
Industrial Application of
Formal Verification

Magnus Björk
Jasper Design Automation

- 2 - ©2008 Jasper Design Automation

Copyright Notice and Proprietary Information

Published: March 9, 2012
Copyright ©2006-2010 Jasper Design Automation, Inc. All rights reserved. This document is owned by Jasper Design

Automation, Inc. and may be used only as authorized in the license agreement controlling such use. No part of these
materials may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without prior written permission of Jasper Design Automation, or as expressly provided by the
license agreement.

These materials are for information and instruction purposes. Jasper Design Automation reserves the right to make
changes in specifications and other information contained in these materials without prior notice, and the reader
should, in all cases, consult Jasper Design Automation to determine whether any changes have been made.

Disclaimer
JASPER DESIGN AUTOMATION, INC. DISCLAIMS AND MAKES NO WARRANTIES, EXPRESS, IMPLIED,

STATUTORY OR OTHERWISE WITH REGARD TO THESE MATERIALS, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT.

IN NO EVENT SHALL JASPER DESIGN AUTOMATION, INC. BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT,
SPECIAL, OR, CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THESE MATERIALS OR THE INFORMATION CONTAINED IN
THEM, HOWEVER CAUSED AND WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE) OR ANY
OTHER THEORY OF LIABILITY, EVEN IF JASPER DESIGN AUTOMATION, INC. HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Jasper Design Automation, the Jasper Design Automation logo, JasperGold, Formal Testplanner, Formal Scoreboard,
Proof Accelerators, InFormal, and GamePlan are trademarks of Jasper Design Automation, Inc.

All other trademarks or registered trademarks are the property of their respective owners.

100 View St., Suite 101
Mountain View, CA 94041
Tel: (650) 966-0200
Fax: (650) 625-9840
http://www.jasper-da.com

- 3 - ©2008 Jasper Design Automation

FORMAL VERIFICATION

- 4 - ©2008 Jasper Design Automation

About Me

•  M.Sc from Göteborgs Universitet, PhD from Chalmers
•  Continued to do research (Chalmers, Oxford, IT

University, SAAB Space/RUAG)
•  Main research interests:

– Formal verification (algorithms and applications)
– Automated theorem proving

•  Now employed by Jasper for a collaboration project
with Chalmers, funded by Vetenskapsrådet

•  My role at Jasper
– Research and development of new verification methods

- 5 - ©2008 Jasper Design Automation

Formal verification in a nutshell

•  Prove that a circuit fulfils its specification

•  Otherwise: produce counter example
– Trace of circuit where property is false

Circuit

Property

proof

- 6 - ©2008 Jasper Design Automation

Using observers

•  If property possible to rewrite as a circuit:

•  Reduced problem:
– Prove that OK is always true
– or find assignment where OK is false
– For combinational circuit: easily done by SAT solver

Circuit

Observer

OK

- 7 - ©2008 Jasper Design Automation

Handling Sequential Circuits

Circuit

Flops

Circuit

Circuit

Circuit

Observer

Init

OK

Bounded Model Checking (BMC)

- 8 - ©2008 Jasper Design Automation

Bounded to unbounded

•  BMC produces bounded proofs:
– A bounded proof of depth 4 guarantees that no CEX of

length 4 or shorter
– …or finds a CEX.

•  Different techniques to produce unbounded proofs:
– Temporal induction
– Using fixpoints

- 9 - ©2008 Jasper Design Automation

Adding proof power

•  Simplifications
–  Isolating relevant parts of circuit

•  Cone of influence (COI)
– Shrinking relevant parts

•  Verify 4 bit bus instead of 64 bis

•  Abstraction
– Three-valued semantics
– Automated abstraction refinement

•  Proof parallelization
•  Different logical systems

– SAT (propositional logic), BDD, SMT, FOL

- 10 - ©2008 Jasper Design Automation

Three valued simulation

•  Use ternary logic: {0,1,X}
– X: don’t care

•  Introduce X at (some) inputs and
initial flop values

•  Large parts of circuit disappears
•  Results:

