
Testing, Debugging, and Verification
Testing, Part III

Wolfgang Ahrendt, Vladimir Klebanov, Moa Johansson

5 November 2012

TDV: Testing /GU 121105 1 / 48

Admin

I Make sure you are registered for the course. Otherwise your marks
cannot be recorded.

I Even if you are repeating the course, only taking exercises or exam.
I If in doubt, contact the student center to double check.
I PhD students excluded (but drop me an email so I know who you are)

I Those who have a clashing exam: contact student center/exam
administration.

I Please sign up to the News group.

TDV: Testing /GU 121105 2 / 48

Exercise sessions

I First exercise session this Wednesday

I please bring laptops
I install relevant tools before

I topic: testing
I install JUnit beforehand

(version JUnit4 upwards)

TDV: Testing /GU 121105 3 / 48

Overview of this Lecture

This lecture is all about unit testing

Specific topics:

I Recap JUnit: a framework for rapid unit testing

I Integrating test units

I Principles of test set construction

I Quality criteria for test sets

TDV: Testing /GU 121105 4 / 48

JUnit (Recap.)

I Java testing framework to write and run automated tests
I JUnit features include:

I Assertions for testing expected results
I Annotations to designate test cases
I Sharing of common test data
I Graphical and textual test runners

I JUnit is widely used in industry

I JUnit used from command line or within an IDE (e.g., Eclipse)

TDV: Testing /GU 121105 5 / 48

Recap: JUnit and Extreme Testing

I Test-cases first: Clear idea of what program should do before coding.

I Understanding of specification and requirements.

I Regression testing: re-run after changes to code.

TDV: Testing /GU 121105 6 / 48

Extreme Testing Example: Class Money

c la s s Money {

private int amount;

private Currency currency;

public Money(int amount , Currency currency) {

th i s .amount = amount;

th i s .currency = currency;

}

public Money add(Money m) {

// NO IMPLEMENTATION YET, WRITE TEST FIRST

}

}

c la s s Currency {

private String name;

public Currency(String name) {

th i s .name = name;

}

}
TDV: Testing /GU 121105 7 / 48

Write a Test Case for add()

import org.junit .*;

import s ta t i c org.junit.Assert .*;

public c la s s MoneyTest {

@Test public void simpleAdd() {

Currency sek = new Currency("SEK");

Money m1 = new Money (120, sek);

Money m2 = new Money (160, sek);

Money result = m1.add(m2);

Money expected = new Money (280, sek);

assertTrue(expected.equals(result));

}

}

@Test is an annotation, turning simpleAdd into a test case

TDV: Testing /GU 121105 8 / 48

Example: Class Money

Now, implement the method under test, and make sure it fails

c la s s Money {

private int amount;

private Currency currency;

....

public Money add(Money m) {

return nul l ;
}

}

TDV: Testing /GU 121105 9 / 48

Compile and Run JUnit test class

I JUnit reports failure

I Produce first ’real’ implementation

TDV: Testing /GU 121105 10 / 48

Example: Class Money

First real attempt to implement the method under test

c la s s Money {

private int amount;

private Currency currency;

public Money(int amount , Currency currency) {

th i s .amount = amount;

th i s .currency = currency;

}

public Money add(Money m) {

return new Money(amount+m.amount , currency);

}

}

TDV: Testing /GU 121105 11 / 48

Compile and Run JUnit test class

I JUnit will still report failure
I Fix possible defects, until test passes.

I Can you spot it?

I What if we have different currencies?

TDV: Testing /GU 121105 12 / 48

Extend Functionality

Extend Money with Euro-exchange-rate first in test cases

public c la s s MoneyTest {

@Test public void simpleAdd() {

Currency sek = new Currency("SEK",9.01);

Money m1 = new Money (120, sek);

....

}

@Test public void addDifferentCurr() {

Currency sek = new Currency("SEK",9.01);

Money m1 = new Money (120, sek);

Currency nok = new Currency("NOK",7.70);

Money m2 = new Money (160, nok);

Money result = m1.add(m2);

Money expected = new Money(307, sek);

assertTrue(expected.equals(result));

}

}

Change, and test implementation
TDV: Testing /GU 121105 13 / 48

Common Parts into Test Fixture

public c la s s MoneyTest {

private Currency sek;

private Money m1;

@Before public void setUp() {

sek = new Currency("SEK" ,9.01);

m1 = new Money (120, sek);

}

@Test public void simpleAdd () {

Money m2= new Money (140, sek);

....

