
Hardware Description and Verification

Lava Exam

Mary Sheeran

May 11, 2012

Introduction

The purpose of this take-home exam is to give you further practice in writing Lava definitions of
recursive circuits. It places particular emphasis on connection patterns. You will gain experience
of exploring a design space using Lava, and will again use formal verification and other circuit
analyses.

Important information

This is not a normal assignment, but part of the course examination. You are to do all of the
work yourself. You are not allowed to cooperate or copy solutions (whole or partial). You should
not even discuss your solution with anyone else. Act as if you were sitting in an exam hall with
someone watching you. Cheating is unprofessional, and morally wrong. We will take a very dim
view of any cheating that we discover, but feel hopeful that there will not be any.

If you have questions about how to interpret the assignments, or have problems with the tools,
do not hesitate to contact us. Also, if you get completely stuck, please contact us (and not your
friends). This is a much better idea than just giving up! In that case, any assistance that we give
will be noted and may influence your grade.

The required assignments are numbered A1-A10. It will be possible to pass by doing a good
job on assignments A1-A6 and one of A8 and A10. Although this document is long, your
answers can be short! You can increase your grade on this exam by up to 20% by doing the extra
assignment, A11.

What to submit

A submission will consist of a single Lava-runnable file containing the source code of the cir-
cuits and properties you have defined, and all the helper functions. Clearly mark in comments
which definition is part of which answer. You can save some time by starting from the file
LavaExamRemoved12.hs, which is provided.

In comments in the same Lava file, give the answers to the questions, motivation for decisions
you have made, etc. Mention what actually happened (time, output etc.) when you did a simu-
lation, verification or other analysis. Give us as much information about what you have done as
possible, as this eases the problem of judging the quality of your work. Remember, though, that
we don’t expect perfection. Hand in whatever you have got at the deadline, even if you are not
at all happy with it.

You may use definitions and other code fragments from the Lava tutorial and from the file
Efile12.hs, which is available, together with important papers and documents (including this
one) on the Assignments page on the course web page.

1

Figure 1: The Sklansky parallel prefix network for 32 inputs

Adders and parallel prefix circuits

Lecture 4 on Lava showed a sequence of steps (or a derivation) from a very simple ripple carry
binary adder to a more sophisticated adder that uses a so-called prefix network to calculate the
carries in the adder. By first calculating all the carries and then using those carries to calculate
the sum bits, one can speed up binary addition significantly. This idea is due to Brent and Kung
and their classic paper is provided with this exam (on the Assignments page).

The adders discussed in Lecture 4 on Lava are named adder0 to adder7. All code referred to
here is in file Efile12.hs. One of the steps in the derivation of the final prefix adder relies on the
fact that the function fullAdd1 does indeed correctly define a full adder.

A1. Verify by exhaustive simulation in Lava that fullAdd1 implements exactly the same function
as the built-in full adder in Lava (see Lava.Patterns). (1 points)

A2. Perform the same check using formal verification (and SMV) in Lava. (1 points)

A3. Formally verify that the “dot” operator, dotOp, is indeed associative, that is that it satisfies
a property of the form a ◦ (b ◦ c) = (a ◦ b) ◦ c. (2 points)

Hint: Write a property that checks associativity for any binary operator, and then apply it
to dotOp.

A4. Using formal verification in Lava, check that adder0 and adder6 have identical behaviour
for a range of input sizes. (2 points)

Given an input [a1, a2, . . . , an], the problem of calculating, in parallel, all of a1, a1◦a2, a1◦a2◦a3,
and so on, up to a1 ◦ a2 ◦ . . . ◦ an for an associative operator ◦ is called the parallel prefix problem.
It is this problem that we need to solve in order to make a fast adder based on Brent and Kung’s
dot operator. The prefix network is used for the calculation of the carries. We are going to
look at a number of different prefix networks. Note that in our final adder descriptions (see for
example adder6), the parts of the circuit that prepare inputs for the carry computation (the gpC

components) and that compute the final sums (the sumC components) are each very small and
entail only one gate delay. So the final cost of the adder, both in area and delay, is completely
dominated by the prefix network.