– OK=1: Property proven
– OK=0: Counter example found
– OK=X: Too many X

•  The challenge is to introduce
enough but not too many X

A B A & B
X X X

X 0 0

X 1 X

0 X 0

0 0 0

0 1 0

1 X X

1 0 0

1 1 1

- 11 - ©2008 Jasper Design Automation

Abstraction refinement

•  Start with a heavily abstracted circuit
•  While (proof not found)

–  Is CEX spurious (false due to X)?
•  Then analyze what X may cause this, replace it by fresh

variable
•  Else report CEX

•  Report valid

- 12 - ©2008 Jasper Design Automation

WHERE TO APPLY FORMAL

- 13 - ©2008 Jasper Design Automation

Where to Apply Formal: Design Size

•  “How large blocks can your tool handle?”
– No good answer to this question!
– Totally function dependant
– Fundamental problem is NP complete

•  Rule of thumb, Focus on:
– Designer sized blocks
– Critical functionalities

•  “Ensure Correctness Where it Matters Most”

- 14 - ©2008 Jasper Design Automation

Where to Apply Formal: Functionality

•  Formal is not good for everything!
•  Good candidates:

– Data transportation
– Control logic
– Parallel interactions

•  Bad candidates:
– Data transformation
– DSP (Digital Signal Processing)
– Mathematics (FPU)
– Data encryption

- 15 - ©2008 Jasper Design Automation

Good Design Candidates for Formal

•  Arbiters
•  On-chip bus bridge
•  Power management unit
•  DMA controller
•  Host bus interface unit
•  Scheduler,

implementing multiple
threads

•  Virtual channels for QoS

Common characteristics of these blocks:
Concurrency and multiple data streams, which are difficult to completely
verify using simulation

•  Interrupt controller
•  Memory controller
•  Token generator
•  Cache coherency
•  Credit manager block
•  Standard interface

(USB, PCI Express…)
•  Proprietary interfaces
•  Clock disable unit

- 16 - ©2008 Jasper Design Automation

Example 1: Network traffic manager

•  Bandwidth allocator for network switch
– Customers buys a certain bandwidth access (eg 10 Mb/s

access)
– Switch must ensure that:

•  Customer gets at least 10 Mb/s access
•  Customer does not get more that 10 Mb/s access

– Each customer can buy different bandwidth sizes
•  256 Kb/s
•  512 kb/s
•  ...
•  10 Mb/s
•  ...

- 17 - ©2008 Jasper Design Automation

Example 1: Network traffic manager

•  Bandwidth allocation controlled by credit manager
– Buying a bandwidth of speed n gives you x credit tokens on

the switch
– The tokens denote access to switch memory
– Packet enters design: 1 token deducted from credit pool
– Packet exits design: 1 token returned to credit pool

•  Verification problem
– Are token always returned correctly?
– Failing to do so could cause token leakage
– Memory access would be blocked
– Switch would hang

- 18 - ©2008 Jasper Design Automation

Example 1: Network traffic manager

•  Problem type: Token leakage verification
•  Problem characteristics

– Huge number of possible scenarios
– Hundreds of communication channels active at the same

time
–  Impossible to verify sufficiently with simulation
– Corner case bug could make switch unusable

•  1 token leaked every second would force reboots every day

•  Perfect fit for formal
–  Impossible to enumerate corner case scenarios
– Full proof important

- 19 - ©2008 Jasper Design Automation

Example 2: Microcontroller

•  Microcontroller supporting two simultaneous
execution threads

•  Verification Problem:
– Does instruction execution behave according to spec?

•  Property example:
–  Instructions in memory should be executed sequentially

•  Problem characteristics:
– Huge number of possible scenarios

•  Combinations of instructions
•  Thread context switching
•  Interrupt handling

- 20 - ©2008 Jasper Design Automation

Example 2: Microcontroller

•  Flow control bug found
•  Condition:

– Both threads active
– Thread 1 executes branch
– User interrupt kills thread 1 at the same cycle as branch

instruction executes

•  Symptom:
– Branch information not cleared
– Causes Thread 2 to branch instead

•  Bug characteristics:
– Requires a very specific and cycle accurate scenario to

occur
– Almost impossible to find with simulation

- 21 - ©2008 Jasper Design Automation

FORMAL VERIFICATION
CHALLENGES

- 22 - ©2008 Jasper Design Automation

What Makes a Property Hard to Prove?