}

@Test public void addDifferentCurr () {

Currency nok = new Currency("NOK" ,7.70);

Money m2 = new Money (160, nok);

...

}

}
TDV: Testing /GU 121105 14 / 48

Integrating Test Units

Testing a unit may require:

Stubs to replace called procedures

Drivers to replace calling procedures

TDV: Testing /GU 121105 15 / 48

Incremental Testing: Top-Down and Bottom-Up

Explore incremental test strategies, following call hierarchy:

Top-Down Testing
Test main procedure, then go down the call hierarchy

I requires stubs, but no drivers

Bottom-Up Testing
Test leaves in call hierarchy, and move up to the root.
Procedure is not tested until all ‘children’ have been tested.

I requires drivers, but no stubs

TDV: Testing /GU 121105 16 / 48

Top-Down Testing: Pros and Cons

Advantages of Top-Down Testing

I Advantageous if major flaws occur toward top level.

I Early skeletal program allows demonstrations and boosts morale.

Disadvantages of Top-Down Testing

I Stubs must be produced (often more complicated than anticipated).

I Judgement of test results more difficult.

I Tempting to defer completion of testing of certain modules.

TDV: Testing /GU 121105 17 / 48

Bottom-Up Testing: Pros and Cons

Advantages of Bottom-Up Testing

I Advantageous if major flaws occur toward bottom level.

I Judgement of test results is easier.

Disadvantages of Bottom-Up Testing

I Driver units must be produced.

I The program as an entity does not exist until the last unit is added.

TDV: Testing /GU 121105 18 / 48

Discussion: Top-down vs Bottom-up Testing

Name:

Hours:

Print Paycheck

Payroll System

calculates:
salaries, taxes, bonus

Print Paycheck

Formats and prints
paycheck

Staff Database

Given name, looks up
address, position.

Person nr: How would you go about
testing the Paycheck system

I Bottom-up?
I Which drivers do

you need?

I Top-down?
I Which stubs do you

need?

I What are the advan-
tages/disadvantages of
each approach?

TDV: Testing /GU 121105 19 / 48

Test Suites

Test Suite

A test suite is a set of test cases.

I Very simple definition, but important concept

I Most central activity of testing is the creation of test suites

I Quality of test suites defines quality of overall testing effort

(When presenting test suites, we show only relevant parts of test cases.)

TDV: Testing /GU 121105 20 / 48

Principles of Test Suite Construction

Black-box testing

Deriving test suites from external descriptions of the software, including
specifications, requirements, design, and input space knowledge

White-box testing

Deriving test suites from the source code internals of the software,
specifically including branches, individual conditions, and statements

I Many modern techniques are a hybrid of both

I Black- and white-box are only two extremes in the space of the
considered levels of abstraction from the implementation under test

TDV: Testing /GU 121105 21 / 48

Coverage Criteria

Most metrics used as quality criteria for test suites describe the
degree of some kind of coverage.

These metrics are called coverage criteria.

TDV: Testing /GU 121105 22 / 48

Categories of Coverage Criteria

Following the categorisation of [AmmannOffutt] (simplified),
we group coverage criteria as follows:

Coverage Criteria Grouping

I Control flow graph coverage

I Logic coverage

I Input space partitioning

TDV: Testing /GU 121105 23 / 48

Control Flow Graph

Control Flow Graph

Represent implementation under test as graph:

I Every statement represented by a node

I Edges describe control flow between statements

I Edges can be constrained by conditions

TDV: Testing /GU 121105 24 / 48

Example

int russianMultiplication(int a, int b){

int z = 0;

while(a != 0){

i f (a%2 != 0){

z = z+b;

}

a = a/2;

b = b*2;

}

return z;

}

[example and graph by Christian Engel]

TDV: Testing /GU 121105 25 / 48

Control Flow Graph of russianMultiplication()

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

TDV: Testing /GU 121105 26 / 48

Control Flow Graph Notions

Execution Path:

a path through a control flow graph, that starts at the entry point and is
either infinite or ends at one of the exit points.