Making parallel prefix circuits

Sklansky

In a Lava lecture, you already saw the most well-known way of computing parallel prefix, which is
usually called after Sklansky, see Figure 1. It is a divide and conquer approach. We compute the
parallel prefix of each half of the inputs, and then combine the last output of the lower parallel
prefix with each of the outputs of the upper one.

In the file Efile12.hs, the definition of the Sklansky pattern is shown. It is built from
components that we call fans (see the lecture slides). An Example of such an operator is pplus,
see the file Efile12.hs.

You are provided with a Haskell file called DrawPP12.hs that allows you to draw pictures
like Figure 1 from your Lava descriptions. This program is a hack, written by Mary late one

2

3 a5a1
ai+1

a1 a3
ai ai+1

2S1

2S1

4S3

3S1
5S1

4S1
iS1

i+1S1a1

iSi−1

P

a2

a

Figure 2: One way to build a larger prefix network out of a smaller one. This is the basis of the
Brent Kung construction. Sj

i means ai ◦ ai+1 . . . aj .

night. It is not beautiful but it seems to work! Using DrawPP12.hs you can produce a file in FIG
format for a given parallel prefix network (e.g. by loading the file into Lava and typing at the
prompt drawPP "skl" skl 32). On Linux machines, the resulting file, skl32.fig, can either be
viewed with Xfig using the command xfig skl32.fig, or converted to pdf using fig2dev -L

pdf skl32.fig skl32.pdf. Rotate the diagram clockwise to make it easier to see. Xfig can also
produce pdf and many other formats, using Export... in the File menu. Make sure, now, that
this all works for you, and that you can view the resulting file, having converted it to pdf if you
wish. Get in touch with us if you have problems with this.

The file Efile12.hs also provides a Haskell function called check that allows you to check
that a pattern correctly constructs a prefix network (without calling any external tool):

Main> check skl 32

True

The file Efile12.hs also defines a non-standard fan component delFan, which can be used
to measure the depth of a connection pattern. For example, the depth of the skl pattern can be
measured thus:

> simulate (skl delFan) (replicate 16 0)

[1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4]

A5. Adders adder6 and adder7 are nearly identical, differing only in the patterns (ser and skl)
used to create the prefix networks that compute the carries. Define a function

adder8 :: PP (Bit,Bit) -> [(Bit, Bit)] -> ([Bit], Bit)

that is parameterised on this pattern. (2 points)

The Brent Kung parallel prefix network

The second well-known recursive pattern for parallel prefix is due to Brent and Kung. The Brent
Kung paper describes it in terms of a forwards and a backwards tree, but we can also think of it
as a recursive network. (Note that our generated diagrams are very like Brent and Kung’s except
that they are rotated by 180 degrees! In the Brent Kung pictures, data flows from bottom to top,
while in ours data flows from top to bottom.) Note that the fanout per level in the classic Brent
Kung network is only 2.

Figure 2 shows a recursive view of the Brent Kung pattern. The inputs are at the top, with
the least significant input on the left. The smaller network P is wrapped in two more layers
of operators, above and below it. If the inputs to the network are [a1, a2, . . . , an], then the
topmost layer of operators should apply to the 2-lists [a1, a2], [a3, a4], up to either [an−1, an]
or [an−2, an−1], depending on whether n is even or odd respectively. Call the results of those

3

Figure 3: The Brent Kung pattern (for 32 inputs) as drawn from the Lava description

applications [b2, b4, b6 . . .]. The smaller P network applies to exactly this list, to produce the list
[c2, c4, c6 . . .]. Both of these lists are shown as thicker lines in the diagram, entering and leaving
the box labelled P . The inputs [a1, a3, a5, . . .] also pass over the P network, and are shown as
thinner lines. The final (bottom-most) layer of operators should then operate on the 2-lists [c2, a3],
[c4, a5] and so on, to give d3, d5 etc. The output of the entire network is [a1, c2, d3, c4, d5 . . .].