•  Example:
– A memory has an 8 bit wide data bus and an 8 bit wide

address bus.
– Property: If you write data to an address, then the next time

you read from that address you should get the same value
back as you wrote in unless you have performed another
write in the mean time.

•  How would this be verified in simulation?

•  Why is this problem hard to prove?

- 23 - ©2008 Jasper Design Automation

State Space Complexity

•  The State Space problem
– Formal verification explores all possible states

•  What is the size of the state space of the previous design?
– Word size is 8 bits
– 8 bit wide address means 2^8 words.
– Total number of memory bits: 8*2^8 = 2048 bits

•  What is the total number of distinct states that the memory
can be in?

– 2^2048 = 3.32 * 10^616
– Estimated number of atoms in the observable universe: 10^80

- 24 - ©2008 Jasper Design Automation

What Makes a Property Hard to Prove?

•  Example:
– Functionality:

•  An 8 bit counter, “cnt1”, counts the number of times an input
signal has been high.

•  Signal “a” is high when “cnt1” is full.
•  An 8 bit counter, “cnt2”, counts the number of times “a” has

gone high.
•  Signal “b” is high when “cnt2” is full.

– Property:
•  “a” and “b” are never active at the same time.

cnt1
8 bit counter

cnt2
8 bit counter

i a b

- 25 - ©2008 Jasper Design Automation

What Makes a Property Hard to Prove?

•  Why is it hard to find a counter example for this
problem?

– Number of memory bits are just 2*8
– State space is not a big problem

- 26 - ©2008 Jasper Design Automation

Sequential Depth Complexity

•  How many reachable states are there at any given
distance from reset?

– 1 cycle: cnt2 = 0 and cnt1 = 0 or 1 - #states: 2
– 2 cycles: cnt2 = 0 and cnt1 = 0,1 or 2 - #states: 3
– 3 cycles: cnt2 = 0 and cnt1 = 0,1,2 or 3 - #states: 4
–  ...
– 256 cycles: cnt1 = 0 to 256 and cnt2 = 0 or

 cnt1 = 0 and cnt2 = 1 - #states: 257
–  ...
– 65535 cycles: cnt1 = 0 to 256, cnt2 = 0 to 256 -

 #states: 65536
•  JasperGold has to verify all of the 65535 steps before

finding a CEX!

- 27 - ©2008 Jasper Design Automation

Engines and Design Complexity

•  Main reasons for performance problems:
– State Space Size
– Sequential Depth

•  Proof engines do not use brute force to verify all
combinations

– Doing so would cause most problems to blow up
– The different engines use different algorithms to handle

verification problems efficiently

•  Different engines have different strengths and
weaknesses

- 28 - ©2008 Jasper Design Automation

Recognizing a Hard-to-Prove Problem

•  Worst case scenario reasoning
– What is the longest possible trace I would get if there is a

bug in my design?

•  Example:
– Property: Data integrity across a bus bridge
– What if: Data is corrupted when my FIFO underflows?

•  Underflow can happen at cycle 2, bug can be detected around
cycle 2.

– What if: Data is corrupted when my FIFO overflows?
•  Overflow can not happen until at least after FIFO length

number of operations. Bug can only be detected after that.
Investigate how large the FIFO is!

- 29 - ©2008 Jasper Design Automation

Formal Testplanner Improves Verification
Predictability

•  Identifies complex logic before
formal analysis

•  Provides a detailed report on the
design’s complexity

•  Enables user to decide where to
safely apply abstractions to
improve verification performance

•  Multiple views
–  Analysis Region
–  Cone of Influence
–  Full Design

- 30 - ©2008 Jasper Design Automation

Coping with Formal Complexity

•  Methodology
– Appropriate size design blocks to apply formal analysis on
– Formal friendly modeling of properties and constraints
– Leverage symmetries in the design
– Assume/guarantee reasoning

•  Technology
– Safe abstraction techniques
– High performance engines