Path Condition:

a path condition PCp for an execution path p within a piece of code c is
a condition on the prestate of c causing c to execute p.

Feasible Execution Path:

an execution path for which a satisfiable path condition exists. A branch
or statement is called feasible if it is contained in at least one feasible
execution path.

TDV: Testing /GU 121105 27 / 48

Statement Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)
Statement Coverage (SC)

SC is satisfied by a test suite TS , iff for
every node n in the control flow graph
there is at least one test in TS causing
an execution path via n.

For russianMultiplication():

I TS = {(a = 1, b = 0)} satisfies
statement coverage

TDV: Testing /GU 121105 28 / 48

Branch Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

Branch Coverage (BC)

BC is satisfied by a test suite TS , iff
for every edge e in the control flow
graph there is at least one test in TS
causing an execution path via e.

BC subsumes SC.
For russianMultiplication():

I TS = {(a = 2, b = 0)} satisfies
branch coverage

TDV: Testing /GU 121105 29 / 48

Path Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

Path Coverage (PC)

PC is satisfied by a test suite TS , iff
for every execution path ep of the
control flow graph there is at least one
test in TS causing ep.

PC subsumes BC.
For russianMultiplication():

I Number of execution paths is 231

I Size of a test suite satisfying PC is
231

I PC cannot be achieved in practice

TDV: Testing /GU 121105 30 / 48

Mini Quiz: Graph Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

Does the following test cases
satisfy Statement Coverage,
Branch Coverage and/or Path
Coverage?

I [a=3, b=3] SC

I [a=0, b=2] neither

I [a=4, b=1] SC and BC

TDV: Testing /GU 121105 31 / 48

Logic Coverage

Logical (boolean) expressions can come from many sources:

1. Decisions in source code (e.g., if, while)

2. Decisions in software models (FSMs and statecharts)

3. Case distinctions in requirements

We focus on 1.

TDV: Testing /GU 121105 32 / 48

Decision Coverage

Let the decisions of a program p, D(p), be the set of all boolean
expressions which p branches on.

Decision Coverage (DC)

For a given decision d , DC is satisfied by a test suite TS if it contains at
least two tests, one where d evaluates to false, and one where d
evaluates to true.

For a given program p, DC is satisfied by TS if it satisfies DC for all
d ∈ D(p).

TDV: Testing /GU 121105 33 / 48

Decision Coverage

Example

For decision ((a < b) || D) && (m ≥ n ∗ o),
DC is satisfied for instance if TS triggers executions with:

a = 5, b = 10,D = true,m = 1, n = 1, o = 1
and
a = 10, b = 5,D = false,m = 1, n = 1, o = 1

Inner Value Problem

I the above values are not test case inputs, but values at the time of
executing the decision

I separate problem to find corresponding input values

Implicit Decisions Problem

I Java has implicit decisions (e.g., potential null-pointer access)

TDV: Testing /GU 121105 34 / 48

Condition Coverage

Let the conditions of a program p, C (p), be the set of all boolean
sub-expressions c of decisions in D(p), such that c does not contain
other boolean sub-expressions.

Given the decision ((a < b) || D) && (m ≥ n ∗ o),
the conditions are: (a < b), D, and (m ≥ n ∗ o).

Condition Coverage (CC)

For a given condition c , CC is satisfied by a test suite TS if it contains at
least two tests, one where c evaluates to false, and one where c evaluates
to true.

For a given program p, CC is satisfied by TS if it satisfies CC for all
c ∈ C (p).

TDV: Testing /GU 121105 35 / 48

Condition Coverage

Example

For each condition in ((a < b) || D) && (m ≥ n ∗ o),
CC is satisfied for instance if TS triggers executions with:

a = 5, b = 10,D = true,m = 1, n = 1, o = 1
and
a = 10, b = 5,D = false,m = 1, n = 2, o = 2

No subsumption

I CC does not subsume DC

I DC does not subsume CC

I Consider p || q

TDV: Testing /GU 121105 36 / 48

Modified Condition Decision Coverage, MCDC

Modified Condition Decision Coverage, MCDC

For a given condition c in decision d , MCDC is satisfied by a test suite
TS if it contains at least two tests, one where c evaluates to false, one
where c evaluates to true, d evaluates differently in both, and the other
conditions in d evaluate identically in both.