A6. Define the Brent Kung pattern in Lava:

bKung :: PP a

bKung f [a] = ...

bKung f as = ...

Use the function check to verify that your definition is correct for a range of input sizes. Also
measure the depth of your circuit by using the delFan component. Formally verify a fast
adder built using the Brent Kung prefix pattern (for example using your adder8 function).
(6 points)

Hint: See Efile12.hs for some hints (but you are free to implement bKung any way you like).
If you get it right, the picture for 32 inputs should look like Figure 3.

A7. It is possible to define a function to count the number of operators in a prefix pattern as
follows:

pattSize patt n = simulate ((patt (mkFan opCount)) ->- sum) (replicate n 0)

The idea is to count up the operators along each “wire” and then add them up using sum.
Define the operator

opCount :: (Signal Int, Signal Int)

to make this work. (2 points)

Generalising Brent Kung

We have been considering (standard) versions of Brent Kung that work on sub-blocks of the input
of length 2.

A8. Make a more general Brent Kung pattern that takes a parameter k to indicate how wide
those blocks should be. (4 points)

bKungG :: Int -> PP a

Hint: Use small serial prefix networks at the top, and fans at the bottom. One result that I
got for that and block width 3 is shown in Figure 4.

4

A9. Generalise the above pattern to allow the small serial prefix networks across the top to be
replaced by any prefix pattern (which is to be a parameter).

bKungG1 :: Int -> PP a -> PP a

(4 points)
Figure 5 shows a general recursive structure for prefix networks, and it may guide your design

of the generalised Brent Kung patterns. The Ti are prefix networks and the Fi are fans. Here,
though, we are assuming that all blocks across the top have equal width, k, with the possible
exception of the rightmost one. An example of a prefix pattern where the small networks across
the top have width 4 and are Sklansky networks is shown in Figure 6

A10. You now have the means to describe a great variety of prefix networks. File Efile12.hs also
contains definitions of the Ladner Fischer construction, in case you want to use that as a
building block. Assuming a 64 input network, say, explore the design space to find a network
that is “lagom”, that is reasonably shallow, not too big and with fanout that is not too large.
(Decreasing depth increases both the number of operators and the fanout, so it is a question
of finding a sweet spot that is a good compromise between conflicting demands.) Document
your chosen network by giving its Lava definition. (6 points)

Extra assignment. Can be used by other students to gain
extra credit (up to 20%).

A11. Choose at least one of

(a) An alternative approach to making adders go fast is to use pipelining; see for example
the slides numbered 10 in the following presentation: http://perso.ens-lyon.fr/

bogdan.pasca/resources/talks/addition_slides.pdf. (The link is also given on
the Assigments page.)

Define and verify a pipelined adder in Lava.

(b) Design and formally verify an interesting circuit in Lava. One possible choice would be
to use the paper by Knowles called “A family of adders” as inspiration. (It is widely
available on the web.)

To submit

Use the Fire system as before.

You will be reviewed on the following:

1. The correctness and readability of your circuit descriptions

2. The correctness of your applications of formal verification

3. The clarity of your documentation (which should be brief).

Good luck!

5

35 lines, 8 stages, 60 operators, 3 maximum fanout.

Figure 4: Allowing fanout 3 in Brent Kung

Tn−1...

...F

T 0 T T1 2

1 2F

P

... Fn

w0 w1 w2

nT

Figure 5: Recursive decomposition of a prefix network.

32 lines, 6 stages, 63 operators, 5 maximum fanout.

Figure 6: A network in which the small prefix networks (of width 4) across the top are Sklansky
networks.

6

