
4/3/2008

1

Formal Hardware Verification

(some key ideas)

Mary Sheeran

Idealised Flow

High level

Not formal

4/3/2008

2

Idealised Flow

High level

Not formal

Formal spec.
Equally high level

Math, expressive logic

Idealised Flow

High level

Not formal

Formal spec.
Equally high level

Math, expressive logic

Specification Validation

Not a formal process (big demand for tools that assist)

4/3/2008

3

Refinement

Formal spec.

(inc. Constraints)

Formal spec.

(inc. Constraints)

Formal spec.

(inc. Constraints)

Refinement

Formal spec.

(inc. Constraints)

Formal spec.

(inc. Constraints)

Formal spec.

(inc. Constraints)

Proof

Mechanically checked

4/3/2008

4

Formal spec.

(inc. Constraints)

n

. . . . n

Proof by induction

and so on recursively ….

Stop when reach library components that have physical

implementation(s)

4/3/2008

5

Design verification

Run proof from bottom up

Formal spec.

MODEL of the system

Pros

Hierarchy is a (the?) way to manage complexity. Scalable.

This approach can span abstraction levels and in particular
can start high up close to the original informal spec.

The proof is based on the circuit structure

It is mechanically checked.

Can prove generic (or parameterised) systems. (One
proof gives a lot.)

4/3/2008

6

Cons

Interactive theorem proving is difficult and time-

consuming (often tedious too)

May need the lowest level components to be rather

abstract to make it feasible

Hard to make the link to the very low level physical

details. Risk leaving a gap to what is actually

implemented

Idealised Implementation

Keep exact structure

Conservative design rules used to ensure that the abstract

behaviour of the silicon is faithfully reflected in the system model

Link between implementation and design is checked in

Implementation verification

Remember that the

model captures only a

simplified version of the

behaviour.

Usually only function

4/3/2008

7

Implementation verification

Often done by extracting a model from the actual layout (look

in it to find where the transistors or gates are and how they are

connected)

Make a model of this result and compare with the design (using

Equivalence Checking (EC))

To make this feasible the design (golden model)

has to be close to the actual implementation

Post-silicon verification

Did the manufacturing work?

Very Hard because have few pins for pumping data in and out

(Formal methods used here too, more needed)

4/3/2008

8

Specification validation (not formal)

Design Verification

Implementation Verification

Post-silicon Verification

Reality gets in the way 

Pipelining

State encoding

Physical design messes

up logical structure

Optimisations

Spec. is

dragged downwards

4/3/2008

9

What can we do??

Aim for automation (bit level)

Find niches where formal methods work well

Use assertions / properties first in sim. and then in FV

Idea 1: make simulators a little cleverer

Symbolic simulation

Take a simulator (can be quite low level, accurate one)

Make it work not only on 0, 1, X (unknown)

(or a larger group of constants) but ALSO on symbols

4/3/2008

10

Ordinary simulation xor ?

0

0

simulation

0

0

1

1

4/3/2008

11

simulation

0

0

1

0

1
1

simulation

0

0

1

0

0

1
1

1

4/3/2008

12

simulation

0

0

1 0

0

0

1
1

1

4 runs to check exhaustively

Q: how many for n inputs?

Symbolic simulation Idea 1

Use X values

Halves number of sim. runs!

Why?

X

0 0

4/3/2008

13

Symbolic simulation Idea 1

Use X values

Halves number of sim. runs!

BUT may lose information

(try on xor example)

X

0 0

X

1 X

Symbolic simulation Idea 2

Use symbolic values

Think of giving input values names

rather than constant values

Build up an expression in terms of

(some of the) inputs

May Rep. Using Binary Decision

Diagrams (BDDs)

a

1 a

a ¬a

4/3/2008

14

Symbolic simulation

1

a

Symbolic simulation

1

a
¬a

0

4/3/2008

15

Symbolic simulation

1

a
¬a

0

0

a

Symbolic simulation

1

a
¬a

0

0

a

1

¬a

¬a

1X X

1a ¬a

4/3/2008

16

Symbolic simulation

Widely used (applies also to sequential circuits)

Forms basis of model checking method called Symbolic

Trajectory Evaluation (STE)

User must make judicious choice of 0,1 X a, b, …

X halves sim runs, but may result in X at a point vital

to the verification

Symbolic variable halves sim. runs without losing info.

BUT BDD somewhere in the sim. may grow too big

Questions?

4/3/2008

17

Binary Decision Diagrams

Vital enabling technology

Data structure for representing a Boolean function

(current form introduced by Bryant, known earlier)

Canonical form (constant time comparison)

Used in Symbolic Model Checking

a

c

d d d d d d d d

c c c

b b

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

ab + cd

(a b) (c d)
0 1

0 1 0 1

0 1 0 1 0 1 0 1

Ordered Decision Tree

4/3/2008

18

a

c

d d d d d d d d

c c c

b b

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

ab + cd

(a b) (c d)
0 1

0 1 0 1

0 1 0 1 0 1 0 1

Ordered Decision Tree

Every path from root to leaf obeys the variable ordering (a,b,c,d)

a

c

d d d d d d d d

c c c

b b

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

ab + cd

(a b) (c d)
0 1

0 1 0 1

0 1 0 1 0 1 0 1

Ordered Decision Tree

Every path from root to leaf obeys the variable ordering (a,b,c,d)

4/3/2008

19

a

c

d
d

d
d

d
d

d
d

c
c

c

b
b

0
 0

0
1

 0
 0

0
1

 0
 0

0
1

 1
1

1
1

0
 1

0
 1

 0
 1

0
 1

 0
 1

 0
 1

 0
 1

a b c d

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1

. . .

truth table

To get OBDD

Combine isomorphic subtrees (same label, same children)

Eliminate redundant nodes (those with two identical children)

until no more reductions possible

Tree becomes a graph

4/3/2008

20

ab + cd

(a b) (c d)

a

b

c

d

0 1

0

1

0

1

0

0 1

(O)BDD

(Make (O)BDD for

x y z

is xor

4/3/2008

21

Above method just conceptual

In reality generated and manipulated in fully reduced
form

Sharing exploited everywhere (hashing)

Efficient (polynomial time) algorithms for all usual
operations (and, or etc., quantification)

Representation is canonical (for a given variable
ordering)

Pros

Comparing Boolean functions cheap

[could use for what?]

Many small and usual functions have small BDDs

[example parity above

How big BDD for n inputs?

Exercise: How would it look in Conjunctive

Normal Form (CNF)?]

4/3/2008

22

Cons

Some usual and important functions have
GIGANTIC BDDs

Q: How big is the BDD for a 16-bit binary
multiplier?

Shifters are also problematic

Getting the variable order right is vital

Can make the difference between linear and
exponential size!

Next Step

Model checking (week after next)