For a given program p, MCDC is satisfied by TS if it satisfies MCDC for
all c ∈ C (p).

TDV: Testing /GU 121105 37 / 48

Modified Condition Decision Coverage, MCDC

Example

For condition a < b in decision ((a < b) || D) && (m ≥ n ∗ o),
MCDC is satisfied for instance if TS triggers executions with:

a = 5, b = 10, D = false,m = 1, n = 1, o = 1
and
a = 10, b = 5, D = false,m = 8, n = 2, o = 3

Note: To have MCDC for whole decision also need test-cases for
conditions D and (m ≥ n ∗ o)

(Note that the examples on slides 34 and 36 do not guarantee MCDC.)

TDV: Testing /GU 121105 38 / 48

Modified Condition Decision Coverage, MCDC

MCDC in industrial certification standard

MCDC is required in the avionics certification standard DO-178 as the
criterion to test adequately Level A software (failure of which is classified
as ‘Catastrophic’).

TDV: Testing /GU 121105 39 / 48

Mini Quiz: Logical Coverage

Suppose a program contains the decision if(x < 1 || y > z)

Does the following test sets satisfy Decision Coverage, Condition
Coverage and/or MCDC?

I [x=0, y=0, z=1] and [x=2, y=2, z=1]

CC

I [x=2, y=2, z=1] and [x=2, y=0, z=1]

DC

I [x=2, y=2, z=2], [x=0, y=0, z=1],
[x=2, y=0, z=0], [x=2, y=2, z=1]

DC, CC, MCDC

TDV: Testing /GU 121105 40 / 48

Input Space Partitioning

I Ultimately all testing is about choosing elements from input space

I Input space partitioning takes that view in a more direct way

I Input space partitioned into regions that are assumed to contain
‘equally useful values’

I Test cases contain values from each region

TDV: Testing /GU 121105 41 / 48

Partitioning Domains

A partitioning q of a domain D defines a set of blocks,
Bq = {b1, . . . , bn}, such that:

I the blocks bi are pairwise disjoint (no overlap)

I together the blocks cover the domain D (complete)

b
2

b
3

b
4

b
1

Normally, different partitionings are combined (see below)

TDV: Testing /GU 121105 42 / 48

Examples

Consider the domain of integer arrays.

Are the following blocks a partitioning?

I b1 = sorted in ascending order

I b2 = sorted in descending order

I b3 = arbitrary order

Answer: no!

I The array [1] belongs to all blocks

I Unclear whether the array null belongs to any block

TDV: Testing /GU 121105 43 / 48

Combining Partitionings

When creating test cases for findElement (int[] arr, int elem)

partitioning q: arr is null (bq1) or not (bq2)

partitioning r : arr is empty (br1) or not (br2)

partitioning s: number of elem in arr is 0 (bs1), 1 (bs2), or >1 (bs3)

Note:

I r is a sub-partitioning of bq2
I bs2 and bs3 are sub-blocks of br2
I bs1 overlaps with br1 and bq2

(fine, as r and s are different partitionings)

TDV: Testing /GU 121105 44 / 48

Strategies for Identifying Values

After partitioning, one still has to choose values from the blocks.

Strategies

I Include valid, invalid and special values

I Sub-partition some blocks

I Explore boundaries of domains

TDV: Testing /GU 121105 45 / 48

Discussion: Input Space Partitionings

Recall the method russianMultiplication(int a, int b).

Suggest some input space partitionings.

E.g.

I a ≥ 0 or a < 0

I b ≥ 0 or b < 0

I a ≥ b or a < b

TDV: Testing /GU 121105 46 / 48

Summary: Coverage Criteria

I Control Flow Graph
I Statement coverage: every node visited.
I Branch coverage: every edge traversed.
I Path coverage: every excecution path (usually too many!)

I Logic Based
I Decision coverage: test for each decision true/false.
I Condition coverage: each sub-expression true/false.
I MCDC: sub-expression true/false AND affecting decision.

I Input Space Partitioning
I Input space split into disjoint regions.

TDV: Testing /GU 121105 47 / 48

Literature related to this Lecture

AmmannOffutt see course literature.

TDV: Testing /GU 121105 48 / 48

	Organisation
	Overview
	JUnit
	Integrating Test Units
	Principles of Test Suite Construction
	Coverage Criteria

