp

t
nt

ti

iiit psxss ][),,()( 1∏
+

=

+ ∧∧ τφ
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Invariants in this formulation compared to invariants in most other 

model checking techniques:

• can be weaker

• can be of simpler syntactic forms

• are more intuitive to the designer

⇒⇒⇒⇒ common practice to derive invariants manually
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IPC: the standard case

DSP

Block Interfaces

RISC

System-on-Chip

φ = 1 φ = 1

The good cases3

“computation”
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I/O controller

Block Interfaces

HW accelerator

φ = 1 holds in most cases when 

verifying individual modules

φ = 1 φ = 1
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IPC with invariants

DSP

Block Interfaces

RISC

The difficult cases3

“communication”

φ ≠ 1 φ ≠ 1

φ ≠ 1

System-on-Chip
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I/O controller

Block Interfaces

HW accelerator

φφφφ ≠≠≠≠ 1 for implementations of SoC protocols !

φ ≠ 1

φ ≠ 1 φ ≠ 1
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In industrial practice invariants are often described implicitly:

all states of the code space that fulfill certain “constraints”

Example constraint: the counter value is 0 whenever the controller 

is in state IDLE.

This means: the designer sets up constraints (e.g. implications, 

equivalences) which he/she expects to hold in the design. These 

IPC with Invariants
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equivalences) which he/she expects to hold in the design. These 

constraints implicitly describe a state set. Then, we try to prove that 

the state set characterized by the constraints is an invariant.  

P 1  0

global state vector for design

m-1

Idle → cnt = 0
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Tool produces counterexample, false negative? How to proceed 

in practice?

Step 1:

Inspect counterexample: check e.g. whether important states are 

combined with “weird”, possibly unreachable states in other parts of 

the design

IPC with Invariants

This should 

Slide 48

P 1  0

global state vector for design

m-1

IDLE and cnt = 5
This should 

be impossible!
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Tool produces counterexample, false negative? How to proceed 

in practice?

Step 2:

Formulate a “reachability constraint” that you expect to hold for the 

design. 

IPC with Invariants
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P 1  0

global state vector for design

m-1

IDLE → cnt = 0
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Tool produces counterexample, false negative? How to proceed 

in practice?

Step 3:

Prove the reachability constraint by induction.

IPC with Invariants

property 1 (base case)

Assume: initial state
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Assume: initial state

Prove: IDLE → cnt = 0

property 2 (induction step)

Assume: 

at t: IDLE → cnt = 0

Prove:

at t+1: IDLE → cnt = 0

Hence, the state set characterized by (IDLE → cnt = 0) includes 

the initial state (base case) and is an invariant (induction step).
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Tool produces counterexample, false negative? How to proceed 

in practice?

Step 4:

Prove the original property using the reachability constraint. This 

means that you prove the property for all states of the design that 

fulfill the constraint. Since the constraint is proved to be valid for the 

design it means that your proof is based on a state set that is an 

invariant and which includes the initial state. 

IPC with Invariants
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invariant and which includes the initial state. 

Property

assume:

at t: (state = IDLE && input = REQ 

&& cnt = 0)

prove:

at t+n: (state = READY && output = ACK)
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Advanced Feature in OSS 360MV

assertion reachabiliy_constraints := 

if state = IDLE then cnt = 0 end if; 

end assertion;

property improved is

dependencies: reachability_constraints;

assume:

IDLE

input = REQ
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assume:

at t: state = IDLE and input = REQ;

prove:

at t+n: state = READY and output = ACK;

end property; 

Property proven !
READY

cnt ≠ n

cnt = n

/ output := ACK
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Methodology

RTL 

description

informal

specification

writes 
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writes 

properties

properties

(ITL)

property checking

(interval-based)

counter-

example

property 

holds

property fails

true 

negative

finds reachability 

constraints updates 

properties

false 

negative
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Industrial Experiences

How to integrate 

FV in ESL-based 

design flows?
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White-box versus 

black-box verification

Verification engineer’s 

preferences

“Stimulus, response! Stimulus, 

response! Don‘t you ever think?”
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Electronic System Level (ESL)

The problem

System level models are usually created in addition to the other 

models, e.g. for virtual prototyping 

→ high costs (in spite of IP re-use)
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Semantic Gap: high-level synthesis applicable only in niches, no 

formal relationship between high-level models and concrete RTL 

implementation

→ ESL models do not reduce costs of RTL design

→ ESL models do not reduce costs of RTL verification
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ESL – RTL: Closing the semantic gap by property checking

send2

send

ctrl
send

S2

S3

ctrl

ctrl ctrl

ESL abstraction

SEND

SEND

RTL implementation
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idle S1
send

ctrl IDLE SEND

set of important concrete states abstract state

“operational” finite path between 

important states

abstract 

transition

SEND

send1
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Implementing Understanding

Verifying

Documenting

Future Flow?

System Level Design and Verification

(SystemC)
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Abstract Hardware Model

(SystemC)

Time and state abstract FSMs

RTL  Implementation

(VHDL or Verilog)

Design IP

Abstract Verification Model

(macros in SVA)

Abstract Properties

Set of RTL Properties

(SVA)

Verification IP
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Conclusion

� Formal SoC verification relies on a sophisticated combination of 

methodologies and proof engines

� More than “bug hunting”: the result of formal RTL verification should 

be the soundness of the ESL model: 

− verify global system behavior at the system level 

(and get rid of RTL chip-level simulation!)
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(and get rid of RTL chip-level simulation!)

− verify local register transfers (operations) at the RT level

� New challenges and opportunities for property checking in ESL-

based design flows


